
HAL Id: hal-03719439
https://ut3-toulouseinp.hal.science/hal-03719439v1

Submitted on 11 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RAFDivider
Sylvie Doutre, Marie-Christine Lagasquie-Schiex

To cite this version:
Sylvie Doutre, Marie-Christine Lagasquie-Schiex. RAFDivider. [Research Report] IRIT/RR–2022–
07–FR, IRIT : Institut de Recherche en Informatique de Toulouse. 2022, pp.1-48. �hal-03719439�

https://ut3-toulouseinp.hal.science/hal-03719439v1
https://hal.archives-ouvertes.fr

RAFDivider

Sylvie DOUTRE

Marie-Christine LAGASQUIE-SCHIEX

(special acknowledgement to Mickaël LAFAGES)

IRIT, Université de Toulouse

118 route de Narbonne, 31062 Toulouse, France

{doutre, lagasq}@irit.fr

Tech. Report
IRIT/RR- -2022- -07- -FR

June 2022

Abstract

The topic of this work is related to a computational issue concerning an enriched abstract argumentation frame-
work called RAF (“Recursive Argumentation Framework”). A RAF is composed of a set of arguments and a binary
relation modelling the attacks as in Dung’s framework. The main difference between Dung’s framework and RAF is
the fact that a RAF is able to take into account higher-order interactions (i.e. an attack can target an attack and not
only an argument). Since this kind of framework is relatively recent, the efficient computation of the main semantics
remains an open question.

In this paper, we propose one of the first algorithms dedicated to this issue. We also prove the soundness and the
completeness of our algorithms.

2

Contents

1 Motivation 4

2 Background 4
2.1 Dung Argumentation Framework (AF) . 4
2.2 AFDivider: an algorithm for AF . 6
2.3 RAF: a Higher-order Argumentation Framework . 9

2.3.1 RAF structure-based semantics . 9
2.3.2 RAF labellings . 10
2.3.3 Decomposability of RAF and RAF semantics . 11

3 Some Preliminary Definitions 14

4 A Generic Algorithm for RAF: Presentation by Example 16
4.1 Pretreatment: Removing the Trivial Part . 16
4.2 Identifying Clusters . 21
4.3 Computing the Labellings . 21
4.4 Reunifying the Results . 31

4.4.1 Component labelling reunification . 32
4.4.2 Whole RAF labelling reunification . 35

4.5 Synthesis of the running example . 35

5 RAFDivider: Algorithms and Properties 35

6 A Clustering Method 38

7 Conclusion and Future Works 40

A Proofs 41

3

1 Motivation
Argumentation, by considering arguments and their interactions, is a way of reasoning that has proven successful in
many contexts, multi-agent applications for instance (e.g. [9]). Considering a formal representation of this reasoning
model, argumentation frameworks with higher-order attacks (e.g. [7, 23, 24, 5, 6]) are a rich extension of the classical
Argumentation Framework (AF) by [17]: not only they consider arguments and attacks between arguments, but also
attacks on attacks (see for instance [5, 6]). Among these frameworks, the Recursive Argumentation Framework (RAF)
by [11] proposes a direct approach regarding acceptability, which outputs sets of arguments and/or attacks (defined
under the notion of structure), keeping the full expressiveness of higher-order attacks. A correspondence between
Dung’s extension-based semantics for AF and structure-based semantics of RAF without any attack on attacks has been
shown in [11], proving that RAF are a conservative generalisation of AF. This characteristic makes RAF particularly
interesting to consider.

The computation of semantics of RAF has not been addressed so far but a simple way to do so can be to extend
what is done for AF: some of the most efficient algorithms for computing AF semantics are based on a cutting of the
AF and then on a distributed and parallel computation (see [12, 19, 22, 16]) using the notion of AF labellings (e.g.
[8, 4])1 and the fact that such semantics are decomposable (see [3]). Indeed, RAF labellings already exist and classical
decision problems for AF were also adapted to RAF with an interesting result (see [15]): even if the expressive power
of the frameworks with higher-order attacks is higher, the complexity of their decision problems keeps the same as in
AF. Moreover, it has been proven in [21] that RAF semantics, as AF semantics, are decomposable. Thus, following the
line of the AFDivider algorithm designed for AF [16], all the mandatory elements are now present for the definition
of some efficient algorithms for computing RAF labellings using a distributed and parallel method; this is the topic of
the present paper.

The paper is organised as follows: the basics of Dung’s argumentation framework are recalled in Section 2.1;
an existing algorithm proposing a distributed and parallel computation for AF semantics is described in Section 2.2.
Recursive Argumentation Frameworks (RAF) and their semantics are recalled in Section 2.3. Section 3 gives some
additional definitions mandatory before the presentation of the algorithm itself in Sections 4 and 5. An example of a
clustering method is provided in Section 6. Section 7 draws conclusions and opens future perspectives. The proofs of
the soundness and completeness of the approach can be found in Appendix A.

2 Background
In this section, we first recall the framework proposed by Dung in 1995. Then a distributed and parallel algorithm
for the computation of AF semantics is presented (our own algorithms will be strongly inspired by this one). The last
part of this section is related to the main definitions concerning RAFs: basics, labellings and decomposability of the
semantics.

2.1 Dung Argumentation Framework (AF)
In the original setting [17], an argumentation framework can be identified with a directed graph.

Definition 1 (Dung’s framework -AF). A Dung’s Argumentation Framework (AF) is an ordered pair AF = (A,K) s.t.
A is a given set and K is a binary relation over A: K ⊆ A×A.

Each element a ∈ A is called an argument and aKb means that a attacks b. For S ⊆ A, we say that S attacks a ∈ A
iff bKa for some b ∈ S.

As an illustration, Figure 1 depicts such an Argumentation Framework.
The main asset of Dung’s approach is the definition of semantics using some basic properties in order to define

sets of acceptable arguments, as follows.

1Whereas an extension assigns to its elements an accepted or a rejected status, a labelling considers a third status, undecided, which applies to
arguments which are neither accepted, nor rejected. This enrichment has proven useful for the computation of acceptance statuses in AF (see [14]
for a survey).

4

a b c

Figure 1: Example of an Argumentation Framework (AF)
with A = {a,b,c} and K = {(a,b),(b,a),(c,b)}

Definition 2 (acceptability). Given AF = (A,K), an argument a ∈ A is acceptable wrt S ⊆ A iff for all b ∈ A, if bKa
then cKb for some c ∈ S.

Definition 3 (Characteristic function). The characteristic function of AF = (A,K) is FAF : 2A→ 2A s.t. FAF (S) = {a∈
A | a is acceptable wrt S} for all S⊆ A.

The semantics originally defined in [17] are as follows.

Definition 4 (Semantics). Given AF = (A,K), a subset S of A is said to be:

• conflict-free iff there are no a and b in S s.t. a attacks b,

• admissible iff S is conflict-free and for all a ∈ S, a is acceptable wrt S,

• complete iff S is admissible and for all a ∈ A, if a is acceptable wrt S then a ∈ S,

• preferred iff S is maximal (in the sense of set inclusion) admissible,2

• grounded iff S is the least fixpoint for FAF ,

• stable iff S is conflict-free and S attacks all a ∈ A\S.

In this document, σ will denote the semantics with σ ∈ {conflict-free, admissible, complete, preferred, grounded,
stable} and the set σ(AF) will denote the set of all the extensions produced using σ .

Back to Figure 1, the complete semantics induces a singleton containing the unique extension {a,c}, that is also
the unique preferred, grounded and stable extension.

Some properties have been proven in [17] establishing a link between the different semantics. For instance:

Proposition 1. Given AF = (A,K),

• There exists at least a preferred extension.

• Every preferred extension is complete, but not vice-versa.

• Every stable extension is preferred, but not vice-versa.

• The grounded extension is the least (with respect to set-inclusion) complete extension.

Dung-like semantics can also be defined in terms of labellings as introduced in [8]. A labelling maps to each
argument of an AF a value representing its acceptability status. This status may be accepted (in), rejected (out) or
in an undecided state (und). Formally:

Definition 5 (Labelling). Let AF = ⟨A,K⟩ be an AF, and S ⊆ A. A labelling of S is a total function ℓ : S →
{in,out,und}. A labelling of AF is a labelling of A. The set of all labellings of AF is denoted as L (AF). The
set of all labellings of a set of arguments S is denoted as L (S).

We write in(ℓ) for
{

a|ℓ(a) = in
}

, out(ℓ) for
{

a|ℓ(a) = out
}

and und(ℓ) for
{

a|ℓ(a) = und
}

.
2We write ⊆-maximal.

5

Definition 6 (Legally Labelled argument). Let AF = ⟨A,K⟩ be an AF, and ℓ ∈L (AF) be a Labelling.

• An in-labelled argument is said to be legally in iff all its attackers are labelled out.

• An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.

• An und-labelled argument is said to be legally und iff it does not have an attacker that is labelled in and one of
its attackers is not labelled out.

Definition 7 (Reinstatement labelling). Let AF = ⟨A,K⟩ be an AF, and ℓ∈L (AF) be a labelling. ℓ is a reinstatement
labelling of AF iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(ℓ), a is legally in.

• For each a ∈ out(ℓ), a is legally out.

Then using the reinstatement labellings and some specific restrictions, it is possible to define many other labellings
corresponding to some extension-based semantics.

Restriction on AF reinstatement labelling Semantics

no restrictions complete semantics

empty und stable semantics

maximal in
preferred semantics

maximal out

maximal und

grounded semanticsminimal in

minimal out

Table 1: Reinstatement labellings and extension-based semantics correspondence

2.2 AFDivider: an algorithm for AF
Finding all the possible solutions of a semantics for a given AF can be very time consuming. Many AF instances,
particularly large,3 are too hard to be solved in an acceptable amount of time, as shown by the results of the ICCMA
argumentation solver competition.4 Formally, the so-called enumeration problem is defined as follows:

Definition 8 (Enumeration Problem). Given AF = ⟨A,K⟩ and a semantics σ , compute the set σ(AF) corresponding
to the AF solutions.

The hardness of this problem is not relative to the current state of the art but rather to the intrinsic theoretical
complexity of the semantics that are tackled.5

Enhancing the computational time of enumerating the solutions of an AF has been the object of study of many
works, resulting in the elaboration of several recent algorithms such as [1, 13, 22, 2] (see [14] for an overview). During
his thesis [21], Mickaël Lafages addressed this issue with the proposal of an algorithm, the so-called: AFDivider.

3This notion of largeness of an AF is not so simple to define. It is related to the fact that the computation of the solutions is complex either
because of the number of arguments, or of the number of interactions, or because of the structure of the AF.

4http://argumentationcompetition.org
5Notice that in the literature it is the decision problem versions of this problem that are studied. Nevertheless, the complexity of their decision

versions is sufficient to give a good idea of their hardness. See [18] for an overview.

6

http://argumentationcompetition.org

The idea that led to his algorithm is that argumentation frameworks constructed from real data should have a
particular structure. Indeed, people have themes and goals while arguing. It is thus a reasonable conjecture to say
that the AFs obtained from real argumentation are not random and that they have a relatively low density of relations
between arguments (it would be very surprising if, in some argumentation, any argument attacks a large part of the
other ones).

The AFDivider algorithm takes advantage of this sparsity6 of AF graphs. To do so, it uses methods that have not
yet been considered for this purpose (namely clustering methods used in an original way), combined with techniques
that have already been applied in other existing algorithms (distributed and parallel methods). Note that this kind
of algorithms can be defined since AF semantics are decomposable (i.e. the computation of the results of a given
semantics can be built using the results of this same semantics on sub-parts of the initial AF, see [3]).

The AFDivider algorithm solves the enumeration problem using labelling-based semantics. It has been designed
for Dung original semantics: the complete, the stable and the preferred semantics. Given that the grounded semantics
can be computed in linear time and that it gives only one labelling, computing it with the AFDivider is unappropriated.

Given an argumentation framework AF = ⟨A,K⟩ and a semantics σ ∈ {complete, stable, preferred}, the AFDi-
vider algorithm, rather than building labellings that cover the whole AF (which could be time consuming), computes
the semantics labellings using a distributed and clustering-based method. Here are its four major steps graphically
represented in Figure 2:

1. A pretreatment on AF removes “trivial” parts of it using the grounded labelling.

2. Clusters in AF are identified.

3. The labellings under semantics σ in each of these clusters are computed in parallel.

4. The results of each cluster are reunified to get the labellings of AF .

a

b c

d

e

f

g

h i

j k

l

mn

Initial AF

d

e

f

g

h i

j k

l

mn

Hard AF

Step 2

d

e

f

g

h i

j k

l

mn

Components
d

e

f

g

h i

j k

l

mn

pClustersp

Step 3

Cluster
labellings

Step 4

Component
labellings

Hard AF
labellings

Initial AF
labellings

Step 1

Figure 2: AFDivider operating diagram

Algorithms 1 and 2 give the formal definition of the AFDivider algorithm. They are said to be generic algorithms
in the sense that:

• Any clustering method can be used to split the AF.

• Any sound and complete procedure that computes the semantics σ can be used to compute the labellings of the
different clusters.

6A graph is said to be Sparse when its density is low.

