
HAL Id: hal-03701260
https://ut3-toulouseinp.hal.science/hal-03701260

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AFDivider : Manual and Documentation
Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex

To cite this version:
Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex. AFDivider : Manual and Docu-
mentation. [Research Report] IRIT/RR–2022–02–FR, IRIT : Institut de Recherche en Informatique
de Toulouse. 2022, pp.1-45. �hal-03701260�

https://ut3-toulouseinp.hal.science/hal-03701260
https://hal.archives-ouvertes.fr

AFDivider : Manual and Documentation

Sylvie Doutre

Mickaël Lafages

Marie-Christine Lagasquie-Schiex

Université de Toulouse, IRIT

{sylvie.doutre,mickael.lafages,lagasq}@irit.fr

Tech. Report

IRIT/RR–2022–02–FR

Contents

1 Solver Manual 2
1.1 General Presentation . 2
1.2 Input Format . 3
1.3 Functionalities . 3

1.3.1 Required Arguments . 3
1.3.2 Options . 5

2 Project Installation 10
2.1 Pre-requisite Software Installations . 10
2.2 Git Repository: Download and Installation . 10
2.3 Third Party Libraries Installation . 11
2.4 Importing the Project into Pycharm . 11
2.5 Launch Configuration Settings . 11
2.6 Internal solvers . 12

3 Project Documentation 14
3.1 Project Structure . 14
3.2 Code Documentation . 16

4 Experimental Environment Documentation 17
4.1 Osirim . 17

4.1.1 Presentation . 17
4.1.2 Infrastructure . 17
4.1.3 Slurm . 20
4.1.4 Singularity . 20

4.2 AFDivider Experiment Environment: Osirim Resources . 20
4.2.1 AFDivider Directory . 21
4.2.2 Solver Containers . 22
4.2.3 Data Repository . 23

4.3 Experiment Process Manual . 26
4.3.1 Overview . 26
4.3.2 Connection to Osirim . 27
4.3.3 Project Refresh . 27
4.3.4 Slurm Job . 27
4.3.5 Experiment Configuration and Scripts . 28
4.3.6 Experiment Launching . 37
4.3.7 Data Extraction Launching . 39
4.3.8 Data Retrieval . 39
4.3.9 Slurm Monitoring . 40

5 Conclusion and Perspectives 43

Bibliography 44

i

Introduction

The first part of Mickaël Lafages’ PhD Thesis [11] is concerned about solving more efficiently argu-
mentation problems that are expressed in Dung’s Argumentation Framework (AF) and its semantics. In
Dung’s AF, solutions of an argumentation problem are sets of arguments (defined under the notion of
extension) which, when considered together, win the argumentation. Finding all the possible solutions
of an argumentation problem, i.e. all its winning sets of arguments, can be very time consuming. Many
argumentation problem instances, particularly large,1 are too hard to be solved in an acceptable time, as
shown by the results of the ICCMA argumentation solver competition.2 This hardness is not relative to
the current state of the art but rather to the intrinsic theoretical complexity of the argumentation semantics
that are tackled [10].

Considering the foreseen scaling-up challenge in addition to the complexity, there is a need for heuris-
tics, methods and algorithms efficient enough to tackle such issues and make possible the use of auto-
mated argumentation models, even in such settings. Enhancing the computational time of enumerating
the solutions of an argumentation framework has been the object of study of many works, resulting in the
elaboration of several recent algorithms such as [1, 5, 13, 2] (see [6] for an overview).

To address this issue, we propose the AFDivider algorithm, a distributed and clustering-based algo-
rithm that has for main purpose to find all the possible solutions of an argumentation problem. Those
solutions are defined in terms of semantics labelling [4, 3], a three status based function mapping that
assigns to each argument of an AF an acceptance status: accepted, rejected or undecided. An empiri-
cal analysis of the AFDivider algorithm shows that the new approach of computing Dung-like semantics
is relevant and very appropriate for some types of argumentation problems. This work led to several
publications: [12, 8, 7, 9].

