Sylvie Doutre
email: doutre@irit.fr

Marie-Christine Lagasquie-Schiex

Mickaël Lafages

RAFDivider

The topic of this work is related to a computational issue concerning an enriched abstract argumentation framework called RAF ("Recursive Argumentation Framework"). A RAF is composed of a set of arguments and a binary relation modelling the attacks as in Dung's framework. The main difference between Dung's framework and RAF is the fact that a RAF is able to take into account higher-order interactions (i.e. an attack can target an attack and not only an argument). Since this kind of framework is relatively recent, the efficient computation of the main semantics remains an open question.

In this paper, we propose one of the first algorithms dedicated to this issue. We also prove the soundness and the completeness of our algorithms.

Motivation

Argumentation, by considering arguments and their interactions, is a way of reasoning that has proven successful in many contexts, multi-agent applications for instance (e.g. [START_REF] Carrera | A systematic review of argumentation techniques for multi-agent systems research[END_REF]). Considering a formal representation of this reasoning model, argumentation frameworks with higher-order attacks (e.g. [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF][START_REF] Modgil | An abstract theory of argumentation that accommodates defeasible reasoning about preferences[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF][START_REF] Baroni | Computing with infinite argumentation frameworks: The case of AFRAs[END_REF][START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]) are a rich extension of the classical Argumentation Framework (AF) by [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]: not only they consider arguments and attacks between arguments, but also attacks on attacks (see for instance [START_REF] Baroni | Computing with infinite argumentation frameworks: The case of AFRAs[END_REF][START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]). Among these frameworks, the Recursive Argumentation Framework (RAF) by [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] proposes a direct approach regarding acceptability, which outputs sets of arguments and/or attacks (defined under the notion of structure), keeping the full expressiveness of higher-order attacks. A correspondence between Dung's extension-based semantics for AF and structure-based semantics of RAF without any attack on attacks has been shown in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF], proving that RAF are a conservative generalisation of AF. This characteristic makes RAF particularly interesting to consider.

The computation of semantics of RAF has not been addressed so far but a simple way to do so can be to extend what is done for AF: some of the most efficient algorithms for computing AF semantics are based on a cutting of the AF and then on a distributed and parallel computation (see [START_REF] Cerutti | An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation[END_REF][START_REF] Dvořák | Towards fixed-parameter tractable algorithms for abstract argumentation[END_REF][START_REF] Liao | Toward incremental computation of argumentation semantics: A decomposition-based approach[END_REF][START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF]) using the notion of AF labellings (e.g. [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF][START_REF] Baroni | An introduction to argumentation semantics[END_REF]) 1 and the fact that such semantics are decomposable (see [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF]). Indeed, RAF labellings already exist and classical decision problems for AF were also adapted to RAF with an interesting result (see [START_REF] Doutre | Argumentation Frameworks with Higher-Order Attacks: Labellings and Complexity[END_REF]): even if the expressive power of the frameworks with higher-order attacks is higher, the complexity of their decision problems keeps the same as in AF. Moreover, it has been proven in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] that RAF semantics, as AF semantics, are decomposable. Thus, following the line of the AFDivider algorithm designed for AF [START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF], all the mandatory elements are now present for the definition of some efficient algorithms for computing RAF labellings using a distributed and parallel method; this is the topic of the present paper.

The paper is organised as follows: the basics of Dung's argumentation framework are recalled in Section 2.1; an existing algorithm proposing a distributed and parallel computation for AF semantics is described in Section 2.2. Recursive Argumentation Frameworks (RAF) and their semantics are recalled in Section 2.3. Section 3 gives some additional definitions mandatory before the presentation of the algorithm itself in Sections 4 and 5. An example of a clustering method is provided in Section 6. Section 7 draws conclusions and opens future perspectives. The proofs of the soundness and completeness of the approach can be found in Appendix A.

Background

In this section, we first recall the framework proposed by Dung in 1995. Then a distributed and parallel algorithm for the computation of AF semantics is presented (our own algorithms will be strongly inspired by this one). The last part of this section is related to the main definitions concerning RAFs: basics, labellings and decomposability of the semantics.

Dung Argumentation Framework (AF)

In the original setting [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], an argumentation framework can be identified with a directed graph.

Definition 1 (Dung's framework -AF). A Dung's Argumentation Framework (AF) is an ordered pair AF = (A, K) s.t. A is a given set and K is a binary relation over A: K ⊆ A × A.

Each element a ∈ A is called an argument and aKb means that a attacks b. For S ⊆ A, we say that S attacks a ∈ A iff bKa for some b ∈ S.

As an illustration, Figure 1 depicts such an Argumentation Framework.

The main asset of Dung's approach is the definition of semantics using some basic properties in order to define sets of acceptable arguments, as follows. The semantics originally defined in [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] are as follows.

Definition 4 (Semantics). Given AF = (A, K), a subset S of A is said to be:

• conflict-free iff there are no a and b in S s.t. a attacks b,

• admissible iff S is conflict-free and for all a ∈ S, a is acceptable wrt S,

• complete iff S is admissible and for all a ∈ A, if a is acceptable wrt S then a ∈ S,

• preferred iff S is maximal (in the sense of set inclusion) admissible,2

• grounded iff S is the least fixpoint for F AF ,

• stable iff S is conflict-free and S attacks all a ∈ A \ S.

In this document, σ will denote the semantics with σ ∈ {conflict-free, admissible, complete, preferred, grounded, stable} and the set σ (AF) will denote the set of all the extensions produced using σ .

Back to Figure 1, the complete semantics induces a singleton containing the unique extension {a, c}, that is also the unique preferred, grounded and stable extension.

Some properties have been proven in [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] establishing a link between the different semantics. For instance:

Proposition 1. Given AF = (A, K),

• There exists at least a preferred extension.

• Every preferred extension is complete, but not vice-versa.

• Every stable extension is preferred, but not vice-versa.

• The grounded extension is the least (with respect to set-inclusion) complete extension.

Dung-like semantics can also be defined in terms of labellings as introduced in [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF]. A labelling maps to each argument of an AF a value representing its acceptability status. This status may be accepted (in), rejected (out) or in an undecided state (und). Formally: Definition 5 (Labelling). Let AF = ⟨A, K⟩ be an AF, and S ⊆ A. A labelling of S is a total function ℓ : S → {in, out, und}. A labelling of AF is a labelling of A. The set of all labellings of AF is denoted as L (AF). The set of all labellings of a set of arguments S is denoted as L (S).

We write in(ℓ) for a|ℓ(a) = in , out(ℓ) for a|ℓ(a) = out and und(ℓ) for a|ℓ(a) = und .

Definition 6 (Legally Labelled argument). Let AF = ⟨A, K⟩ be an AF, and ℓ ∈ L (AF) be a Labelling.

• An in-labelled argument is said to be legally in iff all its attackers are labelled out.

• An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.

• An und-labelled argument is said to be legally und iff it does not have an attacker that is labelled in and one of its attackers is not labelled out.

Definition 7 (Reinstatement labelling). Let AF = ⟨A, K⟩ be an AF, and ℓ ∈ L (AF) be a labelling. ℓ is a reinstatement labelling of AF iff it satisfies the following conditions for any a ∈ A:

• For each a ∈ in(ℓ), a is legally in.

• For each a ∈ out(ℓ), a is legally out.

Then using the reinstatement labellings and some specific restrictions, it is possible to define many other labellings corresponding to some extension-based semantics.

AFDivider: an algorithm for AF

Finding all the possible solutions of a semantics for a given AF can be very time consuming. Many AF instances, particularly large, 3 are too hard to be solved in an acceptable amount of time, as shown by the results of the ICCMA argumentation solver competition. 4 Formally, the so-called enumeration problem is defined as follows:

Definition 8 (Enumeration Problem). Given AF = ⟨A, K⟩ and a semantics σ , compute the set σ (AF) corresponding to the AF solutions.

The hardness of this problem is not relative to the current state of the art but rather to the intrinsic theoretical complexity of the semantics that are tackled. 5Enhancing the computational time of enumerating the solutions of an AF has been the object of study of many works, resulting in the elaboration of several recent algorithms such as [START_REF] Alfano | Efficient computation of extensions for dynamic abstract argumentation frameworks: An incremental approach[END_REF][START_REF] Cerutti | Exploiting parallelism for hard problems in abstract argumentation[END_REF][START_REF] Liao | Toward incremental computation of argumentation semantics: A decomposition-based approach[END_REF][START_REF] Alviano | The pyglaf argumentation reasoner[END_REF] (see [START_REF] Charwat | Methods for solving reasoning problems in abstract argumentation -A survey[END_REF] for an overview). During his thesis [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF], Mickaël Lafages addressed this issue with the proposal of an algorithm, the so-called: AFDivider.

The idea that led to his algorithm is that argumentation frameworks constructed from real data should have a particular structure. Indeed, people have themes and goals while arguing. It is thus a reasonable conjecture to say that the AFs obtained from real argumentation are not random and that they have a relatively low density of relations between arguments (it would be very surprising if, in some argumentation, any argument attacks a large part of the other ones).

The AFDivider algorithm takes advantage of this sparsity6 of AF graphs. To do so, it uses methods that have not yet been considered for this purpose (namely clustering methods used in an original way), combined with techniques that have already been applied in other existing algorithms (distributed and parallel methods). Note that this kind of algorithms can be defined since AF semantics are decomposable (i.e. the computation of the results of a given semantics can be built using the results of this same semantics on sub-parts of the initial AF, see [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF]).

The AFDivider algorithm solves the enumeration problem using labelling-based semantics. It has been designed for Dung original semantics: the complete, the stable and the preferred semantics. Given that the grounded semantics can be computed in linear time and that it gives only one labelling, computing it with the AFDivider is unappropriated.

Given an argumentation framework AF = ⟨A, K⟩ and a semantics σ ∈ {complete, stable, preferred}, the AFDivider algorithm, rather than building labellings that cover the whole AF (which could be time consuming), computes the semantics labellings using a distributed and clustering-based method. Here are its four major steps graphically represented in Figure 2: 1. A pretreatment on AF removes "trivial" parts of it using the grounded labelling. • Any clustering method can be used to split the AF.

• Any sound and complete procedure that computes the semantics σ can be used to compute the labellings of the different clusters.

Algorithm 1: AFDivider algorithm. Input: Let AF = ⟨A, K⟩ be an AF and σ be a semantics Result: L σ ∈ 2 L (AF) : the set of the σ -labellings of AF Local variables:

• ℓ ′ gr : the grounded labelling restricted to the arguments labelled in and out • CCSet: the set of connected components of AF hard (AF in which the trivial part has been removed) • ClustSet: the set of cluster structures of af i • L σ (af i): the set of all σ -labellings of af i

1 ℓ ′ gr ← ComputeGroundedLabelling(AF) 2 CCSet ← SplitConnectedComponents(AF , ℓ ′ gr) 3 for all af i ∈ CCSet do in parallel 4 ClustSet ← ComputeClusters(af i) 5 L σ (af i) ← ComputeCompLabs(σ ,ClustSet) 6 L σ ← ∅ 7 if ∄af i ∈ CCSet s.t. L σ (af i) = ∅ then L σ ← {ℓ ′ gr } × ∏ af i ∈CCSet L σ (af i) 8 return L σ Algorithm 2: ComputeCompLabs algorithm.
Input: Let ClustSet be a set of cluster structures for a component af , σ be a semantics Result: L σ ∈ 2 L (af) : the set of the σ -labellings of af Local variables:

• κ j : a cluster structure • L κ j σ : the set of all σ -labellings of κ j • P κ j : the set of configurations corresponding to the σ -labellings of κ j • P: the set of all reunified labelling profiles 1 for all

κ j ∈ ClustSet do in parallel 2 L κ j σ ← ComputeClustLabs(σ , κ j) 3 P κ j ← IdentifyConfigs(L κ j σ , κ j) 4 L σ = ∅ 5 P = ReunifyCompConfigs(κ j ∈ClustSet P κ j ,ClustSet) 6 for all p ∈ P do 7 L σ ← L σ ∪   ∏ ξ ∈p {ℓ|ℓ ∈ ProfileLabellings(ξ , κ j ∈ClustSet L κ j σ)}   8 if σ = pr then L σ ← {ℓ|ℓ ∈ L σ s.t. ∄ℓ ′ ∈ L σ s.t. in (ℓ) ⊂ in (ℓ ′)} 9 return L σ 2.