7

Algorithm 1: AFDivider algorithm.
Input: Let AF = ⟨A,K⟩ be an AF and σ be a semantics
Result: Lσ ∈ 2L (AF): the set of the σ -labellings of AF
Local variables:

• ℓ′gr: the grounded labelling restricted to the arguments labelled in and out

• CCSet: the set of connected components of AF hard (AF in which the trivial part has been removed)
• ClustSet: the set of cluster structures of af i
• Lσ (af i): the set of all σ -labellings of af i

1 ℓ′gr← ComputeGroundedLabelling(AF)

2 CCSet← SplitConnectedComponents(AF ,ℓ′gr)

3 for all af i ∈CCSet do in parallel
4 ClustSet← ComputeClusters(af i)
5 Lσ (af i)← ComputeCompLabs(σ ,ClustSet)
6 Lσ ←∅
7 if ∄af i ∈CCSet s.t. Lσ (af i) =∅ then Lσ ←{ℓ

′
gr}×∏af i∈CCSet Lσ (af i)

8 return Lσ

Algorithm 2: ComputeCompLabs algorithm.
Input: Let ClustSet be a set of cluster structures for a component af , σ be a semantics
Result: Lσ ∈ 2L (af): the set of the σ -labellings of af
Local variables:

• κ j: a cluster structure
• L

κ j
σ : the set of all σ -labellings of κ j

• Pκ j : the set of configurations corresponding to the σ -labellings of κ j
• P: the set of all reunified labelling profiles

1 for all κ j ∈ClustSet do in parallel
2 L

κ j
σ ← ComputeClustLabs(σ ,κ j)

3 Pκ j ← IdentifyConfigs(L
κ j

σ ,κ j)

4 Lσ =∅
5 P = ReunifyCompConfigs(

⋃
κ j∈ClustSet P

κ j ,ClustSet)
6 for all p ∈P do

7 Lσ ←Lσ ∪

∏
ξ∈p
{ℓ|ℓ ∈ ProfileLabellings(ξ ,

⋃
κ j∈ClustSet

L
κ j

σ)}

8 if σ = pr then Lσ ←{ℓ|ℓ ∈Lσ s.t. ∄ℓ′ ∈Lσ s.t. in (ℓ)⊂ in (ℓ′)}
9 return Lσ

8

2.3 RAF: a Higher-order Argumentation Framework
Higher-order attacks (that is, possibly targeting attacks as well as arguments) has been introduced in [7] then developed
in several papers among which one can cite the AFRA (Argumentation Framework with Recursive Attacks) approach
described in [6] and the RAF (Recursive Argumentation Framework) approach introduced in [11]. RAF and AFRA
differ upon the way these attacks are handled despite the fact that there is no difference in the structure of the graph.
This paper is concerned by the RAF approach. Note that AFRA and RAF give the same results in terms of semantics
even if some intermediate results are different (see in [11] for a comparison between these approaches).

Definition 9. (Recursive argumentation framework - RAF). A Recursive Argumentation Framework (RAF) RAF =
⟨A,K,s, t⟩ is a quadruple where A and K are (possibly infinite) disjoint sets respectively representing arguments and
attack names, and where s : K → A and t : K → A∪K are functions respectively mapping each attack name to its
source and to its target.

Figure 5 shows an example of a RAF. There are two different possibilities for defining the semantics of a RAF:
either by selecting some specific structures (a pair composed of a set of arguments and a set of attacks) [11] or by
using labellings [15].7

2.3.1 RAF structure-based semantics

What differs from AF to RAF is that in a RAF an attack can have an attack for target. As a consequence, an attack
is not always “valid”. In order to express this fact, a RAF “structure-based semantic”, that is, a function that defines
the solutions of a RAF produces structures: a couple whose first element is a set of arguments and the second, a set
of attacks. The idea behind the notion of structure is that when presented together, the elements of the structure (i.e.
arguments plus attacks) win the argumentation.

A structure is thus defined as follows:

Definition 10 (Structure). A pair U= ⟨S,Q⟩ is said to be a structure of some RAF = ⟨A,K,s, t⟩ if it satisfies: S ⊆
A and Q⊆ K. Notice that by x ∈ U we mean: x ∈ S∪Q.

Intuitively, the set S represents the set of “acceptable arguments” w.r.t. the structure U, while Q represents the set
of “valid attacks” w.r.t. U. Any attack that does not belong to Q is understood as non-valid and, in this sense, it cannot
defeat its target.

Definition 11 (Defeat and Inhibition in RAF). Let U= ⟨S,Q⟩ be a structure. The set of all arguments defeated by U,
denoted RAF-De f (U), is defined as follows:

RAF-De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}

The set of all attacks inhibited by U, denoted RAF-Inh(U), is defined as follows:

RAF-Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β) ∈ S and t(β) = α}

The counterpart of defeat/inhibition is the notion of acceptance:

Definition 12 (RAF Acceptability). An element x ∈ (A∪K) is said to be acceptable w.r.t. some structure U iff every
attack α ∈ K with t(α) = x satisfies one of the two following conditions:

• s(α) ∈ RAF-De f (U)

• α ∈ RAF-Inh(U)

By RAF-Acc(U) we denote the set containing all acceptable arguments and attacks with respect to U.

7Relations between labelling-based semantics and structure-based semantics have been exhibited in [15].

9

c′

γ

α

b a η ε θ e

β

δ

c

Figure 3: A example of RAF (arguments are in circles and the Greek letters labelling attacks are within squares)

For any pair of structures U= ⟨S,Q⟩ and U′ = ⟨S′,Q′⟩, we write U′ ⊑ U′ iff (S∪Q) ⊆ (S′ ∪Q′) and we write
U ⊑ar U

′ iff S ⊆ S′. As usual, we say that a structure U is ⊑-maximal (resp. ⊑ar-maximal) iff every U′ that satisfies
U⊑ U′ (resp. U⊑ar U

′) also satisfies U′ ⊑ U (resp. U′ ⊑ar U).

Inspired by Dung’s AF semantics, the first RAF structure-based semantics, that have been defined in [11], are the
following ones:

Definition 13 (RAF structure-based semantics). Let U= ⟨S,Q⟩ be a structure over some RAF RAF = ⟨A,K,s, t⟩. U
is said to be:

1. RAF-conflict-free iff S∩RAF-De f (U) =∅ and Q∩RAF-Inh(U) =∅.

2. RAF-admissible iff it is RAF-conflict-free and (S∪Q)⊆ RAF-Acc(U).

3. RAF-complete iff it is RAF-conflict-free and (S∪Q) = RAF-Acc(U).

4. RAF-grounded iff it is a ⊑-minimal RAF-complete structure.

5. RAF-preferred iff it is a ⊑-maximal RAF-admissible structure.

6. RAF-stable iff S = A\RAF-De f (U) and Q = K \RAF-Inh(U).

Example 1. Let consider the RAF shown in Figure 3. The semantics mentioned in Definition 13 produce a singleton
containing a unique structure that is the grounded, complete, preferred and stable structure: ⟨{b,c′,e}, {β ,δ ,γ,η ,θ}⟩.

In [11], the reader will find several interesting properties of these structure-based semantics (existence, cardinality
for instance).

2.3.2 RAF labellings

As for AF, a second way for defining semantics exists: the use of labellings, see [15].8

Definition 14. (RAF labelling). Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework. A RAF labelling is a
total function L : A∪K→ {in ,out ,und }. We define in (L) (resp. out (L), und (L)) as the set {x ∈ A∪K|L(x) =
in (resp. out , und)}.

8The original definition for the RAF labelling is a pair of a labelling over arguments and a labelling over attacks. Here we give an equivalent
definition that does not make difference between arguments and attacks. Moreover we also simplify the terminology using “labelling” in place of
“structure labelling”.

10

Definition 15. (Reinstatement RAF labelling). Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework and L

be a RAF labelling.
L is a reinstatement RAF labelling iff it satisfies: ∀x ∈ (A∪K),

• (L(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x, L(α) = in and L(s(α)) = in)

• (L(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, L(α) = out or L(s(α)) = out)

An equivalent definition of reinstatement RAF labelling can be made, as for AF, using the notion of “legally
labelled argument”. An in -labelled element is said to be legally in iff all its attackers or their involved attacks are
labelled out . An out -labelled element is said to be legally out iff at least one of its attackers and the involved attacks
are labelled in . An und -labelled element is said to be legally und iff it does not have any attacker and its involved
attack that are labelled in and one of its attackers and the involved attack are not labelled out . Formally, “valid
labellings” (notion equivalent to reinstatement RAF labellings) are defined as follows:

Definition 16 (Legally labelled elements, valid RAF labelling).
Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework and L be a RAF labelling over RAF .

Let x ∈ A∪K be an element of RAF . x is said to be legally labelled in L iff it is a reinstatement labelling and x ∈
und(L) iff ((∄α ∈K s.t. t(α)= x, L(α)= in and L(s(α))= in) and (∃α ∈K s.t. t(α)= x, L(α) ̸= out and L(s(α)) ̸=
out)). L is said to be a valid RAF labelling if all its elements are legally labelled.

Regarding the RAF of Figure 5, Example 2 shows its grounded labelling, Example 20 gives one of its complete
labellings.

As for AF, there exists a one-to-one mapping between RAF labellings and structure-based semantics. Table 2 sums
up these relations.

Restriction on
Structure-based Semantics

Reinstatement RAF labelling

no restrictions complete semantics

empty und stable semantics

maximal in
preferred semantics

maximal out

maximal und

grounded semanticsminimal in

minimal out

Table 2: Links between Reinstatement RAF labellings and structure-based semantics

2.3.3 Decomposability of RAF and RAF semantics

In order to define an algorithm able to answer the enumeration problem in the case of a RAF, similarly to the one given
for an AF (AFDivider [16]), we must be able to split a RAF. Based on the notion introduced in [3], any AF can be split
into several sub-frameworks by simply ignoring some attacks (that are always valid). Nevertheless, it is not the case
for RAF. Attacks, as arguments, can be labelled in , out or und . As a consequence, we cannot just ignore attacks to
split a RAF. So, if we do not suppress attacks while splitting RAFs, we will have attacks without targets or without
sources. Thus the result of such a split does not produce a RAF but a partial RAF.

Definition 17. (Partial RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF. A partial RAF R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
of RAF is a tuple

where Ã⊆ A (resp. K̃ ⊆ K) is a set representing arguments (resp. attacks) and:

11

• s̃ : K̃ → {true,false} is a boolean function that indicates whether or not an attack in K̃ has its source in Ã
defined as following:

∀α ∈ K̃, s̃(α) = true if s(α) ∈ Ã otherwise false

• t̃ : K̃→{true,false} is a boolean function that indicates whether or not an attack in K̃ has its target in Ã∪ K̃
∀α ∈ K̃, t̃(α) = true if t(α) ∈ Ã∪ K̃ otherwise false

Then, using the notion of partial RAF, a partition of a RAF can be defined:

Definition 18. (RAF partition). Let RAF = ⟨A,K,s, t⟩ be a RAF. Let Ω = {ω1, ...,ωn} be a partition9 of (A∪K). A
RAF partition of RAF is a set of partial RAFs {R̃AF 1, ..., R̃AF n} s.t.:

∀i, R̃AF i =
〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
with:

• Ãi = ωi∩A and K̃i = ωi∩K

• s̃i : K̃i→ {true,false} is a boolean function that indicates whether or not an attack in K̃i has its source in Ãi
defined as following:

∀α ∈ K̃i, s̃i(α) = true if s(α) ∈ Ãi otherwise false

• t̃i : K̃i→{true,false} is a boolean function that indicates whether or not an attack in K̃i has its target in Ãi∪ K̃i
∀α ∈ K̃i, t̃i(α) = true if t(α) ∈ Ãi∪ K̃i otherwise false

Considering a partial RAF implies to consider also its “inputs” and their labellings (note that several partial RAF
with input can be built from a given partial RAF since several labellings can exist for its inputs):

Definition 19. (Partial RAF with input). Let RAF = ⟨A,K,s, t⟩ be a RAF and R̃AF = ⟨Ã, K̃, s̃, t̃, s, t⟩ be a partial
RAF of RAF . The input I of R̃AF is a tuple

〈
Sinp,Qinp

〉
where:

• Sinp = {s(α) ∈ (A\ Ã)|α ∈ K and t(α) ∈ (Ã∪ K̃)}

• Qinp = {α ∈ (K \ K̃)|t(α) ∈ (Ã∪ K̃)}

The tuple
〈

R̃AF ,I,Linp
〉

is called a partial RAF with input, where Linp is a labelling of I.

Then a standard RAF is the RAF that can be built from a partial RAF with inputs in order to simulate what happens
if we take into account the labellings of these inputs (for instance, see in Figure 12 the standard RAF corresponding
to the partial RAF given in Figure 9(b)):

Definition 20 (Standard RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF. Let
〈

R̃AF ,I,Linp
〉

be a partial RAF with input

s.t. R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
is a partial RAF of RAF . The standard RAF w.r.t.

〈
R̃AF ,I,Linp

〉
is a RAF defined as

R̃AF s = ⟨As,Ks,ss, ts⟩ where:

• As = Ã∪Sinp∪{aυ ,aρ ,aζ}

• Ks = K̃∪Qinp∪N∪{αθ}, with:

– N = {αx|x ∈ (Und∪Out)}
– Out = out(Linp)

– Und = und(Linp)

And where ss : Ks→ As and ts : Ks→ (As∪Ks) are functions respectively mapping each attack to its source and to its
target and s.t.:

9So the following property holds for Ω: ∀(i, j) ∈ {1, ...,n} s.t. i ̸= j,ωi ∩ω j =∅ and
n⋃

i=1
ωi = A∪K.

12

• ∀α ∈ (K̃∪Qinp), ss(α) = s(α)

• ∀α ∈ Qinp∪ (K̃ \{α|α ∈ K̃ s.t. t̃(α) is false}), ts(α) = t(α)

• ∀α ∈ {α|α ∈ K̃ s.t. t̃(α) is false}, ts(α) = aζ

• ∀αx ∈ {αx ∈ N|x ∈ Out}, ss(αx) = aρ

• ∀αx ∈ {αx ∈ N|x ∈Und}, ss(αx) = aυ

• ∀αx ∈ N, ts(αx) = x

• ss(αθ) = aυ

• ts(αθ) = aυ

The intuition behind the new elements added in the standard RAF is the following:

• aυ is the argument that will serve to label und an element of the RAF input.

• αθ is the attack whose source and target is aυ , making aυ a self attacking argument and thus an argument that
will be labelled und .

• aρ is the argument that will serve to label out an element of the RAF input.

• N is the set of attacks that will link aυ and aρ to all elements of the RAF input that should be labelled out or
und .

• aζ is an argument that will serve as the target of all attacks of the partial RAF whose target does not belong to
the partial RAF.

Note that there is a one-to-one correspondence between a partial RAF with input and its standard RAF (and so
potentially several standard RAF for a given partial RAF).