The present report describes how to use, install and generate benchmarks with AFDivider solver.
Chapter 1 on the next page describes the user manual of the AFDivider solver. Chapter 2 on page 10
describes the installation procedure of the AFDivider solver. Chapter 3 on page 14 describes AFDivider
project structure. Finally, Chapter 4 on page 17 concludes this report.

For details about documentation on theoretical and analysis explanations, refer to the PhD manuscript
[11]. For details on source code documentation, refer to Section 3.2 on page 16.

1This notion of largeness of an argumentation framework is related to the fact that the computation of the solutions is
complex either because of the number of arguments, or of the number of interactions, or because of the structure of the
argumentation framework.

2http://argumentationcompetition.org

1

http://argumentationcompetition.org

Chapter 1

Solver Manual

1.1 General Presentation

The AFDivider solver enumerates extension-based semantics, even though the internal algorithm pre-
sented below is based on labelling semantics. It has been designed for Dung’s original semantics: the
complete, the stable and the preferred semantics. In this section, the algorithm is briefly presented. For
more information on AFDivider , see [11].

Given a Dung’s argumentation framework AF = ⟨A,K⟩ and a semantics σ ∈ {complete, stable,
preferred}, the AFDivider algorithm, rather than building labellings that cover the whole AF (which
could be time consuming), computes the semantics labellings using a distributed and clustering-based
method. Here are its four major steps graphically represented in Figure 1.1:

1. A pretreatment on AF removes “trivial” parts of it.

2. Clusters in AF are identified.

3. The labellings under semantics σ in each of these clusters are computed in parallel.

4. The results of each cluster are reunified to get the labellings of AF .

a

b c

d

e

f

g

h i

j k

l

mn

Initial AF

d

e

f

g

h i

j k

l

mn

Hard AF

Step 2

d

e

f

g

h i

j k

l

mn

Components
d

e

f

g

h i

j k

l

mn

pClustersp

Step 3

Cluster
labellings

Step 4

Component
labellings

Hard AF
labellings

Initial AF
labellings

Step 1

Figure 1.1: AFDivider operating diagram

2

Algorithms 1 and 2 on this page and on the next page give the formal definition of the AFDivider
algorithm. They are said to be generic algorithms in the sense that:

• Any clustering method can be used to split the AF.

• Any sound and complete procedure that computes the semantics σ , can be used to compute the
labellings of the different clusters.

Algorithm 1: AFDivider algorithm.
Input: Let AF = ⟨A,K⟩ be an AF and σ be a semantics
Result: Lσ ∈ 2L (AF): the set of the σ -labellings of AF
Local variables:

• ℓ′gr: the grounded labelling restricted to the arguments labelled in and out

• CCSet: the set of connected components of AF hard (AF after the removal of the arguments
labelled in and out in the grounded labelling)

• af i: a connected component
• ClustSet: the set of cluster structures of af i
• Lσ (af i): the set of all σ -labellings of af i

1 ℓ′gr← ComputeGroundedLabelling(AF)

2 CCSet← SplitConnectedComponents(AF ,ℓ′gr)

3 for all af i ∈CCSet do in parallel
4 ClustSet← ComputeClusters(af i)
5 Lσ (af i)← ComputeCompLabs(σ ,ClustSet)
6 Lσ ←∅
7 if ∄af i ∈CCSet s.t. Lσ (af i) =∅ then Lσ ←{ℓ

′
gr}×∏af i∈CCSet Lσ (af i)

8 return Lσ

1.2 Input Format
So far, the AF encoding format recognized by our solver is the so-called “APX Format”. The APX
encoding of the AF illustrated in Figure 1.2 on page 5 is given in Figure 1.3 on page 5.

1.3 Functionalities

1.3.1 Required Arguments
Following are the required arguments and their meaning:

• -s: Path to the external solver

This option specifies the path to the external solver used for computing the labelling at cluster level.
See Sections 4.2.3 and 5.1 of [11], for more details.

• -f: Path to AF file

This option specifies the path to the encoded AF. See the Input Format option.