RAF: a Higher-order Argumentation Framework

Higher-order attacks (that is, possibly targeting attacks as well as arguments) has been introduced in [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF] then developed in several papers among which one can cite the AFRA (Argumentation Framework with Recursive Attacks) approach described in [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF] and the RAF (Recursive Argumentation Framework) approach introduced in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF]. RAF and AFRA differ upon the way these attacks are handled despite the fact that there is no difference in the structure of the graph. This paper is concerned by the RAF approach. Note that AFRA and RAF give the same results in terms of semantics even if some intermediate results are different (see in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] for a comparison between these approaches).

Definition 9. (Recursive argumentation framework -RAF). A Recursive Argumentation Framework (RAF) RAF = ⟨A, K, s,t⟩ is a quadruple where A and K are (possibly infinite) disjoint sets respectively representing arguments and attack names, and where s : K → A and t : K → A ∪ K are functions respectively mapping each attack name to its source and to its target. Figure 5 shows an example of a RAF. There are two different possibilities for defining the semantics of a RAF: either by selecting some specific structures (a pair composed of a set of arguments and a set of attacks) [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] or by using labellings [START_REF] Doutre | Argumentation Frameworks with Higher-Order Attacks: Labellings and Complexity[END_REF]. 7

RAF structure-based semantics

What differs from AF to RAF is that in a RAF an attack can have an attack for target. As a consequence, an attack is not always "valid". In order to express this fact, a RAF "structure-based semantic", that is, a function that defines the solutions of a RAF produces structures: a couple whose first element is a set of arguments and the second, a set of attacks. The idea behind the notion of structure is that when presented together, the elements of the structure (i.e. arguments plus attacks) win the argumentation.

A structure is thus defined as follows:

Definition 10 (Structure). A pair U = ⟨S, Q⟩ is said to be a structure of some RAF = ⟨A, K, s,t⟩ if it satisfies: S ⊆ A and Q ⊆ K. Notice that by x ∈ U we mean: x ∈ S ∪ Q.

Intuitively, the set S represents the set of "acceptable arguments" w.r.t. the structure U, while Q represents the set of "valid attacks" w.r.t. U. Any attack that does not belong to Q is understood as non-valid and, in this sense, it cannot defeat its target.

Definition 11 (Defeat and Inhibition in RAF). Let U = ⟨S, Q⟩ be a structure. The set of all arguments defeated by U, denoted RAF-De f (U), is defined as follows:

RAF-De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}
The set of all attacks inhibited by U, denoted RAF-Inh(U), is defined as follows:

RAF-Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β) ∈ S and t(β) = α}
The counterpart of defeat/inhibition is the notion of acceptance: Definition 12 (RAF Acceptability). An element x ∈ (A ∪ K) is said to be acceptable w.r.t. some structure U iff every attack α ∈ K with t(α) = x satisfies one of the two following conditions:

• s(α) ∈ RAF-De f (U) • α ∈ RAF-Inh(U)
By RAF-Acc(U) we denote the set containing all acceptable arguments and attacks with respect to U. For any pair of structures U = ⟨S, Q⟩ and

U ′ = ⟨S ′ , Q ′ ⟩, we write U ′ ⊑ U ′ iff (S ∪ Q) ⊆ (S ′ ∪ Q ′)
and we write U ⊑ ar U ′ iff S ⊆ S ′ . As usual, we say that a structure U is ⊑-maximal (resp. ⊑ ar -maximal) iff every U ′ that satisfies

U ⊑ U ′ (resp. U ⊑ ar U ′) also satisfies U ′ ⊑ U (resp. U ′ ⊑ ar U).
Inspired by Dung's AF semantics, the first RAF structure-based semantics, that have been defined in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF], are the following ones: Definition 13 (RAF structure-based semantics). Let U = ⟨S, Q⟩ be a structure over some RAF RAF = ⟨A, K, s,t⟩. U is said to be:

1. RAF-conflict-free iff S ∩ RAF-De f (U) = ∅ and Q ∩ RAF-Inh(U) = ∅.
2. RAF-admissible iff it is RAF-conflict-free and (S ∪ Q) ⊆ RAF-Acc(U).

3. RAF-complete iff it is RAF-conflict-free and (S ∪ Q) = RAF-Acc(U).

4. RAF-grounded iff it is a ⊑-minimal RAF-complete structure.

5. RAF-preferred iff it is a ⊑-maximal RAF-admissible structure.

RAF-stable iff S

= A \ RAF-De f (U) and Q = K \ RAF-Inh(U).
Example 1. Let consider the RAF shown in Figure 3. The semantics mentioned in Definition 13 produce a singleton containing a unique structure that is the grounded, complete, preferred and stable structure: ⟨{b, c ′ , e}, {β , δ , γ, η, θ }⟩.

In [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF], the reader will find several interesting properties of these structure-based semantics (existence, cardinality for instance).

RAF labellings

As for AF, a second way for defining semantics exists: the use of labellings, see [START_REF] Doutre | Argumentation Frameworks with Higher-Order Attacks: Labellings and Complexity[END_REF]. 8Definition 14. (RAF labelling). Let RAF = ⟨A, K, s,t⟩ be a recursive argumentation framework. A RAF labelling is a total function L : A ∪ K → {in , out , und }. We define in (L) (resp. out (L), und (L)) as the set {x ∈ A ∪ K|L(x) = in (resp. out , und)}. Definition 15. (Reinstatement RAF labelling). Let RAF = ⟨A, K, s,t⟩ be a recursive argumentation framework and L be a RAF labelling.

L is a reinstatement RAF labelling iff it satisfies: ∀x ∈ (A ∪ K),

• (L(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x, L(α) = in and L(s(α)) = in) • (L(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, L(α) = out or L(s(α)) = out)
An equivalent definition of reinstatement RAF labelling can be made, as for AF, using the notion of "legally labelled argument". An in -labelled element is said to be legally in iff all its attackers or their involved attacks are labelled out . An out -labelled element is said to be legally out iff at least one of its attackers and the involved attacks are labelled in . An und -labelled element is said to be legally und iff it does not have any attacker and its involved attack that are labelled in and one of its attackers and the involved attack are not labelled out . Formally, "valid labellings" (notion equivalent to reinstatement RAF labellings) are defined as follows:

Definition 16 (Legally labelled elements, valid RAF labelling). Let RAF = ⟨A, K, s,t⟩ be a recursive argumentation framework and L be a RAF labelling over RAF .

Let x ∈ A ∪ K be an element of RAF . x is said to be legally labelled in L iff it is a reinstatement labelling and x ∈ und(L) iff ((∄α ∈ K s.t. t(α) = x, L(α) = in and L(s(α)) = in) and (∃α ∈ K s.t. t(α) = x, L(α) ̸ = out and L(s(α)) ̸ = out)). L is said to be a valid RAF labelling if all its elements are legally labelled.

Regarding the RAF of Figure 5, Example 2 shows its grounded labelling, Example 20 gives one of its complete labellings.

As for AF, there exists a one-to-one mapping between RAF labellings and structure-based semantics.

Decomposability of RAF and RAF semantics

In order to define an algorithm able to answer the enumeration problem in the case of a RAF, similarly to the one given for an AF (AFDivider [START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF]), we must be able to split a RAF. Based on the notion introduced in [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF], any AF can be split into several sub-frameworks by simply ignoring some attacks (that are always valid). Nevertheless, it is not the case for RAF. Attacks, as arguments, can be labelled in , out or und . As a consequence, we cannot just ignore attacks to split a RAF. So, if we do not suppress attacks while splitting RAFs, we will have attacks without targets or without sources. Thus the result of such a split does not produce a RAF but a partial RAF. Definition 17. (Partial RAF). Let RAF = ⟨A, K, s,t⟩ be a RAF. A partial RAF RAF = Ã, K, s, t, s,t of RAF is a tuple where à ⊆ A (resp. K ⊆ K) is a set representing arguments (resp. attacks) and:

• s : K → {true, false} is a boolean function that indicates whether or not an attack in K has its source in à defined as following:

∀α ∈ K, s(α) = true if s(α) ∈ Ã otherwise false

• t : K → {true, false} is a boolean function that indicates whether or not an attack in K has its target in à ∪

K ∀α ∈ K, t(α) = true if t(α) ∈ Ã ∪ K otherwise false
Then, using the notion of partial RAF, a partition of a RAF can be defined:

Definition 18. (RAF partition). Let RAF = ⟨A, K, s,t⟩ be a RAF. Let Ω = {ω 1 , ..., ω n } be a partition 9 of (A ∪ K). A RAF partition of RAF is a set of partial RAFs { RAF 1 , ..., RAF n } s.t.:
∀i, RAF i = Ãi , Ki , si , ti , s,t with:

• Ãi = ω i ∩ A and Ki = ω i ∩ K
• si : Ki → {true, false} is a boolean function that indicates whether or not an attack in Ki has its source in Ãi defined as following:

∀α ∈ Ki , si (α) = true if s(α) ∈ Ãi otherwise false
• ti : Ki → {true, false} is a boolean function that indicates whether or not an attack in Ki has its target in Ãi

∪ Ki ∀α ∈ Ki , ti (α) = true if t(α) ∈ Ãi ∪ Ki otherwise false
Considering a partial RAF implies to consider also its "inputs" and their labellings (note that several partial RAF with input can be built from a given partial RAF since several labellings can exist for its inputs): Definition 19. (Partial RAF with input). Let RAF = ⟨A, K, s,t⟩ be a RAF and RAF = ⟨ Ã, K, s, t, s, t⟩ be a partial RAF of RAF . The input I of RAF is a tuple S inp , Q inp where:

• S inp = {s(α) ∈ (A \ Ã)|α ∈ K and t(α) ∈ (Ã ∪ K)} • Q inp = {α ∈ (K \ K)|t(α) ∈ (Ã ∪ K)}
The tuple RAF , I, L inp is called a partial RAF with input, where L inp is a labelling of I.

Then a standard RAF is the RAF that can be built from a partial RAF with inputs in order to simulate what happens if we take into account the labellings of these inputs (for instance, see in Figure 12 the standard RAF corresponding to the partial RAF given in Figure 9(b)):

Definition 20 (Standard RAF). Let RAF = ⟨A, K, s,t⟩ be a RAF. Let RAF , I, L inp be a partial RAF with input s.t. RAF = Ã, K, s, t, s,t is a partial RAF of RAF . The standard RAF w.r.t. RAF , I, L inp is a RAF defined as RAF s = ⟨A s , K s , s s ,t s ⟩ where:

• A s = Ã ∪ S inp ∪ {a υ , a ρ , a ζ } • K s = K ∪ Q inp ∪ N ∪ {α θ }, with: -N = {α x |x ∈ (Und ∪ Out)} -Out = out(L inp) -Und = und(L inp)
And where s s : K s → A s and t s : K s → (A s ∪ K s) are functions respectively mapping each attack to its source and to its target and s.t.:

• ∀α ∈ (K ∪ Q inp), s s (α) = s(α) • ∀α ∈ Q inp ∪ (K \ {α|α ∈ K s.t. t(α) is false}), t s (α) = t(α) • ∀α ∈ {α|α ∈ K s.t. t(α) is false}, t s (α) = a ζ • ∀α x ∈ {α x ∈ N|x ∈ Out}, s s (α x) = a ρ • ∀α x ∈ {α x ∈ N|x ∈ Und}, s s (α x) = a υ • ∀α x ∈ N, t s (α x) = x • s s (α θ) = a υ • t s (α θ) = a υ
The intuition behind the new elements added in the standard RAF is the following:

• a υ is the argument that will serve to label und an element of the RAF input.