The canonical local function associates any partial RAF with input with a set of labellings built using its standard
RAF:

Definition 21. (RAF canonical local function). Let σ be a semantics. A local function F ra f
σ assigns to any partial

RAF with input
〈

R̃AF ,I,Linp
〉

a (possibly empty) set of labellings of R̃AF under σ , i.e. F ra f
σ (R̃AF ,I,Linp) ∈

2{L|L being any labelling over R̃AF }.
The canonical local function F ra f

σ is a local function s.t. F ra f
σ (R̃AF ,I,Linp) = {L ↓⟨Ã∪K̃⟩ |L ∈ Lσ (R̃AF s)}

(R̃AF s being the standard RAF associated with R̃AF).

The notion of semantics decomposability is thus as follows:

Definition 22. (Semantics decomposability).
A semantics σ is full decomposable iff there is a local function F ra f

σ s.t., for any RAF RAF = ⟨A,K,s, t⟩ and
any partition {R̃AF 1, ..., R̃AF n} of RAF , the set of all possible labellings under the semantics σ of RAF , denoted by
Lσ (RAF), satisfies:

Lσ (RAF) = {L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)}

with R̃AF i =
〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
and Ii =

〈
Sinp

i ,Qinp
i

〉
and L

inp
i defined as following:

• Sinp
i = {s(α) /∈ Ãi|∃α ∈ K s.t. t(α) ∈ (Ãi∪ K̃i)}

• Qinp
i = {α /∈ K̃i|∃α ∈ K s.t. t(α) ∈ (Ãi∪ K̃i)}

13

• L
inp
i = (

⋃
j∈{1,...,n} s.t. j ̸=i

L j) ↓〈Sinp
i ,Qinp

i

〉10

A semantics σ is said to be top-down (resp. bottom-up) decomposable iff:

Lσ (RAF)⊆ (resp. ⊇){L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (R̃AF i,Ii,L

inp
i)}

In [21], a specific RAF partition selector has been defined that produces a partition respecting the strong connected
components (SCC) of a RAF:11

Definition 23. (USCC RAF partition selector). Let RAF be a RAF. Let Sra f -USCC be the RAF partition selector s.t.:

Sra f -USCC(RAF)

=

{Ω| Ω is a partition of RAF and ∀S ∈ SCCSra f (RAF),∃ωi ∈Ω s.t. ωi∩S ̸=∅ =⇒ S⊆ ωi}

Let S⊆ A∪K s.t. S ∈Sra f -USCC(RAF), S is called an “USCCra f ”.

Then, in [21], the following proposition has been proven:

Proposition 2. Let RAF = ⟨A,K,s, t⟩ be any RAF. The semantics properties in Table 3 hold.

RAF semantics

complete grounded preferred stable

Full decomposability ××× ×××

Top-down decomposability

Bottom-up decomposability ××× ×××

Full decomposability w.r.t. Sra f -USCC

(so Top-down and Bottom-up decomposability)

“ ” (resp. “×××”) means that the semantics on the column has (resp. does not have) the property on the row.

Table 3: RAF Semantics decomposability properties

3 Some Preliminary Definitions
Before explaining our algorithm, some additional definitions are needed. First of all, let define the notions of “non-
directed RAF-walk” and “non-directed RAF-path”.

Definition 24 (Directed and Non-directed RAF-walk and RAF-path). Let RAF = ⟨A,K,s, t⟩ be a RAF and e1,en ∈
(A∪K) be elements of RAF . A [non-]directed RAF-walk is a sequence (e1, ...,en) with n ∈ N∗ s.t.:12

• ∀i ∈ {1, ...,n},ei ∈ (A∪K)

10↓ is the classical generic operator of restriction that allows the selection of a sub-part of a given “object” wrt to a given set of “elements”. Here
for instance, it produces the sub-part of the labellings concerning only the elements belonging to Sinp

i ∪Qinp
i .

11See in [21] the details about the method for defining the SCC of a RAF.
12The definition for the non-directed case implies additional constraints given between brackets.

14

• If n > 1, ∀i ∈ {1, ...,n−1}, ei ∈ A =⇒ ei+1 ∈ K and ei = t(ei+1)) [or (ei = s(ei+1)]

• If n > 1, ∀i ∈ {1, ...,n− 1}, ei ∈ K =⇒ t(ei) = ei+1 [or (ei+1 ∈ A and s(ei) = ei+1) or (ei+1 ∈ K and ei =
t(ei+1))]

A non-directed RAF-path is a non-directed RAF-walk in which all the elements are distinct.

From these notions we can define the notions of “connected” and “disconnected” RAFs:

Definition 25 (Connected and disconnected RAF). Let RAF = ⟨A,K,s, t⟩ be a RAF. RAF is a connected RAF if, for all
distinct elements xi ∈ A∪K and x j ∈ A∪K, there exists a non-directed RAF-path p in RAF s.t. xi is the first element
of p and x j is the last element of p. Otherwise the RAF is disconnected.

Now, let extend these notions for partial RAFs. A non-directed partial-RAF-walk is a sequence of arguments and
interactions respecting some constraints:

Definition 26. (Non-directed Partial-RAF-walk and Partial-RAF-path) Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF

and e1,en ∈ (Ã∪ K̃) be elements of R̃AF . A non-directed partial-RAF-walk is a sequence (e1, ...,en) with n ∈ N∗ and
∀i,ei ∈ (A∪K) s.t.:

• If n> 1, ∀i∈{1, ...,n−1}, ei ∈A =⇒ ei+1 ∈K and (s̃(ei+1)= true and ei = s(ei+1) or (t̃(ei+1)= true and ei =
t(ei+1)))

• If n> 1, ∀i∈{1, ...,n−1}, ei ∈K =⇒ (ei+1 ∈A and ((s̃(ei)= true and s(ei)= ei+1) or (t̃(ei)= true and t(ei)=
ei+1))) or (ei+1 ∈ K and ((t̃(ei+1) = true and ei = t(ei+1)) or (t̃(ei) = true and t(ei) = ei+1)))

A non-directed partial-RAF-path is a non-directed partial-RAF-walk in which all the elements are distinct.

Definition 27. (Connected and disconnected partial RAF). Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF. R̃AF is a

connected partial RAF if, for all distinct elements xi ∈ Ã∪ K̃ and x j ∈ Ã∪ K̃, there exists a non-directed partial-RAF-
path p in R̃AF s.t. xi is the first element of p and x j is the last element of p. Otherwise the partial RAF is disconnected.

As for AF, let define the operator ↓ for partial RAFs:

Definition 28 (Partial RAF restriction ↓). Let RAF = ⟨A,K,s, t⟩ be a RAF, R̃AF =
〈
Ã1, K̃1, s̃1, t̃1,s, t

〉
be a partial RAF

of RAF and S⊆ Ã1∪ K̃1 be a set of elements. The restriction of R̃AF to S, denoted R̃AF ↓S, is the partial RAF of RAF
defined as follows:

R̃AF ↓S=
〈
Ã2, K̃2, s̃2, t̃2,s, t

〉
where:

• Ã2 = Ã1∩S and K̃2 = K̃1∩S

• s̃2 : K̃2→{true,false} s.t. ∀α ∈ K̃2, s̃2(α) = true if s(α) ∈ Ã2 otherwise false

• t̃2 : K̃2→{true,false} s.t. ∀α ∈ K̃2, t̃2(α) = true if t(α) ∈ Ã2∪ K̃2 otherwise false

Finally, with the help of ↓ operator, we can define the notion of “Partial RAF Connected Component”:

Definition 29. (Partial RAF Connected Component). Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF. Let S⊆ Ã∪ K̃ be a

set of elements. The partial RAF R̃AF ↓S is a connected component of R̃AF iff:

• R̃AF ↓S is connected.

• There exists no set S′ ⊆ Ã∪ K̃ s.t. S⊂ S′ and R̃AF ↓S′ is connected.

Note: By sake of brevity, we say “connected component” instead of “partial RAF Connected Component” when there
is no ambiguity.

Figure 9 shows an example of several (here 4) partial RAF connected components issued from the partial RAF
described in Figure 7.

15

4 A Generic Algorithm for RAF: Presentation by Example
The RAFDivider algorithm we propose in the following is an adaptation of the AFDivider algorithm proposed in [16].
As for AFDivider , it addresses the enumeration problem for the complete, stable and preferred semantics . It follows
the same four major steps (see Figure 4):

1. A pretreatment on RAF removes “trivial” parts of it.

2. Clusters in RAF are identified.

3. The labellings under semantics σ in each cluster are computed in parallel.

4. The results of each cluster are reunified to get the labellings of RAF .

a α b

β

cγd

δεf

ζ

e

θ

g

η

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Initial RAF

a α b

β

cγd

δ?

?

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Partial
Hard RAF

Step 2

τn

υ

o

φ

χ

a α b

β

cγd

δ

µj

ν

λ

i

κh

m

ρ

ι k

l

o π

ξ

ψ

Components

τn

υ

o

φ

χ

a α b

β

cγd

δ

µj

ν

λ

i

κh

m

ρ

ι

ψ

k

l

o π

ξ

pClustersp

Step 3

Cluster
labellings

Step 4

Component
labellings

Hard RAF
labellings

Initial RAF
labellings

Step 1

Figure 4: RAFDivider operating diagram

Before giving the formal definition of the algorithm, we describe its wanted behaviour on a running example.

4.1 Pretreatment: Removing the Trivial Part
The first step is to identify the trivial part to remove. As for AF, it is built using the in and out elements produced
by the grounded semantics. In the case of an AF, these elements are all removed. However, for a RAF, this complete
removal is not possible.

Example 2. Consider RAF = ⟨A,K,s, t⟩, the RAF illustrated in Figure 5. Its grounded structure labelling is the
following one:

Lgr =

(a,und),(b,und),(c,und),(d,und),(e,in),(f ,in),(g,out),

(h,und),(i,und),(j,und),(k,und),(l,und),(m,und),(n,und),(o,und)

(α,in),(β ,in),(γ,in),(δ ,in),(ε,out),(ζ ,in),(η ,in),(θ ,in),(ι ,in),

(κ,in),(λ ,und),(µ,und),(ν ,in),(ξ ,und),(o,und),(π,in),(ρ,in),(τ,und),

(υ ,in),(φ ,in),(χ,in),(ψ,in)

Figure 6 illustrates the labelled RAF corresponding to the running example.

16

a α b

β

cγd

δεf

ζ

e

θ

g

η

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Figure 5: Running example

a α b

β

cγd

δεf

ζ

e

θ

g

η

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Figure 6: Running example with its grounded labelling (in green the in elements, in red the out elements and in grey
the und elements)

17

We cannot remove all elements that are not labelled und as it was done in AFDivider algorithm. Otherwise, the
resultant partial RAF would not capture the initial relations between the elements (for instance, the relation between
the arguments a and b is expressed by the attack α labelled in, so the removal of α is not possible). We would like
all elements labelled out, all arguments labelled in and all attacks labelled in whose source is labelled out or in to
be removed.

This leads to the following definition of the RAF trivial part:

Definition 30. (RAF trivial part). Let RAF = ⟨A,K,s, t⟩ be a RAF and let Lgr be the grounded structure labelling of
RAF . The “trivial part” of RAF is the structure of RAF , denoted by Utriv = ⟨Striv,Qtriv⟩, with

Utriv =
〈{

a ∈ A|a /∈ und (Lgr)
}
,
{

α ∈ K|α ∈ out (Lgr) or (α ∈ in (Lgr) and s(α) /∈ und (Lgr))
}〉

Example 3. Following Example 2, the trivial part of RAF is:

Utriv = ⟨{e, f ,g} ,{ε,ζ ,η ,θ}⟩

Then the partial hard RAF and partial hard RAF with input are defined as follows:

Definition 31. (Partial hard RAF).
Let RAF = ⟨A,K,s, t⟩ be a RAF and let Utriv = ⟨Striv,Qtriv⟩ be the RAF trivial part of RAF . The partial hard RAF

of RAF , denoted by R̃AF hard , is defined as

R̃AF hard =
〈
Ã, K̃, s̃, t̃,sh, th

〉
with Ã = A\Striv, K̃ = K \Qtriv and

sh : K̃→ A and ∀α ∈ K̃,sh(α) = s(α), th : K̃→ (A∪K) and ∀α ∈ K̃, th(α) = t(α)

s̃ : K̃→{true,false} s.t. ∀α ∈ K̃, s̃(α) = true if sh(α) ∈ Ã otherwise false

t̃ : K̃→{true,false} s.t. ∀α ∈ K̃, t̃(α) = true if th(α) ∈ Ã∪ K̃ otherwise false

Although a partial hard RAF is a partial RAF, we want to consider only the input labelling that coincides with the
grounded labelling of the initial RAF. This leads to the following definition of “partial hard RAF with input”:

Definition 32 (Partial hard RAF with input). Let RAF = ⟨A,K,s, t⟩ be a RAF, Lgr be the grounded structure la-
belling of RAF , Utriv be the trivial part of RAF . Let R̃AF hard =

〈
Ã, K̃, s̃, t̃,sh, th

〉
be the partial hard RAF of RAF

taking into account Utriv. The “partial hard RAF with input” corresponding to RAF is the partial RAF with input〈
R̃AF hard ,I= ⟨Sinp,Qinp⟩,Linp

〉
, where

• Sinp = {s(α) ∈ (A\ Ã)|α ∈ K̃ s.t. s̃(α) = false} and Qinp =∅13

• Linp is astructure labelling of the elements in Sinp and Qinp st:

∀x ∈ Sinp∪Qinp, Linp(x) = Lgr(x)

The partial hard RAF with input is unique since the labelling of its inputs is unique.

18

a α b

β

cγd

δ?

?