3

Algorithm 2: ComputeCompLabs algorithm.
Input: Let ClustSet be a set of cluster structures for a component af , σ be a semantics
Result: Lσ ∈ 2L (af): the set of the σ -labellings of af
Local variables:

• κ j: a cluster structure
• L

κ j
σ : the set of all σ -labellings of κ j

• Pκ j : the set of configurations corresponding to the σ -labellings of κ j
• P: the set of all reunified labelling profiles

1 for all κ j ∈ClustSet do in parallel
2 L

κ j
σ ← ComputeClustLabs(σ ,κ j)

3 Pκ j ← IdentifyConfigs(L
κ j

σ ,κ j)

4 Lσ =∅
5 P = ReunifyCompConfigs(

⋃
κ j∈ClustSet P

κ j ,ClustSet)
6 for all p ∈P do

7 Lσ ←Lσ ∪

∏
ξ∈p
{ℓ|ℓ ∈ ProfileLabellings(ξ ,

⋃
κ j∈ClustSet

L
κ j

σ)}

8 if σ = pr then Lσ ←{ℓ|ℓ ∈Lσ s.t. ∄ℓ′ ∈Lσ s.t. in (ℓ)⊂ in (ℓ′)}
9 return Lσ

• -fo: Input Format.

So far, the solver recognizes only the APX format described in Section 1.2 on the previous page.

• -p: Problem Type

This option specifies the AF problem type. A choice has to be made between the following values:

– EE-PR: enumeration of the preferred semantics

– EE-CO: enumeration of the complete semantics

– EE-ST: enumeration of the stable semantics

• --clustering-mode: Clustering Mode

This option specifies the clustering method to use for solving the problem. A choice has to be made
between the following values:

– spectral: The spectral clustering method is usually used for data mining. It clusters data,
here AF arguments, following a certain “similarity” criterion that captures how much an ar-
gument is connected to another. For more details, see Section 5.2.1 of [11].

– uscc chain: The USCC Chain is a home made clustering method. It consists of creating
clusters following Strongly Connected Component (SCC). Each part of the partition is an
union of SCC. It differs from USCC Tree clustering method by the way SCC are joined
together. For more details, See Section 5.2.2 of [11].

– uscc tree: The USCC Tree is a home made clustering method. It consists of creating clusters
following SCC. Each part of the partition is an union of SCC. It differs from USCC Chain
clustering method by the way SCC are joined together. For more details, See Section 5.2.2 of
[11].

4

d

e

f

g

h i

Figure 1.2: Example of an AF

1 arg(d).
2 arg(e).
3 arg(f).
4 arg(g).
5 arg(h).
6 arg(i).
7 att(d,g).
8 att(e,f).
9 att(f,g).

10 att(g,f).
11 att(g,h).
12 att(h,i).

Figure 1.3: AF Encoding

– full random: The Random clustering method is, as indicated by its name, a random partition
generation method.

1.3.2 Options
1. --pool-size: Thread pool size

This option specifies the thread pool size. As explained in the source code documentation (see
Section 3.2 on page 16), the tasks made in parallel, firstly at component level then at cluster level,
are performed by so-called “workers”. The thread-pool size indicates the number of tasks that can
be performed simultaneously. For instance, if this value option is 4, then the labelling of at most 4
clusters will be computed simultaneously.

Note: In the current version (March 2022), the operation of writing a particular induced AF
as a text file is not made using this tread-pool but an ephemeral thread. Some development and
experiments may be done to see if it is worth to make it using the thread-pool.

As specified in Section 1.1 on page 2, the AFDivider algorithm can use any sound and complete
procedure to compute labellings at cluster level for induced AF, that is the AF induced by a precise

5

cluster context. See Sections 4.2.3 and 5.1 of [11], for more details. The --pool-size option
does not encompass the number of threads created by this sound and complete procedure (which
is specified by the option -s). As an example, we used in our experiments several solver that were
themselves multithreaded.

In theory, the number of the thread-pools should be related to the number of cores allocated to
the solver. However, it is difficult to determined the best value given that the external sound and
complete procedure may be multithreaded.

When executed on Osirim in slurm environment (See Chapter 4 on page 17), if the slurm environ-
ment variable SLURM CPUS PER TASK is defined then its value is used for the pool size.

If nothing is specified the pool size is fixed to 3.