• α θ is the attack whose source and target is a υ , making a υ a self attacking argument and thus an argument that will be labelled und .

• a ρ is the argument that will serve to label out an element of the RAF input.

• N is the set of attacks that will link a υ and a ρ to all elements of the RAF input that should be labelled out or und .

• a ζ is an argument that will serve as the target of all attacks of the partial RAF whose target does not belong to the partial RAF.

Note that there is a one-to-one correspondence between a partial RAF with input and its standard RAF (and so potentially several standard RAF for a given partial RAF).

The canonical local function associates any partial RAF with input with a set of labellings built using its standard RAF: The canonical local function

F ra f σ is a local function s.t. F ra f σ (RAF , I, L inp) = {L ↓ ⟨ Ã∪ K⟩ |L ∈ L σ (RAF s)} (RAF s being the standard RAF associated with RAF).
The notion of semantics decomposability is thus as follows:

Definition 22. (Semantics decomposability).

A semantics σ is full decomposable iff there is a local function F ra f σ s.t., for any RAF RAF = ⟨A, K, s,t⟩ and any partition { RAF 1 , ..., RAF n } of RAF , the set of all possible labellings under the semantics σ of RAF , denoted by L σ (RAF), satisfies:

L σ (RAF) = {L 1 ∪ ... ∪ L n |∀i ∈ {1, ..., n}, L i ∈ F ra f σ (RAF i , I i , L inp i)} with RAF i = Ãi , Ki , si , ti , s,t and I i = S inp i , Q inp i
and L inp i defined as following:

• S inp i = {s(α) / ∈ Ãi |∃α ∈ K s.t. t(α) ∈ (Ãi ∪ Ki)} • Q inp i = {α / ∈ Ki |∃α ∈ K s.t. t(α) ∈ (Ãi ∪ Ki)} • L inp i = (j∈{1,...,n} s.t. j̸ =i L j) ↓ S inp i ,Q inp i 10
A semantics σ is said to be top-down (resp. bottom-up) decomposable iff:

L σ (RAF) ⊆ (resp. ⊇){L 1 ∪ ... ∪ L n |∀i ∈ {1, ..., n}, L i ∈ F ra f σ (RAF i , I i , L inp i)}
In [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF], a specific RAF partition selector has been defined that produces a partition respecting the strong connected components (SCC) of a RAF: 11 Definition 23. (USCC RAF partition selector). Let RAF be a RAF. Let S ra f -USCC be the RAF partition selector s.t.:

S ra f -USCC (RAF) = {Ω| Ω is a partition of RAF and ∀S ∈ SCCS ra f (RAF), ∃ω i ∈ Ω s.t. ω i ∩ S ̸ = ∅ =⇒ S ⊆ ω i } Let S ⊆ A ∪ K s.t. S ∈ S ra f -USCC (RAF), S is called an "USCC ra f ".
Then, in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF], the following proposition has been proven: Proposition 2. Let RAF = ⟨A, K, s,t⟩ be any RAF. The semantics properties in Table 3 hold. " " (resp. "× × ×") means that the semantics on the column has (resp. does not have) the property on the row.

RAF semantics complete grounded preferred stable

Table 3: RAF Semantics decomposability properties

Some Preliminary Definitions

Before explaining our algorithm, some additional definitions are needed. First of all, let define the notions of "nondirected RAF-walk" and "non-directed RAF-path".

Definition 24 (Directed and Non-directed RAF-walk and RAF-path). Let RAF = ⟨A, K, s,t⟩ be a RAF and e 1 , e n ∈ (A ∪ K) be elements of RAF . A [non-]directed RAF-walk is a sequence (e 1 , ..., e n) with n ∈ N * s.t.: 12

• ∀i ∈ {1, ..., n}, e i ∈ (A ∪ K) 10 ↓ is the classical generic operator of restriction that allows the selection of a sub-part of a given "object" wrt to a given set of "elements". Here for instance, it produces the sub-part of the labellings concerning only the elements belonging to S inp i ∪ Q inp i . 11 See in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] the details about the method for defining the SCC of a RAF. 12 The definition for the non-directed case implies additional constraints given between brackets.

• If n > 1, ∀i ∈ {1, ..., n -1}, e i ∈ A =⇒ e i+1 ∈ K and e i = t(e i+1)) [or (e i = s(e i+1)] A non-directed RAF-path is a non-directed RAF-walk in which all the elements are distinct.

• If n > 1, ∀i ∈ {1, ..., n -1}, e i ∈ K =⇒ t(e i) =
From these notions we can define the notions of "connected" and "disconnected" RAFs:

Definition 25 (Connected and disconnected RAF). Let RAF = ⟨A, K, s,t⟩ be a RAF. RAF is a connected RAF if, for all distinct elements x i ∈ A ∪ K and x j ∈ A ∪ K, there exists a non-directed RAF-path p in RAF s.t. x i is the first element of p and x j is the last element of p. Otherwise the RAF is disconnected. Now, let extend these notions for partial RAFs. A non-directed partial-RAF-walk is a sequence of arguments and interactions respecting some constraints: Definition 26. (Non-directed Partial-RAF-walk and Partial-RAF-path) Let RAF = Ã, K, s, t, s,t be a partial RAF and e 1 , e n ∈ (Ã ∪ K) be elements of RAF . A non-directed partial-RAF-walk is a sequence (e 1 , ..., e n) with n ∈ N * and ∀i, e i ∈ (A ∪ K) s.t.:

• If n > 1, ∀i ∈ {1, ..., n-1}, e i ∈ A =⇒ e i+1 ∈ K and (s(e i+1) = true and e i = s(e i+1) or (t(e i+1) = true and e i = t(e i+1)))

• If n > 1, ∀i ∈ {1, ..., n-1}, e i ∈ K =⇒ (e i+1 ∈ A and ((s(e i) = true and s(e i) = e i+1) or (t(e i) = true and t(e i) = e i+1))) or (e i+1 ∈ K and ((t(e i+1) = true and e i = t(e i+1)) or (t(e i) = true and t(e i) = e i+1)))

A non-directed partial-RAF-path is a non-directed partial-RAF-walk in which all the elements are distinct.

Definition 27. (Connected and disconnected partial RAF). Let RAF = Ã, K, s, t, s,t be a partial RAF. RAF is a connected partial RAF if, for all distinct elements x i ∈ Ã ∪ K and x j ∈ Ã ∪ K, there exists a non-directed partial-RAFpath p in RAF s.t. x i is the first element of p and x j is the last element of p. Otherwise the partial RAF is disconnected.

As for AF, let define the operator ↓ for partial RAFs:

Definition 28 (Partial RAF restriction ↓). Let RAF = ⟨A, K, s,t⟩ be a RAF, RAF = Ã1 , K1 , s1 , t1 , s,t be a partial RAF of RAF and S ⊆ Ã1 ∪ K1 be a set of elements. The restriction of RAF to S, denoted RAF ↓ S , is the partial RAF of RAF defined as follows:

RAF ↓ S = Ã2 , K2 , s2 , t2 , s,t
where:

• Ã2 = Ã1 ∩ S and K2 = K1 ∩ S • s2 : K2 → {true, false} s.t. ∀α ∈ K2 , s2 (α) = true if s(α) ∈ Ã2 otherwise false • t2 : K2 → {true, false} s.t. ∀α ∈ K2 , t2 (α) = true if t(α) ∈ Ã2 ∪ K2 otherwise false
Finally, with the help of ↓ operator, we can define the notion of "Partial RAF Connected Component":

Definition 29. (Partial RAF Connected Component). Let RAF = Ã, K, s, t, s,t be a partial RAF. Let S ⊆ Ã ∪ K be a set of elements. The partial RAF RAF ↓ S is a connected component of RAF iff:
• RAF ↓ S is connected.

• There exists no set S ′ ⊆ Ã ∪ K s.t. S ⊂ S ′ and RAF ↓ S ′ is connected.

Note: By sake of brevity, we say "connected component" instead of "partial RAF Connected Component" when there is no ambiguity.

Figure 9 shows an example of several (here 4) partial RAF connected components issued from the partial RAF described in Figure 7.

A Generic Algorithm for RAF: Presentation by Example

The RAFDivider algorithm we propose in the following is an adaptation of the AFDivider algorithm proposed in [START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF]. As for AFDivider , it addresses the enumeration problem for the complete, stable and preferred semantics . It follows the same four major steps (see Figure 4):

1. A pretreatment on RAF removes "trivial" parts of it. Before giving the formal definition of the algorithm, we describe its wanted behaviour on a running example.

Pretreatment: Removing the Trivial Part

The first step is to identify the trivial part to remove. As for AF, it is built using the in and out elements produced by the grounded semantics. In the case of an AF, these elements are all removed. However, for a RAF, this complete removal is not possible.

Example 2. Consider RAF = ⟨A, K, s,t⟩, the RAF illustrated in Figure 5. Its grounded structure labelling is the following one:

L gr =                     
(a, und), (b, und), (c, und), (d, und), (e, in), (f , in), (g, out), (h, und), (i, und), (j, und), (k, und), (l, und), (m, und), (n, und), (o, und)

(α, in), (β , in), (γ, in), (δ , in), (ε, out), (ζ , in), (η, in), (θ , in), (ι, in),
(κ, in), (λ , und), (µ, und), (ν, in), (ξ , und), (o, und), (π, in), (ρ, in), (τ, und), We cannot remove all elements that are not labelled und as it was done in AFDivider algorithm. Otherwise, the resultant partial RAF would not capture the initial relations between the elements (for instance, the relation between the arguments a and b is expressed by the attack α labelled in, so the removal of α is not possible). We would like all elements labelled out, all arguments labelled in and all attacks labelled in whose source is labelled out or in to be removed.

(υ, in), (φ , in), (χ, in), (ψ, in)                     
This leads to the following definition of the RAF trivial part: Definition 30. (RAF trivial part). Let RAF = ⟨A, K, s,t⟩ be a RAF and let L gr be the grounded structure labelling of RAF . The "trivial part" of RAF is the structure of RAF , denoted by U triv = ⟨S triv , Q triv ⟩, with

U triv = a ∈ A|a / ∈ und (L gr) , α ∈ K|α ∈ out (L gr) or (α ∈ in (L gr) and s(α) / ∈ und (L gr))
Example 3. Following Example 2, the trivial part of RAF is:

U triv = ⟨{e, f , g} , {ε, ζ , η, θ }⟩
Then the partial hard RAF and partial hard RAF with input are defined as follows:

Definition 31. (Partial hard RAF).