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Figure 7: Partial Hard RAF (the attacks τ , µ , λ and ξ have no source)

a α b

β

cγd

δf

g

λ

i

κh

µj

ν

k

l

o π

ξ

m

ρ

ι

τn

υ

o

φ

χ

ψ

Figure 8: Partial Hard RAF with input (the sources of the attacks τ , µ , λ and ξ are the inputs, given with their labelling
issued to Lgr)

19

Example 4. Figure 7 illustrates R̃AF hard , the partial hard RAF corresponding to the RAF shown in Figure 5. In this
partial hard RAF, 4 attacks have no source (τ , µ , λ and ξ). Figure 8 illustrates the partial hard RAF with input
corresponding to RAF : ⟨R̃AF hard , I= { f ,g}, Linp = {(f ,in),(g,out)}⟩. Notice that the arguments f and g are the
input arguments of R̃AF hard; they do not belong to R̃AF hard . Nevertheless, considering these inputs, any attack in the
partial hard RAF with input has now a source.

Note that taking into account the inputs is not the guarantee to transform the partial hard RAF with input into a RAF.
Indeed, let consider the RAF defined by A = {a,b,c}, K = {α,β ,γ}, s = {(α,b),(β ,c),(γ,c)}, t = {(α,a),(β ,a),
(γ,c)}; in this case, the grounded labelling is: {(a,out),(b,in),(c,und),(α,in), (β ,in),(γ,in)}; and so the trivial
part of the RAF is Utriv = ⟨{a,b} ,{α}⟩ and the partial hard RAF only contains c, γ and β (but not the target of β).

For each input element, several cases have to be considered and this can be very time consuming. In order to avoid
this cost for elements that are in the “trivial part”, we simply cut that part from the RAF and, only after that, look
for clusters. So, given a RAF RAF = ⟨A,K,s, t⟩, the RAFDivider algorithm starts by computing Lgr, the grounded
labelling of RAF and Utriv the trivial part corresponding to it. Once the trivial part has been computed, the algorithm
removes it from RAF to produce R̃AF hard the partial hard RAF of RAF , as well as R̃AF hard input elements I with their
labelling issued from Lgr. Then, if possible, R̃AF hard is split into several connected components (see Definition 27),

producing the set CCSet. If there is only one connected component we have so: CCSet =
{

r̃af 4

}
with r̃af 4 = R̃AF hard .

CCSet is a set of partial hard RAFs (with input).

gτn

υ

o

φ

χ

(a) Component 4: r̃af 4

a α b

β

cγd

δ

(b) Component 1: r̃af 1

fµj

ν

(c) Component 3: r̃af 3

f

λ

i

κh

m

ρ

ι k

l

o π

ξ

ψ

(d) Component 2: r̃af 2

Figure 9: The connected components of R̃AF hard with their inputs (r̃af 1 has no input; r̃af 3 and r̃af 2 have the same
input f)

Example 5. Figure 9 illustrates the four connected components of R̃AF hard , the partial hard RAF illustrated in
Figure 7. The CCSet will then contain these four partial RAF.

13Indeed, let consider α being an attack in Qtriv s.t. its target is in R̃AF hard ; either α is labelled with out or α is labelled with in and its source
is either labelled with in or out : in any case, the fact that its target is in R̃AF hard shows that α is useless for determining the label of its target.

20

4.2 Identifying Clusters
For each connected component, a clustering can be made using any clustering method partitioning the partial RAF
(even a random partition method). See in Section 6 such a method that returns the set of clusters identified, that is a
set of partial RAFs.

Example 6. Following Example 5, let consider that the chosen clustering method produces only one cluster for
components 1, 3 and 4. Let r̃af 2 =

〈
Ã2, K̃2, s̃2, t̃2,sh2, th2

〉
be the fourth component and let the following partition be

the one produced by the chosen clustering method:

Ω = {ω1 = {h, i,m, ι ,κ,λ ,ρ,ψ} ,ω2 = {k, l,ξ ,o,π}}

Figure 10 illustrates the partial RAFs corresponding to the partitioning of r̃af 2, that is r̃af 2 ↓ω1
14 (also denoted by

r̃af 2.1) and r̃af 2 ↓ω2 (also denoted by r̃af 2.2).
Note that, following this clustering, m and ψ become inputs for r̃af 2.2. Note also that this clustering must also take

into account attacks and not only arguments (as it is the case for the AF divider). See in Section 6 an example of such
a clustering.

f

λ

i

κh

m

ρ

ι

ψ

(a) Cluster 1: r̃af 2.1 = r̃af 2 ↓ω1

f

m k

l

o π

ξ

ψ

(b) Cluster 2: r̃af 2.2 = r̃af 2 ↓ω2

Figure 10: Clusters of r̃af 2 (the inputs m and ψ for r̃af 2.2 are given in blue since their labellings are unknown at this
time; whereas f is in green since its labelling is known: following Lgr, f must be in)

4.3 Computing the Labellings
The next step is the computation of the component labellings in a distributed way relying on the clustering made.
The σ -labellings of each cluster are computed simultaneously. Unlike the case of connected components, the partial
RAF corresponding to the computed clusters may admit several input labellings. In order to compute all the possible
σ -labellings of a given cluster, every possible case concerning its input elements has to be considered.

Note: In the worst case the number of input labellings to consider for an partial RAF is 3n, with n being the number
of its input element. When choosing a clustering, there is thus a threshold between the size of the clusters and the
number of attack cuts to consider as it effects the overall solving time. We call “context” a particular input labelling

of a partial RAF:15

Definition 33. (Context).
Let R̃AF =

〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF and I=

〈
Sinp,Qinp

〉
be the input of R̃AF . A context µ of a partial RAF

is a labelling of I.
14 r̃af 2 ↓ω1 produces a partial RAF built from r̃af 2 keeping only the elements of ω1.
15Obviously, each context of a partial RAF will induce a specific set of labellings of this partial RAF.

21

Example 7. Following Figure 10 and in the worst case, the contexts of r̃af 2.2 would be the following ones (3 inputs
with 3 possible values, so 33 = 27 contexts):

• µ2.2.1 = {(m,in),(f ,in),(ψ,in)}

• µ2.2.2 = {(m,out),(f ,in),(ψ,in)}

• µ2.2.3 = {(m,und),(f ,in),(ψ,in)}

• µ2.2.4 = {(m,in),(f ,out),(ψ,in)}

• µ2.2.5 = {(m,out),(f ,out),(ψ,in)}

• µ2.2.6 = {(m,und),(f ,out),(ψ,in)}

• µ2.2.7 = {(m,in),(f ,und),(ψ,in)}

• µ2.2.8 = {(m,out),(f ,und),(ψ,in)}

• µ2.2.9 = {(m,und),(f ,und),(ψ,in)}

• µ2.2.10 = {(m,in),(f ,in),(ψ,out)}

• µ2.2.11 = {(m,out),(f ,in),(ψ,out)}

• µ2.2.12 = {(m,und),(f ,in),(ψ,out)}

• µ2.2.13 = {(m,in),(f ,out),(ψ,out)}

• µ2.2.14 = {(m,out),(f ,out),(ψ,out)}

• µ2.2.15 = {(m,und),(f ,out),(ψ,out)}

• µ2.2.16 = {(m,in),(f ,und),(ψ,out)}

• µ2.2.17 = {(m,out),(f ,und),(ψ,out)}

• µ2.2.18 = {(m,und),(f ,und),(ψ,out)}

• µ2.2.19 = {(m,in),(f ,in),(ψ,und)}

• µ2.2.20 = {(m,out),(f ,in),(ψ,und)}

• µ2.2.21 = {(m,und),(f ,in),(ψ,und)}

• µ2.2.22 = {(m,in),(f ,out),(ψ,und)}

• µ2.2.23 = {(m,out),(f ,out),(ψ,und)}

• µ2.2.24 = {(m,und),(f ,out),(ψ,und)}

• µ2.2.25 = {(m,in),(f ,und),(ψ,und)}

• µ2.2.26 = {(m,out),(f ,und),(ψ,und)}

• µ2.2.27 = {(m,und),(f ,und),(ψ,und)}

Nevertheless, some of these 27 contexts are not compatible with the labelling Lgr (f must be labelled in). So only
9 contexts are compatible: µ2.2.1 to µ2.2.3, µ2.2.10 to µ2.2.12, µ2.2.19 to µ2.2.21.

The labellings “induced” by a certain context of a partial RAF are defined as follows:

Definition 34 (Induced labellings). Let σ be a semantics, R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF, I be the input

of R̃AF and µ be a context of R̃AF . Let R̃AF s be the standard RAF corresponding to the partial RAF with input〈
R̃AF ,I,µ

〉
. The set of “induced labellings” L

µ(R̃AF)
σ of R̃AF under the context µ is defined as follows:

L
µ(R̃AF)

σ = {L ↓Ã∪K̃ |L ∈Lσ (R̃AF s)}

Lσ (R̃AF) denotes the set of all induced labelling of R̃AF under all possible contexts.

As one can notice from Example 7, it may be useless to consider some cluster contexts. So three optimizations can
enhance the computation time:

• First optimization: Given a cluster, if one of its input elements is also an input element of the partial hard RAF
then this element should only be labelled as in the grounded labelling Lgr (see Example 7).

At this step we can illustrate how the RAFDivider algorithm will compute the labellings for the components 4,
1 and 3 as well as for the first cluster of component 2:

Example 8. Following Example 5, components 4, 1 and 3 only have one cluster. Furthermore, labellings of
each of them have to be computed for only one context. Indeed, whether it is empty (the case of component 1)
or it has no input element that do not belong to the trivial part. Figure 11 to 13 illustrate the unique standard
RAF to compute for each of them.

22

gτn

υ

o

φ

χ

αg

aρ

aυ

αθ

aζ

Figure 11: Standard RAF corresponding to r̃af 4 and Linp(g) = out

Notice that the labellings of r̃af 4 have to be computed for only one context (that is Linp(g) = out) as this
partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for

building the standard RAF.

a α b

β

cγd

δ

aυ

αθ

aρ

aζ

Figure 12: Standard RAF corresponding to r̃af 1
Notice that the labellings of r̃af 1 have to be computed for only one context (the empty one) as this partial

RAF has no input elements. In yellow, the additional elements for building the standard RAF.

fµj

ν aρ

aζ

aυ

αθ

Figure 13: Standard RAF corresponding to r̃af 3
Notice that the labellings of r̃af 3 have to be computed for only one context (that is Linp(f) = in) as this

partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for
building the standard RAF.

23

Example 9. Let consider the complete semantics. Following Example 8, the complete labellings of the compo-
nents 4, 1 and 3 are as follows. Notice that the elements added while constructing their corresponding standard
RAFs have been removed:16

Lco(r̃af 4) =
{

L4.1 =
{

(n,und),(o,und),(τ,und),(υ ,in),(φ ,in),(χ,in)
} }

Lco(r̃af 1) =

L1.1 =

 (a,in),(b,out),(c,in),(d,out),

(α,in),(β ,in),(γ,in),(δ ,in)

 ,

L1.2 =

 (a,out),(b,in),(c,out),(d,in),

(α,in),(β ,in),(γ,in),(δ ,in)

 ,

L1.3 =

 (a,und),(b,und),(c,und),(d,und),

(α,in),(β ,in),(γ,in),(δ ,in)

Lco(r̃af 3) =

L3.1 =

{
(j,in),(µ,out),(ν ,in)

}
,

L3.2 =
{

(j,out),(µ,in),(ν ,in)
}
,

L3.3 =
{

(j,und),(µ,und),(ν ,in)
}

Example 10. Following Example 6, the component 2 has two clusters in it. Figure 14 illustrates the only
standard RAF to compute for r̃af 2.1.

Example 11. Let consider the complete semantics. Following Example 10, the complete labellings of the first
cluster of component 2 are as follows. Notice that the elements added while constructing their corresponding
standard RAFs have been removed:

Lco(r̃af 2.1) =

L2.1.1 =

 (i,out),(h,out),(m,in),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in)

 ,

L2.1.2 =

 (i,in),(h,in),(m,out),

(ι ,in),(κ,in),(λ ,out),(ρ,in),(ψ,in)

 ,

L2.1.3 =

 (i,und),(h,und),(m,und),

(ι ,in),(κ,in),(λ ,und),(ρ,in),(ψ,in)

• Second optimization: If an input attack is unattacked (a so-called valid attack) in the initial RAF, then this

attack will always be labelled in following all semantics we are interested in.

Example 12. The attack Ψ, being an input of r̃af 2.2 and being a valid one in RAF or in R̃AF hard , it is useless
to consider contexts where Ψ is not labelled in.

16As an example the set of labellings of the unique standard RAF of component r̃af 4 is the following:
 (g,out),(n,und),(o,und),(aζ ,in),(aρ ,in),(aυ ,und),

(τ,und),(υ ,in),(φ ,in),(χ,in),(αg,in),(αθ ,in)

24

f

λ

i

κh

m

ρ

ι

aζ

ψ

aρ

aυ

αθ

Figure 14: Standard RAF corresponding to r̃af 2.1
Notice that the labellings of r̃af 2.1 have to be computed for only one context (that is Linp(f) = in) as this

partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for
building the standard RAF.

Those restrictions over possible contexts may decrease a lot the number of cases to consider. As an illustration,
consider the following example:

Example 13. Example 7 gives the list of all possible contexts (even the useless ones) of r̃af 2.2. There are 27 in
total. Indeed, as there are three input elements we have 33 contexts. Now, with the two restrictions mentioned
above, this number drops to three. Only the first three contexts have to be kept (those with f and ψ labelled with
in):

– µ2.2.1 = {(m,in),(f ,in),(ψ,in)}
– µ2.2.2 = {(m,out),(f ,in),(ψ,in)}
– µ2.2.3 = {(m,und),(f ,in),(ψ,in)}

The standard RAFs corresponding to those three contexts are illustrated in Figure 15.

The labellings corresponding to r̃af 2.2 are thus as follows:17

Lco(r̃af 2.2) =

L2.2.1 =
{

(k,out),(l,in),(o,out),(π,in),(ξ ,in)
}
,

L2.2.2 =
{

(k,in),(l,out),(o,in),(π,in),(ξ ,out)
}
,

L2.2.3 =
{

(k,out),(l,in),(o,in),(π,in),(ξ ,out)
}
,

L2.2.4 =
{

(k,und),(l,und),(o,in),(π,in),(ξ ,out)
}
,

L2.2.5 =
{

(k,out),(l,in),(o,und),(π,in),(ξ ,und)
}
,

L2.2.6 =
{

(k,und),(l,und),(o,und),(π,in),(ξ ,und)
}

• Third optimization: As it cannot be illustrated with the running example, let consider that the attack Ψ is not

always valid in R̃AF hard . As a consequence the first two optimizations would not allow to reduce the number of
contexts of r̃af 2.2 w.r.t. m and Ψ to consider. So, r̃af 2.2 would admit 9 contexts:

17L2.2.1 corresponds to µ2.2.2; L2.2.2 to L2.2.4 correspond to µ2.2.1; L2.2.5 to L2.2.6 correspond to µ2.2.3.