The priority for setting the pool size value is as follows:

SLURM CPUS PER TASK value ≻ --pool-size value ≻ 3 (default value)

2. --stats-filename: Statistics log file

This option specifies the path to the statistics log file that gathers all the execution statistics. Fig-
ure 1.4 on page 8 shows an example of file. Here is its meaning, given line by line.

Line 1 specifies the size of the thread pool, that is the maximal number of workers. Line 2 specifies
the CPU time and the Real time used to cut and cluster the AF. Note: In most of the time logs, the

CPU time is not relevant and should be ignored for the current version (March 2022). Indeed, the
CPU time measurement should be adapted to the fact that several tasks may be done in parallel
and that tasks may have subtasks executed in different threads. This value should be the sum of
all CPU time of related tasks. Some development is needed to make this measurement fairer. See
classes ComponentWorker, ClusterWorker, Worker and WorkerManager. In contrast all real
time measurements are reliable.

Lines 3-12 specify the clustering made of the AF. The FixPart correspond to the in -labelled and
out -labelled arguments of the grounded labelling. The component and their respective clusters are
specified.

In lines 14-42 are given the computation details of each component. The cutting, clustering, la-
bellings, CSP solving and maximality check (if needed) times are first given. The component la-
belling reunification is the sum of the two last steps and then the total component labelling time is
given. Finally, the number of labellings computed for the component is given.

Line 44 specifies the time of all component labellings. For the real time value, it coincides thus
with the time of the total component labelling time of hardest-solving component.

Line 45 specifies the number of labellings that will be created by the cartesian product of the
computed component labellings. This value is printed before the product operation.

Line 46 specifies the time of enumeration construction.

Line 47 specifies the printing time, whether on stdout or storage file (See --storage-filename
option).

Line 48 specifies the total resolution time.

If no path is specified for the --stats-filename option, then the statistics file is printed on
stdout.

6

3. --storage-filename: Data result storage file

This option specifies the path to the data log file that gathers all the computed extensions.

The default solution format (see option --representation) of the current version (Mars 2022) is
the one used in ICCMA 2017. Figure 1.5 on page 9 gives an example of data file. Each extension
is delimited by brackets as well as the set of extensions.

If no path is specified for the --storage-filename option, then the data file is printed on stdout.

4. --representation: Data output format

This option specifies the type of output to compute. A choice has to be made between the following
values:

• verbose: This mode is the default one. It enumerates all the extensions of an AF.

• compact: This mode computes the Compact Enumeration Representation (See Chapter 6 of
[11]) instead of enumerating all the extensions.

• both: This mode computes both output type. It has been implemented to compare the res-
olution time of each output mode. Indeed to make a fair comparison, it has to be according
to the same AF partition and all clustering methods implemented on the current version of
AFDivider (Mars 2022) are non-deterministic.

5. --clustering-randomness: Clustering Random Deviation

This option accepts as value a real between 0 and 1. When specified, a clustering is first made based
on the chosen method (see option --clustering-mode). Then the result is altered to produce a
new partition with a difference rate (from the first one) near the value specified in option.

In the process of finding the partition with the specified deviation rate, the arguments are changed
from one part to another with respect to the AF structure. The idea is to produce connected parts.
An argument can be moved to another part only if it attacks or it is attacked by an argument of that
part.

The difference rate used is the recall value. See https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.recall_score.html for more informations.

The partition found with the nearest difference value to the one specified is the final chosen one.

By default the value of the --clustering-randomness option is 0. That is the partition produces
by the method is not altered.

7

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

1 [2022−02−22 14:52:08,679] INFO: Nb workers: 3
2 [2022−02−22 14:52:09,498] INFO: Cutting and clustering time: 0.723503 (CPU), 0.821713 (Real)
3 [2022−02−22 14:52:09,499] INFO: Clustering partition:
4 FixPart has 1 cluster(s):
5 [’a1’, ’a10’, ’a12’, ’a13’, ’a14’, ’a16’, ’a18’, ’a19’, ’a2’, ’a20’, ’a22’, ’a23’, ’a24’, ’a26’, ’a27’, ’

a28’, ’a33’, ’a35’, ’a36’, ’a38’, ’a39’, ’a4’, ’a40’, ’a41’, ’a44’, ’a45’, ’a46’, ’a47’, ’a5’, ’a50
’, ’a52’, ’a53’, ’a56’, ’a6’, ’a7’, ’a9’]