Let RAF = ⟨A, K, s,t⟩ be a RAF and let U triv = ⟨S triv , Q triv ⟩ be the RAF trivial part of RAF . The partial hard RAF of RAF , denoted by RAF hard , is defined as

RAF hard = Ã, K, s, t, s h ,t h with à = A \ S triv , K = K \ Q triv and s h : K → A and ∀α ∈ K, s h (α) = s(α), t h : K → (A ∪ K) and ∀α ∈ K,t h (α) = t(α) s : K → {true, false} s.t. ∀α ∈ K, s(α) = true if s h (α) ∈ à otherwise false t : K → {true, false} s.t. ∀α ∈ K, t(α) = true if t h (α) ∈ à ∪ K otherwise false
Although a partial hard RAF is a partial RAF, we want to consider only the input labelling that coincides with the grounded labelling of the initial RAF. This leads to the following definition of "partial hard RAF with input": Definition 32 (Partial hard RAF with input). Let RAF = ⟨A, K, s,t⟩ be a RAF, L gr be the grounded structure labelling of RAF , U triv be the trivial part of RAF . Let RAF hard = Ã, K, s, t, s h ,t h be the partial hard RAF of RAF taking into account U triv . The "partial hard RAF with input" corresponding to RAF is the partial RAF with input RAF hard , I = ⟨S inp , Q inp ⟩, L inp , where

• S inp = {s(α) ∈ (A \ Ã)|α ∈ K s.t. s(α) = false} and Q inp = ∅ 13
• L inp is astructure labelling of the elements in S inp and Q inp st:

∀x ∈ S inp ∪ Q inp , L inp (x) = L gr (x)
The partial hard RAF with input is unique since the labelling of its inputs is unique. Example 4. Figure 7 illustrates RAF hard , the partial hard RAF corresponding to the RAF shown in Figure 5. In this partial hard RAF, 4 attacks have no source (τ, µ, λ and ξ). Figure 8 illustrates the partial hard RAF with input corresponding to RAF : ⟨ RAF hard , I = { f , g}, L inp = {(f , in), (g, out)}⟩. Notice that the arguments f and g are the input arguments of RAF hard ; they do not belong to RAF hard . Nevertheless, considering these inputs, any attack in the partial hard RAF with input has now a source.

Note that taking into account the inputs is not the guarantee to transform the partial hard RAF with input into a RAF. Indeed, let consider the RAF defined by A = {a, b, c}, K = {α, β , γ}, s = {(α, b), (β , c), (γ, c)}, t = {(α, a), (β , a), (γ, c)}; in this case, the grounded labelling is: {(a, out), (b, in), (c, und), (α, in), (β , in), (γ, in)}; and so the trivial part of the RAF is U triv = ⟨{a, b} , {α}⟩ and the partial hard RAF only contains c, γ and β (but not the target of β).

For each input element, several cases have to be considered and this can be very time consuming. In order to avoid this cost for elements that are in the "trivial part", we simply cut that part from the RAF and, only after that, look for clusters. So, given a RAF RAF = ⟨A, K, s,t⟩, the RAFDivider algorithm starts by computing L gr , the grounded labelling of RAF and U triv the trivial part corresponding to it. Once the trivial part has been computed, the algorithm removes it from RAF to produce RAF hard the partial hard RAF of RAF , as well as RAF hard input elements I with their labelling issued from L gr . Then, if possible, RAF hard is split into several connected components (see Definition 27), producing the set CCSet. If there is only one connected component we have so: CCSet = raf 4 with raf 4 = RAF hard . CCSet is a set of partial hard RAFs (with input). Example 5. Figure 9 illustrates the four connected components of RAF hard , the partial hard RAF illustrated in Figure 7. The CCSet will then contain these four partial RAF.

Identifying Clusters

For each connected component, a clustering can be made using any clustering method partitioning the partial RAF (even a random partition method). See in Section 6 such a method that returns the set of clusters identified, that is a set of partial RAFs.

Example 6. Following Example 5, let consider that the chosen clustering method produces only one cluster for components 1, 3 and 4. Let raf 2 = Ã2 , K2 , s2 , t2 , s h2 ,t h2 be the fourth component and let the following partition be the one produced by the chosen clustering method:

Ω = {ω 1 = {h, i, m, ι, κ, λ , ρ, ψ} , ω 2 = {k, l, ξ , o, π}}
Figure 10 illustrates the partial RAFs corresponding to the partitioning of raf 2 , that is raf 2 ↓ ω 1 14 (also denoted by raf 2.1) and raf 2 ↓ ω 2 (also denoted by raf 2.2).

Note that, following this clustering, m and ψ become inputs for raf 2.2 . Note also that this clustering must also take into account attacks and not only arguments (as it is the case for the AF divider). See in Section 6 an example of such a clustering.

f λ i κ h m ρ ι ψ (a) Cluster 1: raf 2.1 = raf 2 ↓ ω 1 f m k l o π ξ ψ (b) Cluster 2: raf 2.2 = raf 2 ↓ ω 2
Figure 10: Clusters of raf 2 (the inputs m and ψ for raf 2.2 are given in blue since their labellings are unknown at this time; whereas f is in green since its labelling is known: following L gr , f must be in)

Computing the Labellings

The next step is the computation of the component labellings in a distributed way relying on the clustering made. The σ -labellings of each cluster are computed simultaneously. Unlike the case of connected components, the partial RAF corresponding to the computed clusters may admit several input labellings. In order to compute all the possible σ -labellings of a given cluster, every possible case concerning its input elements has to be considered.

Note: In the worst case the number of input labellings to consider for an partial RAF is 3 n , with n being the number of its input element. When choosing a clustering, there is thus a threshold between the size of the clusters and the number of attack cuts to consider as it effects the overall solving time. We call "context" a particular input labelling of a partial RAF: 15Definition 33. (Context). Let RAF = Ã, K, s, t, s,t be a partial RAF and I = S inp , Q inp be the input of RAF . A context µ of a partial RAF is a labelling of I. Notice that the labellings of raf 4 have to be computed for only one context (that is L inp (g) = out) as this partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for building the standard RAF. Notice that the labellings of raf 3 have to be computed for only one context (that is L inp (f) = in) as this partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for building the standard RAF.

Example 9. Let consider the complete semantics. Following Example 8, the complete labellings of the components 4, 1 and 3 are as follows. Notice that the elements added while constructing their corresponding standard RAFs have been removed: 16 L co (raf 4) = L 4.1 = (n, und), (o, und), (τ, und), (υ, in), (φ , in), (χ, in)

L co (raf 1) =                            L 1.1 =    (a,
                              L co (raf 3) =          L 3.1 = (j, in), (µ, out), (ν, in) , L 3.2 = (j, out), (µ, in), (ν, in) , L 3.3 = (j, und), (µ, und), (ν, in)         
Example 10. Following Example 6, the component 2 has two clusters in it. Figure 14 illustrates the only standard RAF to compute for raf 2.1 .

Example 11. Let consider the complete semantics. Following Example 10, the complete labellings of the first cluster of component 2 are as follows. Notice that the elements added while constructing their corresponding standard RAFs have been removed:

L co (raf 2.1) =                            L 2.1.1 =    (i, out), (h, out), (m, in), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in)    , L 2.1.2 =    (i, in), (h, in), (m, out), (ι, in), (κ, in), (λ , out), (ρ, in), (ψ, in)    , L 2.1.3 =    (i, und), (h, und), (m, und), (ι, in), (κ, in), (λ , und), (ρ, in), (ψ, in)                              
• Second optimization: If an input attack is unattacked (a so-called valid attack) in the initial RAF, then this attack will always be labelled in following all semantics we are interested in.

Example 12. The attack Ψ, being an input of raf 2.2 and being a valid one in RAF or in RAF hard , it is useless to consider contexts where Ψ is not labelled in. 16 As an example the set of labellings of the unique standard RAF of component raf 4 is the following: Notice that the labellings of raf 2.1 have to be computed for only one context (that is L inp (f) = in) as this partial RAF has no input element that does not belong to the trivial part. In yellow, the additional elements for building the standard RAF.

      (g,
Those restrictions over possible contexts may decrease a lot the number of cases to consider. As an illustration, consider the following example:

Example 13. Example 7 gives the list of all possible contexts (even the useless ones) of raf 2.2 . There are 27 in total. Indeed, as there are three input elements we have 3 3 contexts. Now, with the two restrictions mentioned above, this number drops to three. Only the first three contexts have to be kept (those with f and ψ labelled with in):

-µ 2.2.1 = {(m, in), (f , in), (ψ, in)} -µ 2.2.2 = {(m, out), (f , in), (ψ, in)} -µ 2.2.3 = {(m, und), (f , in), (ψ, in)}
The standard RAFs corresponding to those three contexts are illustrated in Figure 15.

The labellings corresponding to raf 2.2 are thus as follows:17

L co (raf 2.2) =                              L 2.2.1 = (k, out), (l,
                            
• Third optimization: As it cannot be illustrated with the running example, let consider that the attack Ψ is not always valid in RAF hard . As a consequence the first two optimizations would not allow to reduce the number of contexts of raf Figure 15: Standard RAFs of raf 2.2 . In yellow, the additional elements for building these standard RAFs.

-

µ 1 = {(m, in), (Ψ, in), (f , in)} -µ 2 = {(m, in), (Ψ, out), (f , in)} -µ 3 = {(m, in), (Ψ, und), (f , in)} -µ 4 = {(m, out), (Ψ, in), (f , in)} -µ 5 = {(m, out), (Ψ, out), (f , in)} -µ 6 = {(m, out), (Ψ, und), (f , in)} -µ 7 = {(m, und), (Ψ, in), (f , in)} -µ 8 = {(m, und), (Ψ, out), (f , in)} -µ 9 = {(m, und), (Ψ, und), (f , in)}
The 9 standard RAF induced by these contexts are illustrated in Figure 16, 17 and 18.

f m k l o π ξ ψ a ρ a υ α θ a ζ Figure 16: L inp (ψ) = in and L inp (m) = in
However, we can observe that the labelling computation can be reduced to three cases. Indeed there are:

-One context where the attack relation is effective, corresponding to µ 1 , that is the target of Ψ must be labelled out .

-Five contexts where the attack relation has no effect, corresponding to µ 2 , µ 4 , µ 5 , µ 6 and µ 8 (Ψ or m is labelled out).

-Three contexts where the attack relation prevents the target of Ψ from being labelled in , corresponding to µ 3 , µ 7 , µ 9 .

For each context of same type the partial RAF labellings generated will be thus the same. As a consequence, the labellings of the partial RAF can be computed considering only one context of each type.

Example 14. As an illustration:

-For µ ∈ {µ 2 , µ 4 , µ 5 , µ 6 , µ 8 }, we have:

L µ(raf 2.2) co = (k, out), (l, in), (o, out), (π, in), (ξ , in)
-For µ ∈ {µ 3 , µ 7 , µ 9 }, we have: -For µ 1 , we have:

L µ(raf 2.2) co =    (k,
L µ(raf 2.2) co =         
(k, in), (l, out), (o, in), (π, in), (ξ , out) , (k, out), (l, in), (o, in), (π, in), (ξ , out) , (k, und), (l, und), (o, in), (π, in), (ξ , out)

        
Notice that the union of those three sets coincide with the labellings computed in Example 13.

The following proposition then holds: 18Proposition 3. Let σ be a semantics, RAF = Ã, K, s, t, s,t be a partial RAF, I = S inp , Q inp be the input of RAF and let α ∈ Q inp s.t. s(α) ∈ S inp . Let µ 1 , µ 2 be contexts of RAF s.t.:

1. ∀x ∈ (S inp ∪ Q inp) \ {α, s(α)} , µ 1 (x) = µ 2 (x)
2. and

-either (µ 1 (α) = in and µ 1 (s(α)) = in) and (µ 2 (α) = in and µ 2 (s(α)) = in) -or (µ 1 (α) = out or µ 1 (s(α)) = out) and (µ 2 (α) = out or µ 2 (s(α)) = out) -or [(µ 1 (α) = und or µ 1 (s(α)) = und) and µ 1 (α) ̸ = out and µ 1 (s(α)) ̸ = out] and [(µ 2 (α) = und or µ 2 (s(α)) = und) and µ 2 (α) ̸ = out and µ 2 (s(α)) ̸ = out]
The following property holds:

L µ 1 (RAF) σ = L µ 2 (RAF) σ
Following Proposition 3, only three cases per attack relation (whether the attack element itself and/or an attack source) has to be consider to compute the labellings of any partial RAF.