25

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

(a) Standard RAF of r̃af 2.2 under µ2.2.1
(so with m labelled with in)

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αm

(b) Standard RAF of r̃af 2.2 under µ2.2.2
(so with m labelled with out)

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αm

(c) Standard RAF of r̃af 2.2 under µ2.2.3
(so with m labelled with und)

Figure 15: Standard RAFs of r̃af 2.2. In yellow, the additional elements for building these standard RAFs.

26

– µ1 = {(m,in),(Ψ,in),(f ,in)}
– µ2 = {(m,in),(Ψ,out),(f ,in)}
– µ3 = {(m,in),(Ψ,und),(f ,in)}
– µ4 = {(m,out),(Ψ,in),(f ,in)}
– µ5 = {(m,out),(Ψ,out),(f ,in)}

– µ6 = {(m,out),(Ψ,und),(f ,in)}

– µ7 = {(m,und),(Ψ,in),(f ,in)}

– µ8 = {(m,und),(Ψ,out),(f ,in)}

– µ9 = {(m,und),(Ψ,und),(f ,in)}

The 9 standard RAF induced by these contexts are illustrated in Figure 16, 17 and 18.

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

Figure 16: Linp(ψ) = in and Linp(m) = in

However, we can observe that the labelling computation can be reduced to three cases. Indeed there are:

– One context where the attack relation is effective, corresponding to µ1, that is the target of Ψ must be
labelled out .

– Five contexts where the attack relation has no effect, corresponding to µ2, µ4, µ5, µ6 and µ8 (Ψ or m is
labelled out).

– Three contexts where the attack relation prevents the target of Ψ from being labelled in , corresponding to
µ3, µ7, µ9.

For each context of same type the partial RAF labellings generated will be thus the same. As a consequence,
the labellings of the partial RAF can be computed considering only one context of each type.

Example 14. As an illustration:

– For µ ∈ {µ2,µ4,µ5,µ6,µ8}, we have:

L
µ(r̃af 2.2)

co =
{ {

(k,out),(l,in),(o,out),(π,in),(ξ ,in)
} }

– For µ ∈ {µ3,µ7,µ9}, we have:

L
µ(r̃af 2.2)

co =

{

(k,out),(l,in),(o,und),(π,in),(ξ ,und)
}
,{

(k,und),(l,und),(o,und),(π,in),(ξ ,und)
}

27

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αm

(a) Linp(ψ) = in and Linp(m) = out

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

(b) Linp(ψ) = out and Linp(m) = in

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

αm

(c) Linp(ψ) = out and Linp(m) = out

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

αm

(d) Linp(ψ) = out and Linp(m) = und

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

αm

(e) Linp(ψ) = und and Linp(m) = out

Figure 17: Standard RAFs of r̃af 2.2 when m or ψ is rejected
Notice that in any context Linp(f) = in as f belongs to the trivial part. In yellow the

additional elements for building the standard RAF.

28

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αm

(a) Linp(ψ) = in and Linp(m) = und

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

(b) Linp(ψ) = und and Linp(m) = in

f

m k

l

o π

ξ

ψ

aρ

aυ

αθ

aζ

αψ

αm

(c) Linp(ψ) = und and Linp(m) = und

Figure 18: Standard RAFs of r̃af 2.2 when neither m nor ψ is out and one of them is und
Notice that in any context Linp(f) = in as f belongs to the trivial part. In yellow the

additional elements for building the standard RAF.

29

– For µ1, we have:

L
µ(r̃af 2.2)

co =

{

(k,in),(l,out),(o,in),(π,in),(ξ ,out)
}
,{

(k,out),(l,in),(o,in),(π,in),(ξ ,out)
}
,{

(k,und),(l,und),(o,in),(π,in),(ξ ,out)
}

Notice that the union of those three sets coincide with the labellings computed in Example 13.

The following proposition then holds:18

Proposition 3. Let σ be a semantics, R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF, I =

〈
Sinp,Qinp

〉
be the input of

R̃AF and let α ∈ Qinp s.t. s(α) ∈ Sinp. Let µ1, µ2 be contexts of R̃AF s.t.:

1. ∀x ∈ (Sinp∪Qinp)\{α,s(α)} ,µ1(x) = µ2(x)

2. and

– either (µ1(α) = in and µ1(s(α)) = in) and (µ2(α) = in and µ2(s(α)) = in)

– or (µ1(α) = out or µ1(s(α)) = out) and (µ2(α) = out or µ2(s(α)) = out)

– or
(
[(µ1(α) = und or µ1(s(α)) = und) and µ1(α) ̸= out and µ1(s(α)) ̸= out] and
[(µ2(α) = und or µ2(s(α)) = und) and µ2(α) ̸= out and µ2(s(α)) ̸= out]

)
The following property holds:

L
µ1(R̃AF)

σ = L
µ2(R̃AF)

σ

Following Proposition 3, only three cases per attack relation (whether the attack element itself and/or an attack
source) has to be consider to compute the labellings of any partial RAF.

Moreover, in order to prepare the reunification of all these labellings, we must also identify the labelling “config-
urations” of each partial RAF belonging to a given partition. These configurations are the labellings of the inputs of
this partial RAF and of any other input in this partition that can impact this partial RAF. So these configurations are
built using the contexts of each cluster of the partition.

Definition 35 (Configuration ξ). Let σ be a semantics and R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF. Let Ω= {ω1, ...,ωn}

of (Ã∪K̃) and
{

r̃af 1, ..., r̃af n

}
be the partition of R̃AF corresponding to Ω s.t. for all i∈{1, ...,n}, r̃af i =

〈
Ãi, K̃i, s̃i, t̃i,s, t

〉
and Ii =

〈
Sinp

i ,Qinp
i

〉
is the input of r̃af i. Let B =

〈
BA =

⋃n
1 Sinp

i ,BK =
⋃n

1 Qinp
i

〉
be the structure corresponding the

union of all input elements following the partition Ω.

Let r̃af i ∈
{

r̃af 1, ..., r̃af n

}
be a partial RAF. Let µ be a context of r̃af i, and L ∈L

µ(r̃af i)
σ be a computed labelling

of r̃af i under µ . Given L, a configuration is astructure labelling over Sinp
i ∪ (Ãi∩BA) and Qinp

i ∪ (K̃i∩BK) s.t.:

ξ (x) =

{
L(x) if x ∈ ωi

µ(x) if x ∈ Ii

Example 15. Following Example 11, each labelling L2.1.i has its own configuration ξ2.1.i. In any configuration, we
have (f ,in) and (ψ,in), but the label of m varies (in for ξ2.1.1, out for ξ2.1.2, und for ξ2.1.3). Note that m and ψ

are not the inputs of R̃AF 2.1 but they are the inputs of R̃AF 2.2 that is in the same partition as R̃AF 2.1. Moreover they
belong to R̃AF 2.1. So any label of these elements can impact the labels inside R̃AF 2.1.

18The proof is given in Appendix A.

30

Note: Distinct labellings can have the same configuration. See Example 16.

Example 16. Following Example 13, the following labellings have the same configuration: is:

• L2.2.2 = {(k,in),(l,out),(o,in),(π,in),(ξ ,out)}

• L2.2.3 = {(k,out),(l,in),(o,in),(π,in),(ξ ,out)}

• L2.2.4 = {(k,und),(l,und),(o,in),(π,in),(ξ ,out)}

Which is:
ξ2.2.1 = {(m,in),(f ,in),(ψ,in)}

The configuration corresponding to these 3 labellings is unique, since the label of f must respect the grounded labelling
(so the other configurations in which f is labelled either with out or with und are not possible).

Definition 36 (Distinct configuration set). Let σ be a semantics and R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF. Let

Lσ (R̃AF) be the set of labellings of R̃AF . We denote by “ξ R̃AF ” the set of distinct configurations corresponding to
Lσ (R̃AF).

Example 17. Following examples 11 and 13, we have:

ξ
r̃af 2.1 =

ξ2.1.1 = {(m,in),(f ,in),(ψ,in)}

ξ2.1.2 = {(m,out),(f ,in),(ψ,in)}

ξ2.1.3 = {(m,und),(f ,in),(ψ,in)}

With:

• ξ2.1.1 corresponding to L2.1.1

• ξ2.1.2 corresponding to L2.1.2

• ξ2.1.3 corresponding to L2.1.3

And:

ξ
r̃af 2.2 =

ξ2.2.1 = {(m,in),(f ,in),(ψ,in)} ,

ξ2.2.2 = {(m,out),(f ,in),(ψ,in)} ,

ξ2.2.3 = {(m,und),(f ,in),(ψ,in)}

With:

• ξ2.2.1 corresponding to L2.2.2, L2.2.3 and L2.2.4

• ξ2.2.2 corresponding to L2.2.1

• ξ2.2.3 corresponding to L2.2.5 and L2.2.6

Notice that the fact that ξ r̃af 2.1 coincide with ξ r̃af 2.2 is a particular case. As an example, if r̃af 2.1 had an input
element that is not an input of r̃af 2.2, the sets would contain different configurations.

4.4 Reunifying the Results
The labelling reunifying process is made in two steps: first, the reunification of the component labellings (i.e. the
reunification of their cluster labellings together) and second, the reunification of the whole RAF labellings (i.e. the
reunification of its component labellings together).

31

4.4.1 Component labelling reunification

To go further in the explanation of the RAFDivider algorithm the notion of “reunified labelling profile” is needed:

Definition 37 (Reunified labelling profiles). Let σ be a semantics and R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF. Let Ω=

{ω1, ...,ωn} of (Ã∪ K̃) and
{

r̃af 1, ..., r̃af n

}
the partition of R̃AF corresponding to Ω s.t. for all i ∈ {1, ...,n}, r̃af i =〈

Ãi, K̃i, s̃i, t̃i,s, t
〉

and Ii =
〈

Sinp
i ,Qinp

i

〉
is the input of r̃af i. Let B =

〈
BA =

⋃n
1 Sinp

i ,BK =
⋃n

1 Qinp
i

〉
be the structure

corresponding to the union of all input elements following the partition Ω.
Let {Lσ (r̃af 1), ...,Lσ (r̃af n)} be the set of the labelling sets of each partial RAF of RAF and {ξ r̃af 1 , ..., ξ

r̃af n}
be the set of their corresponding distinct configuration sets. Let p = {ξ1, ...,ξn} be a set of configurations s.t., for all
i ∈ {1, ...,n}, ξi ∈ ξ

r̃af i . p is a reunified labelling profile (or equivalently, the configurations ξ1, ...,ξn are said to be
compatible together) iff:

∀x ∈ B, ∀(ξ j,ξk) ∈ {ξi|ξi ∈ p s.t. x ∈ ξi}2 , ξ j(x) = ξk(x)

So a reunified labelling profile is a set of labellings s.t. the labels assigned to each common element by the
configurations are the same. As for AFDivider algorithm, this reunifying problem is transformed into a CSP.

Here are the four steps of the transformation process. Let r̃af i =
〈
Ãi, K̃i, s̃i, t̃i,si, ti

〉
be a partial RAF corresponding

to a connected component of a partial hard RAF. Let Ω = {ω1, ...,ωn} of (Ãi ∪ K̃i) and
{

r̃af i.1, ..., r̃af i.n

}
be the

partition of r̃af i corresponding to Ω s.t. for all j ∈ {1, ...,n}, r̃af i. j = ⟨Ãi. j, K̃i. j, s̃i. j, t̃i. j,si. j, ti. j⟩ and Ii. j =
〈

Sinp
i. j ,Q

inp
i. j

〉
is the input of r̃af i. j. Let B =

〈
BA =

⋃n
j=1 Sinp

i. j ,BK =
⋃n

j=1 Qinp
i. j

〉
.

1. For each partial RAF r̃af i. j =
〈
Ãi. j, K̃i. j, s̃i. j, t̃i. j,si. j, ti. j

〉
, a variable Vj is created. For each of them, the domain

is the set of the distinct configurations corresponding to their computed labellings, i.e. ξ
r̃af i. j .

2. For each input element xk ∈ B, a variable Vxk is created with a domain corresponding to their possible labels, i.e.
{in ,out ,und } taking into account the optimizations evoked in Section 4.3 (so, in our example, the domain of
the variable Vf is {in }).

3. For each variable Vj with j∈{1, ...,n} corresponding to a partial RAF, for each ξ in the domain of Vj, constraints
are added to map the configuration with the labels of its corresponding elements. The constraints are defined as
follows:

∀ j ∈ {1, ...,n}, ∀ξ ∈ ξ
r̃af i. j , V j = ξ =⇒ (∀xk ∈ Sinp

i. j ∪Qinp
i. j ∪ (ω j ∩ (BA∪BK)),Vxk = ξ (xk))

Note: The constraints have to be seen as declarative rules. For example the rule: Vj = ξ =⇒ (∀xk ∈ Sinp
i. j ∪Qinp

i. j ∪
(ω j ∩ (BA ∪BK)),Vxk = ξ (xk)) as to be understand as “If the variable Vj has the value ξ , then any variable Vxk s.t.
xk ∈ Sinp

i. j ∪Qinp
i. j ∪ (ω j ∩ (BA∪BK) must have the value corresponding to ξ (xk)”.

The solutions of that CSP are the reunified labelling profiles (corresponding to values of the Vj variables).