Moreover, in order to prepare the reunification of all these labellings, we must also identify the labelling "configurations" of each partial RAF belonging to a given partition. These configurations are the labellings of the inputs of this partial RAF and of any other input in this partition that can impact this partial RAF. So these configurations are built using the contexts of each cluster of the partition.

Definition 35 (Configuration ξ). Let σ be a semantics and RAF = Ã, K, s, t, s,t be a partial RAF. Let Ω = {ω 1 , ..., ω n } of (Ã∪ K) and raf 1 , ..., raf n be the partition of RAF corresponding to Ω s.t. for all i ∈ {1, ..., n}, raf i = Ãi , Ki , si , ti , s,t and

I i = S inp i , Q inp i is the input of raf i . Let B = B A = n 1 S inp i , B K = n 1 Q inp i
be the structure corresponding the union of all input elements following the partition Ω.

Let raf i ∈ raf 1 , ..., raf n be a partial RAF. Let µ be a context of raf i , and Example 16. Following Example 13, the following labellings have the same configuration: is:

L ∈ L µ(raf i) σ be a computed labelling of raf i under µ. Given L, a configuration is astructure labelling over S inp i ∪ (Ãi ∩ B A) and Q inp i ∪ (Ki ∩ B K) s.t.: ξ (x) = L(x) if x ∈ ω i µ(x) if
• L 2.2.2 = {(k, in), (l, out), (o, in), (π, in), (ξ , out)} • L 2.2.3 = {(k, out), (l, in), (o, in), (π, in), (ξ , out)} • L 2.2.4 = {(k, und), (l, und), (o, in), (π, in), (ξ , out)} Which is: ξ 2.2.1 = {(m, in), (f , in), (ψ, in)}
The configuration corresponding to these 3 labellings is unique, since the label of f must respect the grounded labelling (so the other configurations in which f is labelled either with out or with und are not possible).

Definition 36 (Distinct configuration set). Let σ be a semantics and RAF = Ã, K, s, t, s,t be a partial RAF. Let L σ (RAF) be the set of labellings of RAF . We denote by "ξ RAF " the set of distinct configurations corresponding to L σ (RAF).

Example 17. Following examples 11 and 13, we have:

ξ raf 2.1 =          ξ 2.1.1 = {(m, in), (f , in), (ψ, in)} ξ 2.1.2 = {(m, out), (f , in), (ψ, in)} ξ 2.1.3 = {(m, und), (f , in), (ψ, in)}         
With:

• ξ 2.1.1 corresponding to L 2.1.1 • ξ 2.1.2 corresponding to L 2.1.2 • ξ 2.1.3 corresponding to L 2.1.3
And:

ξ raf 2.2 =          ξ 2.2.1 = {(m, in), (f , in), (ψ, in)} , ξ 2.2.2 = {(m, out), (f , in), (ψ, in)} , ξ 2.2.3 = {(m, und), (f , in), (ψ, in)}         
With:

• ξ 2.2.1 corresponding to L 2.2.2 , L 2.2.3 and L 2.2.4 • ξ 2.2.2 corresponding to L 2.2.1 • ξ 2.2.3 corresponding to L 2.2.5 and L 2.2.6
Notice that the fact that ξ raf 2.1 coincide with ξ raf 2.2 is a particular case. As an example, if raf 2.1 had an input element that is not an input of raf 2.2 , the sets would contain different configurations.

Reunifying the Results

The labelling reunifying process is made in two steps: first, the reunification of the component labellings (i.e. the reunification of their cluster labellings together) and second, the reunification of the whole RAF labellings (i.e. the reunification of its component labellings together).

Component labelling reunification

To go further in the explanation of the RAFDivider algorithm the notion of "reunified labelling profile" is needed:

Definition 37 (Reunified labelling profiles). Let σ be a semantics and RAF = Ã, K, s, t, s,t be a partial RAF. Let Ω = {ω 1 , ..., ω n } of (Ã ∪ K) and raf 1 , ..., raf n the partition of RAF corresponding to Ω s.t. for all i ∈ {1, ..., n}, raf i = Ãi , Ki , si , ti , s,t and

I i = S inp i , Q inp i is the input of raf i . Let B = B A = n 1 S inp i , B K = n 1 Q inp i
be the structure corresponding to the union of all input elements following the partition Ω.

Let {L σ (raf 1), ..., L σ (raf n)} be the set of the labelling sets of each partial RAF of RAF and {ξ raf 1 , ..., ξ raf n } be the set of their corresponding distinct configuration sets. Let p = {ξ 1 , ..., ξ n } be a set of configurations s.t., for all i ∈ {1, ..., n}, ξ i ∈ ξ raf i . p is a reunified labelling profile (or equivalently, the configurations ξ 1 , ..., ξ n are said to be compatible together) iff:

∀x ∈ B, ∀(ξ j , ξ k) ∈ {ξ i |ξ i ∈ p s.t. x ∈ ξ i } 2 , ξ j (x) = ξ k (x)
So a reunified labelling profile is a set of labellings s.t. the labels assigned to each common element by the configurations are the same. As for AFDivider algorithm, this reunifying problem is transformed into a CSP.

Here are the four steps of the transformation process. Let raf i = Ãi , Ki , si , ti , s i ,t i be a partial RAF corresponding to a connected component of a partial hard RAF. Let Ω = {ω 1 , ..., ω n } of (Ãi ∪ Ki) and raf i.1 , ..., raf i.n be the partition of raf i corresponding to Ω s.t. for all j ∈ {1, ..., n}, raf i. j = ⟨ Ãi. j , Ki. j , si. j , ti. j , s i. j ,t i. j ⟩ and

I i. j = S inp i. j , Q inp i. j is the input of raf i. j . Let B = B A = n j=1 S inp i. j , B K = n j=1 Q inp i. j .
1. For each partial RAF raf i. j = Ãi. j , Ki. j , si. j , ti. j , s i. j ,t i. j , a variable V j is created. For each of them, the domain is the set of the distinct configurations corresponding to their computed labellings, i.e. ξ raf i. j .

2. For each input element x k ∈ B, a variable V x k is created with a domain corresponding to their possible labels, i.e. {in , out , und } taking into account the optimizations evoked in Section 4.3 (so, in our example, the domain of the variable V f is {in }).

3. For each variable V j with j ∈ {1, ..., n} corresponding to a partial RAF, for each ξ in the domain of V j , constraints are added to map the configuration with the labels of its corresponding elements. The constraints are defined as follows:

∀ j ∈ {1, ..., n}, ∀ξ ∈ ξ raf i. j , V j = ξ =⇒ (∀x k ∈ S inp i. j ∪ Q inp i. j ∪ (ω j ∩ (B A ∪ B K)),V x k = ξ (x k))
Note: The constraints have to be seen as declarative rules. For example the rule:

V j = ξ =⇒ (∀x k ∈ S inp i. j ∪ Q inp i. j ∪ (ω j ∩ (B A ∪ B K)),V x k = ξ (x k
)) as to be understand as "If the variable V j has the value ξ , then any variable V x k s.t.

x k ∈ S inp i. j ∪ Q inp i. j ∪ (ω j ∩ (B A ∪ B K)
must have the value corresponding to ξ (x k)". The solutions of that CSP are the reunified labelling profiles (corresponding to values of the V j variables).

Example 18. Following Example 17, let illustrate this CSP modelling for the reunification of raf 2 . Let ⟨X, D,C⟩ be that CSP. It is defined as follows:

• X = {V 1 ,V 2 ,V f ,V m ,V Ψ } -V 1 corresponds to raf 2.1 -V 2 corresponds to raf 2.2 -V f corresponds to the argument f -V m corresponds to the argument m -V Ψ corresponds to the attack Ψ • D =      D(V 1) =          ξ 2.1.1 = {(m, in), (f , in), (ψ, in)} ξ 2.1.2 = {(m, out), (f , in), (ψ, in)} ξ 2.1.3 = {(m, und), (f , in), (ψ, in)}          , D(V 2) =          ξ 2.2.1 = {(m, in), (f , in), (ψ, in)} ξ 2.2.2 = {(m, out), (f , in), (ψ, in)} ξ 2.2.3 = {(m, und), (f , in), (ψ, in)}          , D(V f) = {in} D(V m) = {in, out, und}, D(V Ψ) = {in, out, und}      • C = {c 1 , c 2 , c 3 , c 4 , c 5 , c 6 } is a set of constraints, with
c 1 being defined as follows:

V 1 = ξ 2.1.1 =⇒ (V m = in ∧V f = in ∧V ψ = in)
c 2 being defined as follows:

V 1 = ξ 2.1.2 =⇒ (V m = out ∧V f = in ∧V ψ = in)
c 3 being defined as follows:

V 1 = ξ 2.1.3 =⇒ (V m = und ∧V f = in ∧V ψ = in)
c 4 being defined as follows:

V 2 = ξ 2.2.1 =⇒ (V m = in ∧V f = in ∧V ψ = in)
c 5 being defined as follows:

V 2 = ξ 2.2.2 =⇒ (V m = out ∧V f = in ∧V ψ = in)
c 6 being defined as follows:

V 2 = ξ 2.2.3 =⇒ (V m = und ∧V f = in ∧V ψ = in)
The solutions of ⟨X, D,C⟩ are the following ones:

         (V 1 , ξ 2.1.1), (V 2 , ξ 2.2.1), (V f , in), (V m , in), (V Ψ , in) , (V 1 , ξ 2.1.2), (V 2 , ξ 2.2.2), (V f , in), (V m , out), (V Ψ , in) , (V 1 , ξ 2.1.3), (V 2 , ξ 2.2.3), (V f , in), (V m , und), (V Ψ , in)         
As consequence the reunified labellings profiles produced by the CSP are the following ones:

P =          p 2.1 = {ξ 2.1.1 , ξ 2.2.1 } , p 2.2 = {ξ 2.1.2 , ξ 2.2.2 } , p 2.3 = {ξ 2.1.3 , ξ 2.2.3 }         
Then, each reunified labelling profile computed corresponds to some labelling parts.

Example 19. Following examples 11, 13 and 18, the labellings corresponding to the reunified profiles are as follows:

• Corresponding to p 2.1 :

                           L 2.1.1 ∪ L 2.2.2 =    (i, out), (h, out), (m, in), (k, in), (l, out), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in)    , L 2.1.1 ∪ L 2.2.3 =    (i, out), (h, out), (m, in), (k, out), (l, in),
(ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in)

   , L 2.1.1 ∪ L 2.2.4 =    (i, out), (h, out), (m, in), (k, und), (l, und), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in)                               • Corresponding to p 2.2 :    L 2.1.2 ∪ L 2.2.1 =    (i, in), (h, in), (m, out), (k, out), (l, in),
(ι, in), (κ, in), (λ , out), (ρ, in), (ψ, in), (ξ , in), (o, out), (π, in)

      • Corresponding to p 2.3 :                L 2.1.3 ∪ L 2.
                 
We have so:

L co (raf 2) =      L 2.1 =    (i,
       
A special step has to be done for the preferred semantics as this reunifying process does not ensure the maximality (w.r.t. ⊑) of the set of in -labelled elements. Indeed, the preferred semantics is not bottom-up decomposable (see [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF]). A maximality check must be done in order to keep only the wanted labellings. Note: When computing the stable semantics, the set of labellings L σ returned by the algorithm may be empty. It happens when one of the component clusters has no stable labelling.

Whole RAF labelling reunification

Now that all the component labellings are built, we can reunify the labellings of the whole AF. Indeed, given that the trivial part is a fixed part of all σ -labellings of RAF and that each connected component has a unique context (these contexts being compatible with each other), the σ -labellings of the whole AF are built by performing a simple cartesian product between the labellings of all the components and the trivial part labelling. If one of the components has no labelling then the whole AF has no labelling (so L σ = ∅).

Example 20. Following examples 9 and 19, the complete semantics produces 54 labellings for RAF , with for instance corresponding to

L gr ↓ U triv ∪L 4.1 ∪ L 1.1 ∪ L 3.1 ∪ L 2.1 :                     
(e, in), (f , in), (g, out), (n, und), (o, und), (a, in), (b, out), (c, in), (d, out), (j, in), (i, out), (h, out), (m, in), (k, in), (l, out), (ε, out), (ζ , in), (η, in), (θ , in), (τ, und), (υ, in), (φ , in), (χ, in), (α, in), (β , in), (γ, in), (δ , in), (µ, out), (ν, in), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in)

                    

Synthesis of the running example

Figure 19 gives the synthesis of the different objects used and built by RAFDivider for the computation of the complete labellings in the running example.

5 RAFDivider: Algorithms and Properties Algorithms 3 and 4 give the formal definition of the RAFDivider algorithm. As for AFDivider , they are said to be generic algorithms in the sense that any clustering method can be used to split the AF and any sound and complete procedure that computes the semantics σ , can be used to compute the labellings of the different clusters.

The RAFDivider algorithm gives all the expected labellings (so it is complete) and only good labellings (it is sound) for the complete, stable and preferred semantics. The proof of the following propositions are given inSection A. They are very similar to the proofs given for AFDivider in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF].

First, concerning Algorithm 4 the two following properties hold:

Proposition 4 (Completeness of Algorithm 4). Algorithm 4 is complete for the stable, complete and preferred semantics.

Proposition 5 (Soundness of Algorithm 4). The following properties hold:

1. Algorithm 4 is sound for the stable and complete semantics 2. Algorithm 4 is sound for the preferred semantics Note: Proposition 5 and afterward Proposition 7 are separated into two assertions because the proofs for the preferred semantics are different.

Regarding Algorithm 3, two similar properties can be established:

RAF ⇒ 54 lab.
Initial RAF (Fig. 5)

U triv with the grounded lab.

Trivial part: Structure (Ex. 3)

RAF hard

Partial hard RAF (Fig. 7)

raf 4 raf 1 raf 3 raf 2
Components: Partial RAF (Fig. 9)

⟨ raf 4 , {g}, {(g, out)}⟩ (Fig. 11) ⇒ 1 lab.

⟨ raf 1 , ∅, ∅⟩ (Fig. 12) In blue, the number of labellings computed at the level of a partial RAF with input that is not clustered. In red, the number of distinct configurations obtained for preparing the reunification at the cluster level, then the number of reunified labelling profiles at the level of the partial RAF with input that is clustered; these profiles induce the number of labellings (in blue) for each clustered partial RAF. And finally, in blue, the total number of labellings of the initial RAF obtained by a cartesian product.

⇒ 3 lab. ⟨ raf 3 , { f }, {(f , in)}⟩ (Fig. 13) ⇒ 3 lab. ⟨ raf 2 , { f }, {(f ,
Figure 19: Objects generated by RAFDivider in the running example for the complete semantics Proposition 6 (Completeness of Algorithm 3). Algorithm 3 is complete for the stable, complete and preferred semantics.

Proposition 7 (Soundness of Algorithm 3). The following properties hold:

1. Algorithm 3 is sound for the stable and complete semantics.

2. Algorithm 3 is sound for the preferred semantics.

A Clustering Method

The main idea of the clustering presented in this section is to ensure that the Strongly Connected Components (SCC) 19 are not split into different clusters. The following method is inspired by those proposed in [START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF][START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] for testing the AFDivider algorithms. Given a RAF, the so-called "USCC-clustering" forms clusters as follows (each cluster being an USCC ra f , see Definition 23). First, the set of SCC is computed. Then neighbour SCC singletons are joined together in order to form a cluster using the following definition of neighbourhood:

Definition 38. (Neighbourhood).

Let RAF = ⟨A, K, s,t⟩. Let x and y be two elements of RAF . x and y are considered as neighbour iff:

• either x ∈ K and (y = s(x) or y = t(x)

• or x ∈ A and y ∈ K and (s(y) = x or t(y) = x)

Note that, by definition, two arguments cannot be considered as neighbours.

In the third step, each SCC that is not a singleton is joined with its neighbour SCC singletons (those that are neighbours with at least an element in the SCC non singleton) producing a cluster. This merging must respect the following constraint (the idea is to put in the same cluster the attacks and their source in order to have all the necessary elements for identifying the status of the target):

Let USCC ra f be a cluster. Let x be an SCC singleton that is a neighbour of USCC ra f . x will be joined with USCC ra f if

• either x ∈ K and s(x) ∈ USCC ra f

• or x ∈ A and ∃y ∈ USCC ra f s.t. s(y) = x The last step is to join clusters together so that there are not too many clusters of little size. This is done in an iterative way. The smallest group is merged to its smallest neighbour group, and that until there is no group of less than a certain number of arguments. Some experiments would be necessary in order to identify this threshold wrt the RAF we take into account.

Before illustrating this clustering on the running example, let recall informally what is an SCC in the case of RAF (see the precise formal definitions in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]). Two elements (arguments or attacks) are in the same SCC iff there exists a RAF-closed-walk that contains and attacks them (a RAF-closed-walk being a directed RAF-walk (e 1 , . . . , e n) with e 1 = e n).

For instance in the RAF given in Figure 5, one can found the following directed RAF-walks:

• (τ, n, υ, o, φ , τ): a directed RAF-walk that is closed.

• (f , θ , g, η, e, ζ , ε): a directed RAF-walk that is not closed.

Then considering the RAF given in Figure 5, we can compute the following set of SCC: 19 See in [START_REF] Lafages | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] the details about the definition of the SCCs for a RAF.

• each unattacked element produces an SCC that is the singleton containing only this element; in the running example, 16 elements are concerned: f and all the attacks except τ, µ, λ , ε, δ , ξ , o;

• there are 5 directed RAF-closed-walk, each of them producing an SCC:

- • the remaining elements s.t., even if they are attacked, they do not belong to an SCC that could contain another element; so they also produce SCC corresponding to a singleton; in the running example, 6 elements are concerned: g, e, ε, δ , ξ , o.

Then the second step of the USCC-clustering (aggregation of neighbour singletons) gives the following results (2 clusters):

• { f , θ , g, η, e, ζ , ε, δ , ξ , o} • {ψ, ξ , o}
Considering the 5 SCC that are non singletons, the third step produces the 5 following clusters:

• {τ, n, υ, o, φ , χ} • {µ, j, ν} • {λ , i, ι, m, ρ, h, κ, ψ} • {a, α, b, β , c, γ, d, δ } • {k, π, l, o}
Then in the fourth step, we identify the singletons that belong to several clusters and we remove them to the clusters that do not satisfy the constraints. In our example, 4 elements are concerned: ψ, ξ , δ and o.

• for ψ: we keep it in the cluster containing m

• for ξ : we keep it in the cluster containing f

• for δ : we keep it in the cluster containing d

• for o: we keep it in the cluster containing l

The final result of the fourth step is the 6 following clusters:

• { f , θ , g, η, e, ζ , ε, ξ } • {τ, n, υ, o, φ , χ} • {µ, j, ν} • {λ , i, ι, m, ρ, h, κ, ψ} • {a, α, b, β , c, γ, d, δ } • {k, π, l, o}
Then in the final step, if we consider a threshold of 6 in order to avoid too small clusters, then the clusters {µ, j, ν} and {k, π, l, o} would be aggregated with the first cluster producing a big cluster containing 15 elements.

Note that, in the real example and following our algorithms, the clustering step happens only after the removal of the trivial part (so on the components of the partial hard RAF) and so the real clustering is not the one described in this section. Indeed, following the size of each component, the clustering is done only of RAF 2 in which only two SCC exist ({λ , i, m, h} and {k, l}) and the USCC-clustering produces two clusters: {λ , i, ι, m, ρ, h, κ, ψ} and {k, π, l, o} (see Figure 10).

Conclusion and Future Works

This paper presents RAFDivider, one of the first algorithms for the enumeration of acceptable sets in a Recursive Argumentation Framework (RAF), an argumentation framework enriched with higher-order interactions. This algorithm, proven sound and complete, is based on a cutting of the framework which allows a distributed and parallel computation, technique successfully used for the enumeration of acceptable sets in an AF by AFDivider. An example of a clustering method, USCC-clustering, which can be used with this algorithm, is provided. An implementation of RAFDivider is to come.

The extension of the algorithmic approach to other kinds of enriched argumentation frameworks may be investigated: argumentation frameworks which consider support interactions in addition to attacks, notably (see [START_REF] Cayrol | Higher-order interactions (bipolar or not) in abstract argumentation: A state of the art[END_REF] for an overview of such enrichments).

To go further, such algorithms for argumentation frameworks with higher-order attacks may encourage the extension to RAFs of the reasoning tasks proposed for AFs at the International Competition on Computational Models of Argumentation (ICCMA) [20].

Let L raf i σ be the set of labellings of raf i according to the semantics σ .

Let L * µ(raf i) σ be the set of labellings of raf i under the context µ. These labellings are obtained in Algorithm 4 using an external solver assumed to be sound and complete.

By definition of a semantic top-down decomposable, we have (Definition 22 on page 14 and Lemma 1):

L σ (RAF) ⊆ {L 1 ∪ ... ∪ L n |∀i ∈ {1, ..., n}, L i ∈ F ra f σ (raf i , I i , L inp i)} (1)
Given that the labellings of all partial RAF raf i are computed for every possible context, we have, by definition of the context and of the input arguments: ∀i, ∀L inp i , ∃µ raf i s.t.

µ raf i = L inp i (2)
Given that the external solver that computes the labellings of raf i according to the semantics σ is sound and complete, and considering RAF s being the standard RAF w.r.t. the partial RAF with input raf i , I i , µ raf i , we have:

∀i, ∀µ raf i , ∀L ∈ L σ (RAF s), ∃L ′ ∈ L * µ(raf i) σ s.t. L ′ = L ↓ ω i (3)
So we have:

∀i, ∀µ raf i , ∀L ∈ L σ (RAF s), L ↓ ω i ∈ L raf i σ (4)
And so (following Definition 21 on page 13):

∀i, F ra f σ (raf i , I i , L inp i) ⊆ L raf i σ (5)
As a consequence and because of Equation (1) we have (∏ denoting the cartesian product):

L σ (RAF) ⊆ ∏ i=1...n L raf i σ (6)
Let χ = {L|L ∈ ∏ i=1...n L raf i σ and ∃x ∈ A ∪ K s.t. x is illegally labelled in L} be the set of all possible incorrect labellings (i.e. the set of labellings in which there exists an element that is not legally labelled).

We have, by definition of σ :

L σ (RAF) ⊆ (∏ i=1...n L raf i σ) \ χ (7)
Given that, for all computed labellings, we keep only the compatible configuration, that is the most flexible possible configuration, our CSP modelling does not add extra constraints. The proposed reunification removes, thus, only the labellings belonging to χ.