Example 18. Following Example 17, let illustrate this CSP modelling for the reunification of r̃af 2. Let ⟨X ,D,C⟩ be
that CSP. It is defined as follows:

• X = {V1,V2,Vf ,Vm,VΨ}

– V1 corresponds to r̃af 2.1

– V2 corresponds to r̃af 2.2

32

– Vf corresponds to the argument f
– Vm corresponds to the argument m
– VΨ corresponds to the attack Ψ

• D =

D(V1) =

ξ2.1.1 = {(m,in),(f ,in),(ψ,in)}

ξ2.1.2 = {(m,out),(f ,in),(ψ,in)}

ξ2.1.3 = {(m,und),(f ,in),(ψ,in)}

 ,

D(V2) =

ξ2.2.1 = {(m,in),(f ,in),(ψ,in)}

ξ2.2.2 = {(m,out),(f ,in),(ψ,in)}

ξ2.2.3 = {(m,und),(f ,in),(ψ,in)}

 ,

D(Vf) = {in}

D(Vm) = {in,out,und},

D(VΨ) = {in,out,und}

• C = {c1,c2,c3,c4,c5,c6} is a set of constraints, with

– c1 being defined as follows:

V1 = ξ2.1.1 =⇒ (Vm = in∧Vf = in∧Vψ = in)

– c2 being defined as follows:

V1 = ξ2.1.2 =⇒ (Vm = out∧Vf = in∧Vψ = in)

– c3 being defined as follows:

V1 = ξ2.1.3 =⇒ (Vm = und∧Vf = in∧Vψ = in)

– c4 being defined as follows:

V2 = ξ2.2.1 =⇒ (Vm = in∧Vf = in∧Vψ = in)

– c5 being defined as follows:

V2 = ξ2.2.2 =⇒ (Vm = out∧Vf = in∧Vψ = in)

– c6 being defined as follows:

V2 = ξ2.2.3 =⇒ (Vm = und∧Vf = in∧Vψ = in)

The solutions of ⟨X ,D,C⟩ are the following ones:
{
(V1,ξ2.1.1),(V2,ξ2.2.1),(Vf ,in),(Vm,in),(VΨ,in)

}
,{

(V1,ξ2.1.2),(V2,ξ2.2.2),(Vf ,in),(Vm,out),(VΨ,in)
}
,{

(V1,ξ2.1.3),(V2,ξ2.2.3),(Vf ,in),(Vm,und),(VΨ,in)
}

As consequence the reunified labellings profiles produced by the CSP are the following ones:

P =

p2.1 = {ξ2.1.1,ξ2.2.1} ,

p2.2 = {ξ2.1.2,ξ2.2.2} ,

p2.3 = {ξ2.1.3,ξ2.2.3}

33

Then, each reunified labelling profile computed corresponds to some labelling parts.

Example 19. Following examples 11, 13 and 18, the labellings corresponding to the reunified profiles are as follows:

• Corresponding to p2.1:

L2.1.1∪L2.2.2 =

 (i,out),(h,out),(m,in),(k,in),(l,out),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

 ,

L2.1.1∪L2.2.3 =

 (i,out),(h,out),(m,in),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

 ,

L2.1.1∪L2.2.4 =

 (i,out),(h,out),(m,in),(k,und),(l,und),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

• Corresponding to p2.2: L2.1.2∪L2.2.1 =

 (i,in),(h,in),(m,out),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,out),(ρ,in),(ψ,in),(ξ ,in),(o,out),(π,in)

• Corresponding to p2.3:
L2.1.3∪L2.2.5 =

 (i,und),(h,und),(m,und),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,und),(ρ,in),(ψ,in),(ξ ,und),(o,und),(π,in)

 ,

L2.1.3∪L2.2.6 =

 (i,und),(h,und),(m,und),(k,und),(l,und),

(ι ,in),(κ,in),(λ ,und),(ρ,in),(ψ,in),(ξ ,und),(o,und),(π,in)

We have so:

Lco(r̃af 2) =

L2.1 =

 (i,out),(h,out),(m,in),(k,in),(l,out),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

 ,

L2.2 =

 (i,out),(h,out),(m,in),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

 ,

L2.3 =

 (i,out),(h,out),(m,in),(k,und),(l,und),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

 ,

L2.4 =

 (i,in),(h,in),(m,out),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,out),(ρ,in),(ψ,in),(ξ ,in),(o,out),(π,in)

 ,

L2.5 =

 (i,und),(h,und),(m,und),(k,out),(l,in),

(ι ,in),(κ,in),(λ ,und),(ρ,in),(ψ,in),(ξ ,und),(o,und),(π,in)

 ,

L2.6 =

 (i,und),(h,und),(m,und),(k,und),(l,und),

(ι ,in),(κ,in),(λ ,und),(ρ,in),(ψ,in),(ξ ,und),(o,und),(π,in)

34

A special step has to be done for the preferred semantics as this reunifying process does not ensure the maximality
(w.r.t. ⊑) of the set of in -labelled elements. Indeed, the preferred semantics is not bottom-up decomposable (see [3]).
A maximality check must be done in order to keep only the wanted labellings. Note: When computing the stable

semantics, the set of labellings Lσ returned by the algorithm may be empty. It happens when one of the component
clusters has no stable labelling.

4.4.2 Whole RAF labelling reunification

Now that all the component labellings are built, we can reunify the labellings of the whole AF. Indeed, given that
the trivial part is a fixed part of all σ -labellings of RAF and that each connected component has a unique context
(these contexts being compatible with each other), the σ -labellings of the whole AF are built by performing a simple
cartesian product between the labellings of all the components and the trivial part labelling. If one of the components
has no labelling then the whole AF has no labelling (so Lσ =∅).

Example 20. Following examples 9 and 19, the complete semantics produces 54 labellings for RAF , with for instance
corresponding to Lgr ↓Utriv ∪L4.1∪L1.1∪L3.1∪L2.1:

(e,in),(f ,in),(g,out),(n,und),(o,und),(a,in),(b,out),(c,in),

(d,out),(j,in),(i,out),(h,out),(m,in),(k,in),(l,out),

(ε,out),(ζ ,in),(η ,in),(θ ,in),(τ,und),(υ ,in),(φ ,in),(χ,in),

(α,in),(β ,in),(γ,in),(δ ,in),(µ,out),(ν ,in),(ι ,in),(κ,in),

(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

4.5 Synthesis of the running example
Figure 19 gives the synthesis of the different objects used and built by RAFDivider for the computation of the complete
labellings in the running example.

5 RAFDivider: Algorithms and Properties
Algorithms 3 and 4 give the formal definition of the RAFDivider algorithm. As for AFDivider , they are said to be
generic algorithms in the sense that any clustering method can be used to split the AF and any sound and complete
procedure that computes the semantics σ , can be used to compute the labellings of the different clusters.

The RAFDivider algorithm gives all the expected labellings (so it is complete) and only good labellings (it is sound)
for the complete, stable and preferred semantics. The proof of the following propositions are given inSection A. They
are very similar to the proofs given for AFDivider in [21].

First, concerning Algorithm 4 the two following properties hold:

Proposition 4 (Completeness of Algorithm 4). Algorithm 4 is complete for the stable, complete and preferred seman-
tics.

Proposition 5 (Soundness of Algorithm 4). The following properties hold:

1. Algorithm 4 is sound for the stable and complete semantics

2. Algorithm 4 is sound for the preferred semantics

Note: Proposition 5 and afterward Proposition 7 are separated into two assertions because the proofs for the pre-
ferred semantics are different.

Regarding Algorithm 3, two similar properties can be established:

35

RAF
⇒ 54 lab.

Initial RAF
(Fig. 5)

Utriv with the
grounded lab.

Trivial part:
Structure
(Ex. 3)

R̃AF hard

Partial
hard RAF
(Fig. 7)

r̃af 4 r̃af 1 r̃af 3 r̃af 2

Components:
Partial RAF
(Fig. 9)

⟨r̃af 4,{g},
{(g,out)}⟩
(Fig. 11)
⇒ 1 lab.

⟨r̃af 1,∅,∅⟩
(Fig. 12)
⇒ 3 lab.

⟨r̃af 3,{ f},
{(f ,in)}⟩
(Fig. 13)
⇒ 3 lab.

⟨r̃af 2,{ f},
{(f ,in)}⟩
⇒ 3 profiles
⇒ 6 lab.

Partial RAF
with input.
Standard RAF

r̃af 2.1 ⇒
3 config.

r̃af 2.2 ⇒
3 config.

Clusters:
Partial RAF
(Fig. 10)

⟨r̃af 2.1,{ f},
{(f ,in)}⟩
(Fig. 14)
⇒ 3 lab.

⟨r̃af 2.2,{ f ,m,ψ},
{(f ,in),(m,in),
(ψ,in)}⟩
(Fig. 15.a)
⇒ 3 lab.

⟨r̃af 2.2,{ f ,m,ψ},
{(f ,in),(m,out),
(ψ,in)}⟩
(Fig. 15.b)
⇒ 1 lab.

⟨r̃af 2.2,{ f ,m,ψ},
{(f ,in),(m,und),
(ψ,in)}⟩
(Fig. 15.c)
⇒ 2 lab.

Partial RAF
with input.
Standard RAF

In blue, the number of labellings computed at the level of a partial RAF with input that is not clustered.
In red, the number of distinct configurations obtained for preparing the reunification at the cluster level,
then the number of reunified labelling profiles at the level of the partial RAF with input that is clustered;
these profiles induce the number of labellings (in blue) for each clustered partial RAF.
And finally, in blue, the total number of labellings of the initial RAF obtained by a cartesian product.

Figure 19: Objects generated by RAFDivider in the running example for the complete semantics

36

Algorithm 3: RAFDivider algorithm.
Input: Let RAF = ⟨A,K,s, t⟩ be an RAF and σ be a semantics
Result: Lσ ∈ 2L (RAF): the set of the σ -labellings of RAF
Local variables:

• Utriv: The trivial part of RAF
• Lgr: The grounded labelling of RAF
• I: The input of R̃AF hard

• CCSet: The set of connected components of R̃AF hard

• PartRAFSet: The set of partial RAFs of r̃af i

• Lσ (raf i): the set of all σ -labellings of r̃af i
1 Utriv,Lgr← ComputeRAFTrivialPart(RAF)

2 R̃AF hard ,I← RemoveRAFTrivialPart(RAF ,Utriv)

3 CCSet← SplitPartialRAFConnectedComponents(R̃AF hard)

4 for all r̃af i ∈CCSet do in parallel
5 PartRAFSet← ComputePartRAFs(r̃af i) // clustering
6 Lσ (r̃af i)← ComputeRAFCompLabs(σ ,PartRAFSet,I,Lgr)

7 Lσ ←{Lgr ↓Utriv}×∏r̃af i∈CCSet Lσ (r̃af i)

8 return Lσ

Algorithm 4: ComputeRAFCompLabs algorithm.

Input: Let σ be a semantics, PartRAFSet be a set of clusters (partial RAFs) for a component r̃af i, I be the
input of the partial hard RAF and Lgr be the grounded labelling of the initial RAF

Result: Lσ ∈ 2L (r̃af i): the set of the σ -labellings of r̃af i
Local variables:

• r̃af i. j: a partial RAF

• L
r̃af i. j

σ : the set of all σ -structure labellings of r̃af i. j

• P r̃af i. j : the set of configurations corresponding to the σ -labellings of r̃af i. j
• P: the set of all reunified labelling profiles

1 for all r̃af i. j ∈ PartRAFSet do in parallel

2 L
r̃af i. j

σ ← ComputePartRAFLabs(σ , r̃af i. j,I,Lgr) // external solver call

3 P r̃af i. j ← IdentifyConfigs(L
r̃af i. j

σ , r̃af i. j)

4 P ← ReunifyCompConfigs({P r̃af i. j |r̃af i. j ∈ PartRAFSet},PartRAFSet)
5 for all p ∈P do

6 Lσ ←Lσ ∪
{
L

∣∣∣∣L ∈ ReunifyProfileLabellings(p,{L
r̃af i. j

σ |r̃af i. j ∈ PartRAFSet})
}

7 if σ = pr then Lσ ←{L|L ∈Lσ s.t. ∄L′ ∈Lσ s.t. in (L)⊏ in (L′)}
8 return Lσ

37

Proposition 6 (Completeness of Algorithm 3). Algorithm 3 is complete for the stable, complete and preferred seman-
tics.

Proposition 7 (Soundness of Algorithm 3). The following properties hold:

1. Algorithm 3 is sound for the stable and complete semantics.

2. Algorithm 3 is sound for the preferred semantics.

6 A Clustering Method

The main idea of the clustering presented in this section is to ensure that the Strongly Connected Components (SCC)19

are not split into different clusters. The following method is inspired by those proposed in [16, 21] for testing the
AFDivider algorithms. Given a RAF, the so-called “USCC-clustering” forms clusters as follows (each cluster being an
USCCra f , see Definition 23). First, the set of SCC is computed. Then neighbour SCC singletons are joined together
in order to form a cluster using the following definition of neighbourhood:

Definition 38. (Neighbourhood).
Let RAF = ⟨A,K,s, t⟩. Let x and y be two elements of RAF . x and y are considered as neighbour iff:

• either x ∈ K and (y = s(x) or y = t(x)

• or x ∈ A and y ∈ K and (s(y) = x or t(y) = x)

Note that, by definition, two arguments cannot be considered as neighbours.
In the third step, each SCC that is not a singleton is joined with its neighbour SCC singletons (those that are

neighbours with at least an element in the SCC non singleton) producing a cluster. This merging must respect the
following constraint (the idea is to put in the same cluster the attacks and their source in order to have all the necessary
elements for identifying the status of the target):

Let USCCra f be a cluster. Let x be an SCC singleton that is a neighbour of USCCra f . x will be joined with
USCCra f if

• either x ∈ K and s(x) ∈USCCra f

• or x ∈ A and ∃y ∈USCCra f s.t. s(y) = x

The last step is to join clusters together so that there are not too many clusters of little size. This is done in an
iterative way. The smallest group is merged to its smallest neighbour group, and that until there is no group of less
than a certain number of arguments. Some experiments would be necessary in order to identify this threshold wrt the
RAF we take into account.

Before illustrating this clustering on the running example, let recall informally what is an SCC in the case of RAF
(see the precise formal definitions in [21]). Two elements (arguments or attacks) are in the same SCC iff there exists
a RAF-closed-walk that contains and attacks them (a RAF-closed-walk being a directed RAF-walk (e1, . . . ,en) with
e1 = en).

For instance in the RAF given in Figure 5, one can found the following directed RAF-walks:

• (τ,n,υ ,o,φ ,τ): a directed RAF-walk that is closed.

• (f ,θ ,g,η ,e,ζ ,ε): a directed RAF-walk that is not closed.

Then considering the RAF given in Figure 5, we can compute the following set of SCC:

19See in [21] the details about the definition of the SCCs for a RAF.

38

• each unattacked element produces an SCC that is the singleton containing only this element; in the running
example, 16 elements are concerned: f and all the attacks except τ , µ , λ , ε , δ , ξ , o;

• there are 5 directed RAF-closed-walk, each of them producing an SCC:

– (τ,n,υ ,o,φ ,τ) produces the SCC {τ,n,o}
– (µ, j,ν ,µ) produces the SCC {µ, j}
– (λ , i, ι ,m,ρ,h,κ,λ) produces the SCC {λ , i,m,h}
– (a,α,b,β ,c,γ,d,δ ,a) produces the SCC {a,b,c,d}
– (k,π, l,o,k) produces the SCC {k, l}

• the remaining elements s.t., even if they are attacked, they do not belong to an SCC that could contain an-
other element; so they also produce SCC corresponding to a singleton; in the running example, 6 elements are
concerned: g, e, ε , δ , ξ , o.

Then the second step of the USCC-clustering (aggregation of neighbour singletons) gives the following results (2
clusters):

• { f ,θ ,g,η ,e,ζ ,ε,δ ,ξ ,o}

• {ψ,ξ ,o}

Considering the 5 SCC that are non singletons, the third step produces the 5 following clusters:

• {τ,n,υ ,o,φ ,χ}

• {µ, j,ν}

• {λ , i, ι ,m,ρ,h,κ,ψ}

• {a,α,b,β ,c,γ,d,δ}

• {k,π, l,o}

Then in the fourth step, we identify the singletons that belong to several clusters and we remove them to the clusters
that do not satisfy the constraints. In our example, 4 elements are concerned: ψ , ξ , δ and o.

• for ψ: we keep it in the cluster containing m

• for ξ : we keep it in the cluster containing f

• for δ : we keep it in the cluster containing d

• for o: we keep it in the cluster containing l

The final result of the fourth step is the 6 following clusters:

• { f ,θ ,g,η ,e,ζ ,ε,ξ}

• {τ,n,υ ,o,φ ,χ}

• {µ, j,ν}

• {λ , i, ι ,m,ρ,h,κ,ψ}

• {a,α,b,β ,c,γ,d,δ}

• {k,π, l,o}

39

Then in the final step, if we consider a threshold of 6 in order to avoid too small clusters, then the clusters {µ, j,ν}
and {k,π, l,o} would be aggregated with the first cluster producing a big cluster containing 15 elements.

Note that, in the real example and following our algorithms, the clustering step happens only after the removal of
the trivial part (so on the components of the partial hard RAF) and so the real clustering is not the one described in this
section. Indeed, following the size of each component, the clustering is done only of R̃AF 2 in which only two SCC
exist ({λ , i,m,h} and {k, l}) and the USCC-clustering produces two clusters: {λ , i, ι ,m,ρ,h,κ,ψ} and {k,π, l,o} (see
Figure 10).

7 Conclusion and Future Works
This paper presents RAFDivider, one of the first algorithms for the enumeration of acceptable sets in a Recursive
Argumentation Framework (RAF), an argumentation framework enriched with higher-order interactions. This algo-
rithm, proven sound and complete, is based on a cutting of the framework which allows a distributed and parallel
computation, technique successfully used for the enumeration of acceptable sets in an AF by AFDivider. An example
of a clustering method, USCC-clustering, which can be used with this algorithm, is provided. An implementation of
RAFDivider is to come.

The extension of the algorithmic approach to other kinds of enriched argumentation frameworks may be investi-
gated: argumentation frameworks which consider support interactions in addition to attacks, notably (see [10] for an
overview of such enrichments).

To go further, such algorithms for argumentation frameworks with higher-order attacks may encourage the exten-
sion to RAFs of the reasoning tasks proposed for AFs at the International Competition on Computational Models of
Argumentation (ICCMA) [20].

References
[1] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient computation of extensions for dynamic

abstract argumentation frameworks: An incremental approach. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI, pages 49–55, 2017.

[2] Mario Alviano. The pyglaf argumentation reasoner. In OASIcs-OpenAccess Series in Informatics, volume 58.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leendert Van Der Torre, and Serena
Villata. On the input/output behavior of argumentation frameworks. Artificial Intelligence, 217:144–197, 2014.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation semantics.
Knowledge Eng. Review, 26(4):365–410, 2011.

[5] Pietro Baroni, Federico Cerutti, Paul E. Dunne, and Massimiliano Giacomin. Computing with infinite argumen-
tation frameworks: The case of AFRAs. In Proc. of TAFA, Revised Selected Papers, pages 197–214, 2011.

[6] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. AFRA: Argumentation frame-
work with recursive attacks. Intl. Journal of Approximate Reasoning, 52:19–37, 2011.

[7] Howard Barringer, Dov Gabbay, and John Woods. Temporal dynamics of support and attack networks : From
argumentation to zoology. In Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on
the Occasion of His 60th Birthday. LNAI 2605, pages 59–98. Springer Verlag, 2005.

[8] Martin Caminada. On the issue of reinstatement in argumentation. In JELIA, pages 111–123, 2006.

[9] Álvaro Carrera and Carlos A Iglesias. A systematic review of argumentation techniques for multi-agent systems
research. Artificial Intelligence Review, 44(4):509–535, 2015.

[10] Claudette Cayrol, Andrea Cohen, and Marie-Christine Lagasquie-Schiex. Higher-order interactions (bipolar or
not) in abstract argumentation: A state of the art. In Handbook of Formal Argumentation, Volume 2. 2021.

40

[11] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine Lagasquie-Schiex. Valid attacks
in argumentation frameworks with recursive attacks. AMAI Journal, 89(1):53–101, November 2020.

[12] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina Zanella. An SCC recursive meta-algorithm
for computing preferred labellings in abstract argumentation. In Proc. of KR. AAAI Press, 2014.

[13] Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Massimiliano Giacomin, and Grigoris
Antoniou. Exploiting parallelism for hard problems in abstract argumentation. In AAAI, pages 1475–1481, 2015.

[14] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan Woltran. Methods
for solving reasoning problems in abstract argumentation — A survey. Artificial Intelligence, 220:28–63, 2015.

[15] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Argumentation Frameworks with
Higher-Order Attacks: Labellings and Complexity. In Miltos Alamaniotis and Shimei Pan, editors, Proc. of
ICTAI, pages 1210–1217. IEEE, November 2020.

[16] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. A distributed and clustering-based
algorithm for the enumeration problem in abstract argumentation. In Proc. of PRIMA, pages 87–105. Springer,
2019.

[17] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[18] Wolfgang Dvorak and Paul E. Dunne. Computational problems in formal argumentation and their complexity.
In Handbook of formal argumentation, pages 631–688. College publication, 2018.

[19] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable algorithms for ab-
stract argumentation. Artificial Intelligence, 186:1–37, 2012.

[20] ICCMA. International Competition on Computational Models of Argumentation.

[21] Mickaël Lafages. Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases. Phd
thesis, Toulouse, France, 2021.

[22] Beishui Liao. Toward incremental computation of argumentation semantics: A decomposition-based approach.
Annals of Mathematics and Artificial Intelligence, 67(3-4):319–358, 2013.

[23] Sanjay Modgil. An abstract theory of argumentation that accommodates defeasible reasoning about preferences.
In Proc. of ECSQARU, pages 648–659, 2007.

[24] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173:901–934,
2009.

A Proofs

Proposition 3 Let σ be a semantics, R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF, I=

〈
Sinp,Qinp

〉
be the input of R̃AF and

let α ∈ Qinp such that s(α) ∈ Sinp. Let µ1, µ2 be contexts of R̃AF such that:

1. ∀x ∈ (Sinp∪Qinp)\{α,s(α)} ,µ1(x) = µ2(x)

2. and

• either (µ1(α) = in and µ1(s(α)) = in) and (µ2(α) = in and µ2(s(α)) = in)

• or (µ1(α) = out or µ1(s(α)) = out) and (µ2(α) = out or µ2(s(α)) = out)

• or
(
[(µ1(α) = und or µ1(s(α)) = und) and µ1(α) ̸= out and µ1(s(α)) ̸= out] and
[(µ2(α) = und or µ2(s(α)) = und) and µ2(α) ̸= out and µ2(s(α)) ̸= out]

)
41

The following property holds:

L
µ1(R̃AF)

σ = L
µ2(R̃AF)

σ

Proof (of Prop. 3) Consider x = t(α) ∈ R̃AF and let study its label.
Using µ1, 3 cases must be studied:

• either (µ1(α) = in and µ1(s(α)) = in): so, if α is the only attack targeting x, x is labelled with out ; moreover,
following the assumption saying that, in this case, we also have (µ2(α) = in and µ2(s(α)) = in), then using
µ2, we obtain the same label for x;

• or (µ1(α) = out or µ1(s(α)) = out): so, if α is the only attack targeting x, x is labelled with in ; moreover,
following the assumption saying that, in this case, we also have (µ2(α) = out or µ2(s(α)) = out), then using
µ2, we obtain the same label for x;

• or
(
[(µ1(α) = und or µ1(s(α)) = und) and µ1(α) ̸= out and µ1(s(α)) ̸= out]: so, if α is the only attack

targeting x, x is labelled with und ; moreover, following the assumption saying that, in this case, we also have
[(µ2(α) = und or µ2(s(α)) = und) and µ2(α) ̸= out and µ2(s(α)) ̸= out]

)
, then using µ2, we obtain the

same label for x.

Moreover, all other things being equal, for any other element y in R̃AF , the label obtained using µ1 is equal to the
label obtained using µ2. So, if α is not the only attack targeting x, the label of x is computed with exactly the same
information using µ1 or µ2.

So L
µ1(R̃AF)

σ = L
µ2(R̃AF)

σ □

Lemma 1. Definition 22 on page 14 and Proposition 2 on page 14 can be applied on partial RAF with input.

Proof (of Lemma 1) From any partial RAF with input ⟨R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
,I=

〈
Sinp,Qinp

〉
,Linp⟩, a specific RAF

⟨A′,K′,s′, t ′⟩ can be built considering that:

• A′ = Ã∪Sinp∪{t(α)|α ∈ K̃ and t̃(α) = false}

• K′ = K̃∪Qinp

• s′ = {(x,y) ∈ s|x ∈ K′ and y ∈ A′}

• t ′ = {(x,y) ∈ t|x ∈ K′ and y ∈ A′∪K′}

The idea is here to built the RAF from the partial RAF adding the inputs and the missing targets. Then, since the
decomposability of semantics has been defined and proven for RAF (see Definition 22 on page 14 and Proposition 2
on page 14), it is also defined and proven for partial RAF with input. □

Proposition 4 Algorithm 4 is complete for the stable, complete and preferred semantics.

Proof (of Prop. 4) Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF, Ω = {ω1, ...,ωn} be a partition of R̃AF and {R̃AF ↓ω1

, ..., R̃AF ↓ωn} be the set of partial RAFs corresponding to Ω, with for each R̃AF ↓ωi , denoted by r̃af i, their inputs
Ii = (Sinp

i ,Qinp
i) and the labellings Linp

i of these inputs.
Let σ be a top-down decomposable semantics.
Let Lσ (R̃AF) be the set of distinct labellings of R̃AF according to the semantics σ .
Let L ∗

σ (R̃AF) be the set of labellings of R̃AF according to σ obtained by Algorithm 4.
We must show that Algorithm 4 produces all the possible labellings corresponding to the semantics σ , so that

Lσ (R̃AF)⊆L ∗
σ (R̃AF).

42

Let L
r̃af i

σ be the set of labellings of r̃af i according to the semantics σ .

Let L
∗µ(r̃af i)

σ be the set of labellings of r̃af i under the context µ . These labellings are obtained in Algorithm 4
using an external solver assumed to be sound and complete.

By definition of a semantic top-down decomposable, we have (Definition 22 on page 14 and Lemma 1):

Lσ (R̃AF)⊆ {L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f
σ (r̃af i,Ii,L

inp
i)} (1)

Given that the labellings of all partial RAF r̃af i are computed for every possible context, we have, by definition of
the context and of the input arguments:

∀i,∀Linp
i ,∃µ

r̃af i s.t. µ
r̃af i = L

inp
i (2)

Given that the external solver that computes the labellings of r̃af i according to the semantics σ is sound and

complete, and considering R̃AF s being the standard RAF w.r.t. the partial RAF with input
〈

r̃af i,Ii,µ
r̃af i

〉
, we have:

∀i,∀µ
r̃af i ,∀L ∈Lσ (R̃AF s),∃L′ ∈L

∗µ(r̃af i)
σ s.t. L′ = L ↓ωi (3)

So we have:

∀i,∀µ
r̃af i ,∀L ∈Lσ (R̃AF s),L ↓ωi∈L

r̃af i
σ (4)

And so (following Definition 21 on page 13):

∀i,F ra f
σ (r̃af i,Ii,L

inp
i)⊆L

r̃af i
σ (5)

As a consequence and because of Equation (1) we have (∏ denoting the cartesian product):

Lσ (R̃AF)⊆ ∏
i=1...n

L
r̃af i

σ (6)

Let χ = {L|L ∈ ∏i=1...n L
r̃af i

σ and ∃x ∈ A∪K s.t. x is illegally labelled in L} be the set of all possible incorrect
labellings (i.e. the set of labellings in which there exists an element that is not legally labelled).

We have, by definition of σ :

Lσ (R̃AF)⊆ (∏
i=1...n

L
r̃af i

σ)\χ (7)

Given that, for all computed labellings, we keep only the compatible configuration, that is the most flexible possible
configuration, our CSP modelling does not add extra constraints. The proposed reunification removes, thus, only the
labellings belonging to χ .