As a consequence, we have:

L σ (RAF) ⊆ L * σ (RAF) (8)
We prove so that for any top-down decomposable semantics σ our algorithm is complete, and so for the complete, stable and preferred semantics following Lemma 1 and so Proposition 2 on page 14. □ Proposition 5

1. Algorithm 4 is sound for the stable and complete semantics 2. Algorithm 4 is sound for the preferred semantics Proof (of Prop. 5) Let RAF = Ã, K, s, t, s,t be a partial RAF, Ω = {ω 1 , ..., ω n } be a partition of RAF and { RAF ↓ ω 1 , ..., RAF ↓ ω n } be the set of partial RAFs corresponding to Ω, with for each RAF ↓ ω i , denoted by raf i , the inputs I i = (S inp i , Q inp i) and their labellings L inp i . Let σ be a semantics. Let L σ (RAF) be the set of distinct labellings of RAF according to the semantics σ . Let L * σ (RAF) be the set of labellings of RAF according to σ obtained by Algorithm 4. We must show that Algorithm 4 produces only the labellings corresponding to the semantics σ , so that L * σ (RAF) ⊆ L σ (RAF).

• Assertion 1: Assume that σ be a fully decomposable and complete-based semantics and let L * be a labelling of RAF according to σ obtained by Algorithm 4 (so L * ∈ L * σ (RAF)). Let suppose that L * / ∈ L σ (RAF). We will prove that it is impossible with a reductio ad absurdum.

As σ is a complete-based and fully decomposable semantics we can say that (Definition 22 on page 14 and Lemma 1):

L * / ∈ {L 1 ∪ ... ∪ L n |L i ∈ F ra f σ (raf i , I i , L inp i)} (9)
And so:

∃ω i ∈ Ω s.t. L * ↓ ω i / ∈ F ra f σ (raf i , I i , L inp i) (10)
Let raf i , I i , L inp i be the partial RAF with input corresponding to this ω i .

Let µ be a context of raf i such that µ = (j∈{1,...,n} s.t. j̸ =i L j) ↓ I i .

Let L * µ(raf i) σ

be the set of labellings of raf i under the context µ produced by Algorithm 4.

Let L ′ * ∈ L * µ(raf i) σ be the labelling coinciding with L * ↓ ω i (i.e. L ′ * = L * ↓ ω i).

We have so:

L ′ * ∈ L * µ(raf i) σ (11)
Whereas:

L ′ * / ∈ F ra f σ (raf i , I i , L inp i) (12)
And so:

L * µ(raf i) σ ̸ = F ra f σ (raf i , I i , L inp i) (13)
Nevertheless, according to Definition 34 on page 22 we must have:

L * µ(raf i) σ = F ra f σ (raf i , I i , L inp i) (14)
Thus, there is a contradiction between Equation (13) and Equation [START_REF] Charwat | Methods for solving reasoning problems in abstract argumentation -A survey[END_REF].

From this contradiction we can conclude that:

L * σ (RAF) ⊆ L σ (RAF) (15)
We prove so that for any fully decomposable and complete-based semantics σ our algorithm is sound, and so for the complete and stable semantics, following Lemma 1 and so Proposition 2 on page 14.

• Assertion 2: Algorithm 3 is sound for the preferred semantics.

Let RAF = ⟨A, K, s,t⟩ be a RAF, L gr be its grounded labelling, RAF hard be the partial hard RAF of RAF and { raf 1 , ..., raf n } be the set of partial RAFs obtained from RAF hard (so its components).

Let L * pr (RAF) be the set of labellings of RAF obtained from Algorithm 3. Let L pr (RAF) be the set of labellings of RAF according to the preferred semantics.

We must show that L * pr (RAF) ⊆ L pr (RAF). Let L * ∈ L * pr (RAF) be a labelling of RAF computed by Algorithm 3.

Let L * pr (raf i) be the set of labellings of raf i obtained from Algorithm 4. Following Algorithm 3, we have:

L * = L gr ∪ L * i , with L * i ∈ L * pr (raf i) (27)
Let Ω be the partition of RAF corresponding to the trivial part and each component of RAF hard . Note that the trivial part induces a partial RAF denoted raf gr with eventually a set of some inputs denoted I gr (and this partial RAF can be considered as a component).

By definition of the grounded labelling, we have: The consequence of Equation (28) is:

∃x ∈ A ∪ K s.
∀i ∈ {1, ..., n}, ∀α ∈ K s.t. s(α) ∈ raf gr and t(α) ∈ raf i , L gr (s(α)) = out (31)

Let RAF ′ be the RAF constructed by removing from RAF the attacks between its trivial part and its partial hard RAF. As in RAF all arguments in the trivial part attacking arguments outside the trivial part is labelled out (Equation (31)) their attacks have no effect. The consequence is the following:

L pr (RAF ′) = L pr (RAF) (32)
Notice that RAF ′ has n + 1 connected components corresponding to the partition Ω, each component being a partial RAF denoted by raf i , for i = 0 . . . n with its own inputs denoted by I i (we consider that raf gr is denoted by raf 0). Given that there is no connection (attack) between those connected components, each ω i ∈ Ω is an USCC ra f (see Definition 23 on page 14). As a consequence, following the definition of S ra f -USCC (Definition 23 on page 14), we have:

Ω ∈ S ra f -USCC (RAF ′) (33)
As the preferred semantics is fully decomposable w.r.t. S ra f -USCC (Proposition 2 on page 14), we have:

Figure 1 :Definition 3 (

 13 Figure 1: Example of an Argumentation Framework (AF) with A = {a, b, c} and K = {(a, b), (b, a), (c, b)}

2 .

 2 Clusters in AF are identified.3. The labellings under semantics σ in each of these clusters are computed in parallel.

4 .Figure 2 :

 42 Figure 2: AFDivider operating diagram

Figure 3 :

 3 Figure 3: A example of RAF (arguments are in circles and the Greek letters labelling attacks are within squares)

Definition 21 .

 21 (RAF canonical local function). Let σ be a semantics. A local function F ra f σ assigns to any partial RAF with input RAF , I, L inp a (possibly empty) set of labellings of RAF under σ , i.e. F ra f σ (RAF , I, L inp) ∈ 2 {L|L being any labelling over RAF } .

 Full decomposability w.r.t. S ra f -USCC (so Top-down and Bottom-up decomposability)

 e i+1 [or (e i+1 ∈ A and s(e i) = e i+1) or (e i+1 ∈ K and e i = t(e i+1))]

2 .Figure 4 :

 24 Figure 4: RAFDivider operating diagram

Figure 6 Figure 6 :

 66 Figure6illustrates the labelled RAF corresponding to the running example.

Figure 7 :Figure 8 :

 78 Figure 7: Partial Hard RAF (the attacks τ, µ, λ and ξ have no source)

raf 2 Figure 9 :

 29 Figure 9: The connected components of RAF hard with their inputs (raf 1 has no input; raf 3 and raf 2 have the same input f)

Figure 11 :

 11 Figure 11: Standard RAF corresponding to raf 4 and L inp (g) = out

Figure 12 :Figure 13 :

 1213 Figure 12: Standard RAF corresponding to raf 1Notice that the labellings of raf 1 have to be computed for only one context (the empty one) as this partial RAF has no input elements. In yellow, the additional elements for building the standard RAF.

 in), (b, out), (c, in), (d, out), (α, in), (β , in), (γ, in), (δ , in) out), (b, in), (c, out), (d, in), (α, in), (β , in), (γ, in), (δ , in) und), (b, und), (c, und), (d, und), (α, in), (β , in), (γ, in), (δ , in)

Figure 14 :

 14 Figure 14: Standard RAF corresponding to raf 2.1

 out), (l, in), (o, und), (π, in), (ξ , und) , (k, und), (l, und), (o, und), (π, in), (ξ , und) L inp (ψ) = in and L inp (m) = out L inp (ψ) = out and L inp (m) = in L inp (ψ) = out and L inp (m) = out L inp (ψ) = out and L inp (m) = und L inp (ψ) = und and L inp (m) = out

Figure 17 :Figure 18 :

 1718 Figure 17: Standard RAFs of raf 2.2 when m or ψ is rejected Notice that in any context L inp (f) = in as f belongs to the trivial part. In yellow the additional elements for building the standard RAF.

 und), (h, und), (m, und), (k, out), (l, in), (ι, in), (κ, in), (λ , und), (ρ, in), (ψ, in), (ξ , und), (o, und), (π, in) und), (h, und), (m, und), (k, und), (l, und), (ι, in), (κ, in), (λ , und), (ρ, in), (ψ, in), (ξ , und), (o, und), (π, in)

 out), (h, out), (m, in), (k, in), (l, out), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in) out), (h, out), (m, in), (k, out), (l, in), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in) out), (h, out), (m, in), (k, und), (l, und), (ι, in), (κ, in), (λ , in), (ρ, in), (ψ, in), (ξ , out), (o, in), (π, in) in), (h, in), (m, out), (k, out), (l, in), (ι, in), (κ, in), (λ , out), (ρ, in), (ψ, in), (ξ , in), (o, out), (π, in) und), (h, und), (m, und), (k, out), (l, in), (ι, in), (κ, in), (λ , und), (ρ, in), (ψ, in), (ξ , und), (o, und), (π, in) und), (h, und), (m, und), (k, und), (l, und), (ι, in), (κ, in), (λ , und), (ρ, in), (ψ, in), (ξ , und), (o, und), (π, in)

 τ, n, υ, o, φ , τ) produces the SCC {τ, n, o} -(µ, j, ν, µ) produces the SCC {µ, j} -(λ , i, ι, m, ρ, h, κ, λ) produces the SCC {λ , i, m, h} -(a, α, b, β , c, γ, d, δ , a) produces the SCC {a, b, c, d} -(k, π, l, o, k) produces the SCC {k, l}

 t. L gr (x) = und =⇒ (∀α ∈ K s.t. t(α) = x, L gr (α) ̸ = in or L gr (s(α)) ̸ = in)(28)Given that:und (L gr) ∩ raf gr = ∅(29)And that by construction of raf gr :∀i ∈ {1, ..., n}, ∀x ∈ raf i , L gr (x) = und (30)

Table 1 :

 1 Reinstatement labellings and extension-based semantics correspondence

	Restriction on AF reinstatement labelling	Semantics
	no restrictions	complete semantics
	empty und	stable semantics
	maximal in	preferred semantics
	maximal out	
	maximal und	
	minimal in	grounded semantics
	minimal out	

Table 2

 2

	sums

Table 2 :

 2 Links between Reinstatement RAF labellings and structure-based semantics

 x ∈ I i Example 15. Following Example 11, each labelling L 2.1.i has its own configuration ξ 2.1.i . In any configuration, we have (f , in) and (ψ, in), but the label of m varies (in for ξ 2.1.1 , out for ξ 2.1.2 , und for ξ 2.1.3). Note that m and ψ are not the inputs of RAF 2.1 but they are the inputs of RAF 2.2 that is in the same partition as RAF 2.1 . Moreover they belong to RAF 2.1 . So any label of these elements can impact the labels inside RAF 2.1 . Note: Distinct labellings can have the same configuration. See Example 16.

Whereas an extension assigns to its elements an accepted or a rejected status, a labelling considers a third status, undecided, which applies to arguments which are neither accepted, nor rejected. This enrichment has proven useful for the computation of acceptance statuses in AF (see[START_REF] Charwat | Methods for solving reasoning problems in abstract argumentation -A survey[END_REF] for a survey).

We write ⊆-maximal.

This notion of largeness of an AF is not so simple to define. It is related to the fact that the computation of the solutions is complex either because of the number of arguments, or of the number of interactions, or because of the structure of the AF.

http://argumentationcompetition.org

Notice that in the literature it is the decision problem versions of this problem that are studied. Nevertheless, the complexity of their decision versions is sufficient to give a good idea of their hardness. See[START_REF] Dvorak | Computational problems in formal argumentation and their complexity[END_REF] for an overview.