As a consequence, we have:

Lσ (R̃AF)⊆L ∗
σ (R̃AF) (8)

We prove so that for any top-down decomposable semantics σ our algorithm is complete, and so for the complete,
stable and preferred semantics following Lemma 1 and so Proposition 2 on page 14.

□

Proposition 5

1. Algorithm 4 is sound for the stable and complete semantics

2. Algorithm 4 is sound for the preferred semantics

43

Proof (of Prop. 5) Let R̃AF =
〈
Ã, K̃, s̃, t̃,s, t

〉
be a partial RAF, Ω = {ω1, ...,ωn} be a partition of R̃AF and {R̃AF ↓ω1

, ..., R̃AF ↓ωn} be the set of partial RAFs corresponding to Ω, with for each R̃AF ↓ωi , denoted by r̃af i, the inputs
Ii = (Sinp

i ,Qinp
i) and their labellings Linp

i .
Let σ be a semantics.
Let Lσ (R̃AF) be the set of distinct labellings of R̃AF according to the semantics σ .
Let L ∗

σ (R̃AF) be the set of labellings of R̃AF according to σ obtained by Algorithm 4.
We must show that Algorithm 4 produces only the labellings corresponding to the semantics σ , so that L ∗

σ (R̃AF)⊆
Lσ (R̃AF).

• Assertion 1: Assume that σ be a fully decomposable and complete-based semantics and let L∗ be a labelling
of R̃AF according to σ obtained by Algorithm 4 (so L∗ ∈L ∗

σ (R̃AF)).

Let suppose that L∗ /∈Lσ (R̃AF). We will prove that it is impossible with a reductio ad absurdum.

As σ is a complete-based and fully decomposable semantics we can say that (Definition 22 on page 14 and
Lemma 1):

L∗ /∈ {L1∪ ...∪Ln|Li ∈F ra f
σ (r̃af i,Ii,L

inp
i)} (9)

And so:
∃ωi ∈Ω s.t. L∗ ↓ωi /∈F ra f

σ (r̃af i,Ii,L
inp
i) (10)

Let
〈

r̃af i,Ii,L
inp
i

〉
be the partial RAF with input corresponding to this ωi.

Let µ be a context of r̃af i such that µ = (
⋃

j∈{1,...,n} s.t. j ̸=iL j) ↓Ii .

Let L
∗µ(r̃af i)

σ be the set of labellings of r̃af i under the context µ produced by Algorithm 4.

Let L′∗ ∈L
∗µ(r̃af i)

σ be the labelling coinciding with L∗ ↓ωi (i.e. L′∗ = L∗ ↓ωi).

We have so:
L′∗ ∈L

∗µ(r̃af i)
σ (11)

Whereas:
L′∗ /∈F ra f

σ (r̃af i,Ii,L
inp
i) (12)

And so:
L
∗µ(r̃af i)

σ ̸= F ra f
σ (r̃af i,Ii,L

inp
i) (13)

Nevertheless, according to Definition 34 on page 22 we must have:

L
∗µ(r̃af i)

σ = F ra f
σ (r̃af i,Ii,L

inp
i) (14)

Thus, there is a contradiction between Equation (13) and Equation (14).

From this contradiction we can conclude that:

L ∗
σ (R̃AF)⊆Lσ (R̃AF) (15)

We prove so that for any fully decomposable and complete-based semantics σ our algorithm is sound, and so
for the complete and stable semantics, following Lemma 1 and so Proposition 2 on page 14.

44

• Assertion 2: Let R̃AF be a partial RAF and σ be the preferred semantics. Given that Algorithm 4 is complete
for the preferred semantics (see Proposition 4 on page 35), L ∗

pr, the set of all labellings reunified from the
different clusters obtained in Algorithm 4 line 7, contains all the preferred labellings of R̃AF .

In Algorithm 4 line 8, we keep from L ∗
pr only the maximal (w.r.t ⊆ of in -labelled arguments) labellings, that

are by definition the preferred labellings. As a consequence, L ∗
pr contains only and all the preferred labellings

of R̃AF .

Algorithm 4 is, thus, sound and complete for the preferred semantics.

□

Proposition 6 Algorithm 3 is complete for the stable, complete and preferred semantics.

Proof (of Prop. 6) Let RAF = ⟨A,K,s, t⟩ be a RAF, Lgr be its grounded labelling, R̃AF hard be the partial hard RAF of
RAF and {r̃af 1, ..., r̃af n} be the set of partial RAFs obtained from R̃AF hard (so its components).

Let σ be the complete, stable or preferred semantics.
Let L ∗

σ (RAF) be the set of labellings obtained from Algorithm 3.
Let Lσ (RAF) be the set of labellings of RAF according to the semantics σ .
We must prove that Lσ (RAF)⊆L ∗

σ (RAF).
Let Ω be the partition of RAF corresponding to the trivial part and each component. Note that the trivial part

induces a partial RAF denoted r̃af gr with eventually a set of some inputs denoted Igr (so this partial RAF can also be
considered as a component).

Let L ∗
σ (r̃af i) be the set of labellings obtained from Algorithm 4 for the component r̃af i.

Let Lσ (r̃af i) be the set of labellings for the component r̃af i according to the semantics σ .
Consider L ∈Lσ (RAF), a labelling of RAF according to σ .
Given that (following Definition 21 on page 13):

F ra f
σ (r̃af gr,Igr,(

⋃
i∈{1,...,n}

Lσ (r̃af i)) ↓Igr) = {Lgr} (16)

We have by definition of top-down decomposable semantics (following Definition 22 on page 14):

Lσ (RAF)⊆ {Lgr ∪
⋃

i∈{1,...,n}
Lσ (r̃af i)}

with Lσ (r̃af i) ∈F ra f
σ (r̃af i,Ii,(

⋃
j∈{1,...,n} s.t. j ̸=i

Lσ (r̃af j)) ↓Ii)

(17)

Given that Algorithm 4 is complete for top-down decomposable semantics (i.e. ∀i,Lσ (r̃af i)⊆L ∗
σ (r̃af i)),

∀i,Lσ (r̃af i) ∈L ∗
σ (r̃af i) (18)

Furthermore:

∀L∗ ∈L ∗
σ (RAF),L∗ = Lgr ∪

⋃
L∗i , with L∗i ∈L ∗

σ (r̃af i) (19)

We have so:
{Lgr ∪

⋃
i=1...n

Lσ (r̃af i)} ⊆L ∗
σ (RAF) (20)

Finally, we have:
Lσ (RAF)⊆L ∗

σ (RAF) (21)

45

We prove so that our algorithm is complete for the complete, stable and preferred semantics. □

Proposition 7

1. Algorithm 3 is sound for the stable and complete semantics.

2. Algorithm 3 is sound for the preferred semantics.

Proof (of Prop. 7)

• Assertion 1: Algorithm 3 is sound for the stable and complete semantics.

Let RAF = ⟨A,K,s, t⟩ be a RAF, Lgr be its grounded labelling, R̃AF hard be the partial hard RAF of RAF and
{r̃af 1, ..., r̃af n} be the set of partial RAFs obtained from R̃AF hard (so its components).

Let σ be the complete or stable semantics.

Let L ∗
σ (RAF) be the set of labellings of RAF obtained from Algorithm 3.

Let Lσ (RAF) be the set of labellings of RAF according to the semantics σ .

We must show that L ∗
σ (RAF)⊆Lσ (RAF).

Let L∗ ∈L ∗
σ (RAF) be a labelling of RAF computed by Algorithm 3.

Let Ω be the partition of RAF corresponding to the trivial part and each component of R̃AF hard . Note that the
trivial part induces a partial RAF denoted r̃af gr with eventually a set of some inputs denoted Igr (and this partial
RAF can be considered as a component).

Let L ∗
σ (r̃af i) be the set of labellings of r̃af i obtained from Algorithm 4.

Following Algorithm 3, we have:

L∗ = Lgr ∪
⋃

L∗i , with L∗i ∈L ∗
σ (r̃af i) (22)

We have (following Definition 21 on page 13):

F ra f
σ (r̃af gr,Igr,(

⋃
i∈{1,...,n}

Lσ (r̃af i)) ↓Igr) = {Lgr} (23)

Because σ is a fully decomposable semantics we have so (Definition 22 on page 14):

Lσ (RAF) = {Lgr ∪
⋃

i=1...n

Lσ (r̃af i)}

with Lσ (r̃af i) ∈F ra f
σ (r̃af i,Ii,(

⋃
j∈{1,...,n} s.t. j ̸=i

Lσ (r̃af j)) ↓Ii)
(24)

Given that Equation (24) holds and that Algorithm 4 is sound for fully decomposable semantics (i.e. ∀i,
L ∗

σ (r̃af i) ⊆Lσ (r̃af i)), we have:
L∗ ∈Lσ (RAF) (25)

And thus:
L ∗

σ (RAF)⊆Lσ (RAF) (26)

We prove so that for the complete and stable semantics our algorithm is sound.

46

• Assertion 2: Algorithm 3 is sound for the preferred semantics.

Let RAF = ⟨A,K,s, t⟩ be a RAF, Lgr be its grounded labelling, R̃AF hard be the partial hard RAF of RAF and
{r̃af 1, ..., r̃af n} be the set of partial RAFs obtained from R̃AF hard (so its components).

Let L ∗
pr(RAF) be the set of labellings of RAF obtained from Algorithm 3.

Let Lpr(RAF) be the set of labellings of RAF according to the preferred semantics.

We must show that L ∗
pr(RAF)⊆Lpr(RAF).

Let L∗ ∈L ∗
pr(RAF) be a labelling of RAF computed by Algorithm 3.

Let L ∗
pr(r̃af i) be the set of labellings of r̃af i obtained from Algorithm 4.

Following Algorithm 3, we have:

L∗ = Lgr ∪
⋃

L∗i , with L∗i ∈L ∗
pr(r̃af i) (27)

Let Ω be the partition of RAF corresponding to the trivial part and each component of R̃AF hard . Note that the
trivial part induces a partial RAF denoted r̃af gr with eventually a set of some inputs denoted Igr (and this partial
RAF can be considered as a component).

By definition of the grounded labelling, we have:

∃x ∈ A∪K s.t. Lgr(x) = und =⇒
(∀α ∈ K s.t. t(α) = x,Lgr(α) ̸= in or Lgr(s(α)) ̸= in)

(28)

Given that:
und (Lgr)∩ r̃af gr =∅ (29)

And that by construction of r̃af gr:

∀i ∈ {1, ...,n},∀x ∈ r̃af i,Lgr(x) = und (30)

The consequence of Equation (28) is:

∀i ∈ {1, ...,n},∀α ∈ K s.t. s(α) ∈ r̃af gr and t(α) ∈ r̃af i,Lgr(s(α)) = out (31)

Let RAF ′ be the RAF constructed by removing from RAF the attacks between its trivial part and its partial hard
RAF. As in RAF all arguments in the trivial part attacking arguments outside the trivial part is labelled out

(Equation (31)) their attacks have no effect. The consequence is the following:

Lpr(RAF ′) = Lpr(RAF) (32)

Notice that RAF ′ has n+ 1 connected components corresponding to the partition Ω, each component being a
partial RAF denoted by r̃af i, for i = 0 . . .n with its own inputs denoted by Ii (we consider that r̃af gr is denoted

by r̃af 0). Given that there is no connection (attack) between those connected components, each ωi ∈ Ω is an
USCCra f (see Definition 23 on page 14). As a consequence, following the definition of Sra f -USCC (Definition 23
on page 14), we have:

Ω ∈Sra f -USCC(RAF ′) (33)

As the preferred semantics is fully decomposable w.r.t. Sra f -USCC (Proposition 2 on page 14), we have:

47

Lpr(RAF ′) = {Lpr(r̃af 0)∪ ...∪Lpr(r̃af n)|

Lpr(r̃af i) ∈F ra f
pr (r̃af i,Ii,(

⋃
j∈{0,...,n} s.t. j ̸=i

Lpr(r̃af j)) ↓Ii)}
(34)

Notice that:
F ra f

pr (r̃af 0,I0,(
⋃

j∈{1,...,n}
Lpr(r̃af j)) ↓I0) = {Lgr} (35)

Notice also that, given Algorithm 4 is sound and complete for the preferred semantics (Propositions 4 and 5 on
page 35), we have:

∀i ∈ {1, ...,n},F ra f
pr (r̃af i,Ii,(

⋃
j∈{1,...,n} s.t. j ̸=i

Lpr(r̃af j)) ↓Ii) = L ∗
pr(r̃af i) (36)

From the Equations (34) to (36), we have:

Lpr(RAF ′) = {Lgr ∪Lpr(r̃af 1)∪ ...∪Lpr(r̃af n)|Lpr(r̃af i) ∈L ∗
pr(r̃af i)} (37)

From Equations (32) and (37) on the previous page and on the current page, we have:

Lpr(RAF) = {Lgr ∪Lpr(r̃af 1)∪ ...∪Lpr(r̃af n)|Lpr(r̃af i) ∈L ∗
pr(r̃af i)} (38)

Finally, from Equations (27) and (38) on the previous page and on the current page we have:

L ∗
pr(RAF) = Lpr(RAF) (39)

We prove so that Algorithm 3, when using Algorithm 4 to compute the component labellings, is sound and
complete for the preferred semantics.

□

48

	Motivation
	Background
	Dung Argumentation Framework (AF)
	AFDivider: an algorithm for AF
	RAF: a Higher-order Argumentation Framework
	RAF structure-based semantics
	RAF labellings
	Decomposability of RAF and RAF semantics

	Some Preliminary Definitions
	A Generic Algorithm for RAF: Presentation by Example
	Pretreatment: Removing the Trivial Part
	Identifying Clusters
	Computing the Labellings
	Reunifying the Results
	Component labelling reunification
	Whole RAF labelling reunification

	Synthesis of the running example

	RAFDivider: Algorithms and Properties
	A Clustering Method
	Conclusion and Future Works
	Proofs