A graph is said to be Sparse when its density is low.

Relations between labelling-based semantics and structure-based semantics have been exhibited in[START_REF] Doutre | Argumentation Frameworks with Higher-Order Attacks: Labellings and Complexity[END_REF].

The original definition for the RAF labelling is a pair of a labelling over arguments and a labelling over attacks. Here we give an equivalent definition that does not make difference between arguments and attacks. Moreover we also simplify the terminology using "labelling" in place of "structure labelling".

So the following property holds for Ω: ∀(i, j) ∈ {1, ..., n} s.t. i ̸ = j, ω i ∩ ω j = ∅ and n i=1 ω i = A ∪ K.

Indeed, let consider α being an attack in Q triv s.t. its target is in RAF hard ; either α is labelled with out or α is labelled with in and its source is either labelled with in or out : in any case, the fact that its target is in RAF hard shows that α is useless for determining the label of its target.

raf 2 ↓ ω 1 produces a partial RAF built from raf 2 keeping only the elements of ω 1 .

Obviously, each context of a partial RAF will induce a specific set of labellings of this partial RAF.

L 2.2.1 corresponds to µ 2.2.2 ; L 2.2.2 to L 2.2.4 correspond to µ 2.2.1 ; L 2.2.5 to L 2.2.6 correspond to µ 2.2.3 .

The proof is given in Appendix A.

Example 7. Following Figure 10 and in the worst case, the contexts of raf 2.2 would be the following ones (3 inputs with 3 possible values, so 3 3 = 27 contexts):

• µ 2.2.1 = {(m, in), (f , in), (ψ, in)} • µ 2.2.2 = {(m, out), (f , in), (ψ, in)} • µ 2.2.3 = {(m, und), (f , in), (ψ, in)} • µ 2.2.4 = {(m, in), (f , out), (ψ, in)} • µ 2.2.5 = {(m, out), (f , out), (ψ, in)}

• µ 2.2.6 = {(m, und), (f , out), (ψ, in)}

• µ 2.2.7 = {(m, in), (f , und), (ψ, in)}

• µ 2.2.8 = {(m, out), (f , und), (ψ, in)} • µ 2.2.9 = {(m, und), (f , und), (ψ, in)} • µ 2.2.10 = {(m, in), (f , in), (ψ, out)} • µ 2.2.11 = {(m, out), (f , in), (ψ, out)} • µ 2.2.12 = {(m, und), (f , in), (ψ, out)} • µ 2.2.13 = {(m, in), (f , out), (ψ, out)} • µ 2.2.14 = {(m, out), (f , out), (ψ, out)} • µ 2.2.15 = {(m, und), (f , out), (ψ, out)} • µ 2.2.16 = {(m, in), (f , und), (ψ, out)} • µ 2.2.17 = {(m, out), (f , und), (ψ, out)} • µ 2.2.18 = {(m, und), (f , und), (ψ, out)} • µ 2.2.19 = {(m, in), (f , in), (ψ, und)} • µ 2.2.20 = {(m, out), (f , in), (ψ, und)} • µ 2.2.21 = {(m, und), (f , in), (ψ, und)}

Nevertheless, some of these 27 contexts are not compatible with the labelling L gr (f must be labelled in). So only 9 contexts are compatible: µ 2.2.1 to µ 2.2.3 , µ 2.2.10 to µ 2.2.12 , µ 2.2.19 to µ 2.2.21 .

The labellings "induced" by a certain context of a partial RAF are defined as follows:

Definition 34 (Induced labellings). Let σ be a semantics, RAF = Ã, K, s, t, s,t be a partial RAF, I be the input of RAF and µ be a context of RAF . Let RAF s be the standard RAF corresponding to the partial RAF with input RAF , I, µ . The set of "induced labellings" L µ(RAF) σ of RAF under the context µ is defined as follows:

L σ (RAF) denotes the set of all induced labelling of RAF under all possible contexts.

As one can notice from Example 7, it may be useless to consider some cluster contexts. So three optimizations can enhance the computation time:

• First optimization: Given a cluster, if one of its input elements is also an input element of the partial hard RAF then this element should only be labelled as in the grounded labelling L gr (see Example 7).

At this step we can illustrate how the RAFDivider algorithm will compute the labellings for the components 4, 1 and 3 as well as for the first cluster of component 2:

Example 8. Following Example 5, components 4, 1 and 3 only have one cluster. Furthermore, labellings of each of them have to be computed for only one context. Indeed, whether it is empty (the case of component 1) or it has no input element that do not belong to the trivial part. Figure 11 to 13 illustrate the unique standard RAF to compute for each of them.

Algorithm 4: ComputeRAFCompLabs algorithm.

Input: Let σ be a semantics, PartRAFSet be a set of clusters (partial RAFs) for a component raf i , I be the input of the partial hard RAF and L gr be the grounded labelling of the initial RAF Result: L σ ∈ 2 L (raf i) : the set of the σ -labellings of raf i Local variables:

: the set of all σ -structure labellings of raf i. j

• P raf i. j : the set of configurations corresponding to the σ -labellings of raf i. j • P: the set of all reunified labelling profiles

The following property holds:

Proof (of Prop. 3) Consider x = t(α) ∈ RAF and let study its label. Using µ 1 , 3 cases must be studied:

• either (µ 1 (α) = in and µ 1 (s(α)) = in): so, if α is the only attack targeting x, x is labelled with out ; moreover, following the assumption saying that, in this case, we also have (µ 2 (α) = in and µ 2 (s(α)) = in), then using µ 2 , we obtain the same label for x;

• or (µ 1 (α) = out or µ 1 (s(α)) = out): so, if α is the only attack targeting x, x is labelled with in ; moreover, following the assumption saying that, in this case, we also have (µ 2 (α) = out or µ 2 (s(α)) = out), then using µ 2 , we obtain the same label for x;

• or [(µ 1 (α) = und or µ 1 (s(α)) = und) and µ 1 (α) ̸ = out and µ 1 (s(α)) ̸ = out]: so, if α is the only attack targeting x, x is labelled with und ; moreover, following the assumption saying that, in this case, we also have [(µ 2 (α) = und or µ 2 (s(α)) = und) and µ 2 (α) ̸ = out and µ 2 (s(α)) ̸ = out] , then using µ 2 , we obtain the same label for x.

Moreover, all other things being equal, for any other element y in RAF , the label obtained using µ 1 is equal to the label obtained using µ 2 . So, if α is not the only attack targeting x, the label of x is computed with exactly the same information using µ 1 or µ 2 .

So L

Definition 22 on page 14 and Proposition 2 on page 14 can be applied on partial RAF with input.

Proof (of Lemma 1) From any partial RAF with input ⟨ RAF = Ã, K, s, t, s,t , I = S inp , Q inp , L inp ⟩, a specific RAF ⟨A ′ , K ′ , s ′ ,t ′ ⟩ can be built considering that:

The idea is here to built the RAF from the partial RAF adding the inputs and the missing targets. Then, since the decomposability of semantics has been defined and proven for RAF (see Definition 22 on page 14 and Proposition 2 on page 14), it is also defined and proven for partial RAF with input. □ Proposition 4 Algorithm 4 is complete for the stable, complete and preferred semantics.

Proof (of Prop. 4) Let RAF = Ã, K, s, t, s,t be a partial RAF, Ω = {ω 1 , ..., ω n } be a partition of RAF and { RAF ↓ ω 1 , ..., RAF ↓ ω n } be the set of partial RAFs corresponding to Ω, with for each RAF ↓ ω i , denoted by raf i , their inputs

) and the labellings L inp i of these inputs. Let σ be a top-down decomposable semantics. Let L σ (RAF) be the set of distinct labellings of RAF according to the semantics σ . Let L * σ (RAF) be the set of labellings of RAF according to σ obtained by Algorithm 4. We must show that Algorithm 4 produces all the possible labellings corresponding to the semantics σ , so that L σ (RAF) ⊆ L * σ (RAF).

• Assertion 2: Let RAF be a partial RAF and σ be the preferred semantics. Given that Algorithm 4 is complete for the preferred semantics (see Proposition 4 on page 35), L * pr , the set of all labellings reunified from the different clusters obtained in Algorithm 4 line 7, contains all the preferred labellings of RAF .

In Algorithm 4 line 8, we keep from L * pr only the maximal (w.r.t ⊆ of in -labelled arguments) labellings, that are by definition the preferred labellings. As a consequence, L * pr contains only and all the preferred labellings of RAF . Algorithm 4 is, thus, sound and complete for the preferred semantics. □ Proposition 6 Algorithm 3 is complete for the stable, complete and preferred semantics.

Proof (of Prop. 6) Let RAF = ⟨A, K, s,t⟩ be a RAF, L gr be its grounded labelling, RAF hard be the partial hard RAF of RAF and { raf 1 , ..., raf n } be the set of partial RAFs obtained from RAF hard (so its components).

Let σ be the complete, stable or preferred semantics. Let L * σ (RAF) be the set of labellings obtained from Algorithm 3. Let L σ (RAF) be the set of labellings of RAF according to the semantics σ . We must prove that L σ (RAF) ⊆ L * σ (RAF). Let Ω be the partition of RAF corresponding to the trivial part and each component. Note that the trivial part induces a partial RAF denoted raf gr with eventually a set of some inputs denoted I gr (so this partial RAF can also be considered as a component).

Let L * σ (raf i) be the set of labellings obtained from Algorithm 4 for the component raf i . Let L σ (raf i) be the set of labellings for the component raf i according to the semantics σ . Consider L ∈ L σ (RAF), a labelling of RAF according to σ . Given that (following Definition 21 on page 13):

We have by definition of top-down decomposable semantics (following Definition 22 on page 14):

Given that Algorithm 4 is complete for top-down decomposable semantics (i.e. ∀i,

Furthermore:

We have so:

Finally, we have:

We prove so that our algorithm is complete for the complete, stable and preferred semantics. □ Proposition 7

1. Algorithm 3 is sound for the stable and complete semantics.

2. Algorithm 3 is sound for the preferred semantics.

Proof (of Prop. 7)

• Assertion 1: Algorithm 3 is sound for the stable and complete semantics.

Let RAF = ⟨A, K, s,t⟩ be a RAF, L gr be its grounded labelling, RAF hard be the partial hard RAF of RAF and { raf 1 , ..., raf n } be the set of partial RAFs obtained from RAF hard (so its components).

Let σ be the complete or stable semantics.

Let L * σ (RAF) be the set of labellings of RAF obtained from Algorithm 3. Let L σ (RAF) be the set of labellings of RAF according to the semantics σ .

We must show that L * σ (RAF) ⊆ L σ (RAF). Let L * ∈ L * σ (RAF) be a labelling of RAF computed by Algorithm 3. Let Ω be the partition of RAF corresponding to the trivial part and each component of RAF hard . Note that the trivial part induces a partial RAF denoted raf gr with eventually a set of some inputs denoted I gr (and this partial RAF can be considered as a component).

Let L * σ (raf i) be the set of labellings of raf i obtained from Algorithm 4. Following Algorithm 3, we have:

We have (following Definition 21 on page 13):

Because σ is a fully decomposable semantics we have so (Definition 22 on page 14):

Given that Equation (24) holds and that Algorithm 4 is sound for fully decomposable semantics (i.e. ∀i,

And thus:

We prove so that for the complete and stable semantics our algorithm is sound. From Equations (32) and (37) on the previous page and on the current page, we have:

Finally, from Equations (27) and (38) on the previous page and on the current page we have:

We prove so that Algorithm 3, when using Algorithm 4 to compute the component labellings, is sound and complete for the preferred semantics.

□