6 Component 1 has 1 cluster(s):
7 [’a11’, ’a25’, ’a42’, ’a48’, ’a49’, ’a55’]
8 Component 2 has 1 cluster(s):
9 [’a37’, ’a54’]

10 Component 0 has 2 cluster(s):
11 [’a17’, ’a3’, ’a8’]
12 [’a15’, ’a21’, ’a29’, ’a30’, ’a31’, ’a32’, ’a34’, ’a43’, ’a51’]
13

14 [2022−02−22 14:52:10,566] INFO: Statistics of CompWorker1
15 Cutting time: 0.001769 (CPU), 0.001697 (Real)
16 Clustering time: 0.000558 (CPU), 0.000532 (Real)
17 Labelling time: 0.231098 (CPU), 0.228234 (Real)
18 CSP solving time: 0.000348 (CPU), 0.000345 (Real)
19 Maximality check time: 0.000005 (CPU), 0.000004 (Real)
20 Component labelling reunification time: 0.000353 (CPU), 0.000349 (Real)
21 Total Component labelling time: 0.233778 (CPU), 0.230812 (Real)
22 Number of extensions: 1
23

24 [2022−02−22 14:52:10,566] INFO: Statistics of CompWorker2
25 Cutting time: 0.000670 (CPU), 0.000604 (Real)
26 Clustering time: 0.000148 (CPU), 0.000137 (Real)
27 Labelling time: 0.264533 (CPU), 0.261374 (Real)
28 CSP solving time: 0.000121 (CPU), 0.000119 (Real)
29 Maximality check time: 0.000005 (CPU), 0.000004 (Real)
30 Component labelling reunification time: 0.000126 (CPU), 0.000123 (Real)
31 Total Component labelling time: 0.265477 (CPU), 0.262239 (Real)
32 Number of extensions: 2
33

34 [2022−02−22 14:52:10,566] INFO: Statistics of CompWorker0
35 Cutting time: 0.701852 (CPU), 0.698055 (Real)
36 Clustering time: 0.000559 (CPU), 0.000539 (Real)
37 Labelling time: 0.069286 (CPU), 1.067135 (Real)
38 CSP solving time: 0.001307 (CPU), 0.001346 (Real)
39 Maximality check time: 0.000005 (CPU), 0.000005 (Real)
40 Component labelling reunification time: 0.001312 (CPU), 0.001351 (Real)
41 Total Component labelling time: 0.773009 (CPU), 1.767079 (Real)
42 Number of extensions: 2
43

44 [2022−02−22 14:52:10,567] INFO: Components labelling time: 0.070453 (CPU), 1.068502 (Real)
45 [2022−02−22 14:52:10,567] INFO: Nb extensions to construct: 4
46 [2022−02−22 14:52:10,567] INFO: Enumeration construction time: 0.000230 (CPU), 0.000229 (Real)
47 [2022−02−22 14:52:10,567] INFO: Printing time: 0.000153 (CPU), 0.000154 (Real)
48 [2022−02−22 14:52:10,567] INFO: Total time: 0.794339 (CPU), 1.890597 (Real)

Figure 1.4: Statistics log file example

8

1 [[a37,a48,a42,a49,a15,a30,a43,a8,a4,a5,a7,a9,a10,a12,a13,a20,a24,a27,a39,a41,a46,a47,a52,a53],[a37,a48,a42,a49,a21,
a30,a15,a8,a4,a5,a7,a9,a10,a12,a13,a20,a24,a27,a39,a41,a46,a47,a52,a53],[a54,a48,a42,a49,a15,a30,a43,a8,a4,a5,
a7,a9,a10,a12,a13,a20,a24,a27,a39,a41,a46,a47,a52,a53],[a54,a48,a42,a49,a21,a30,a15,a8,a4,a5,a7,a9,a10,a12,a13
,a20,a24,a27,a39,a41,a46,a47,a52,a53]]

Figure 1.5: Data file example

9

Chapter 2

Project Installation

2.1 Pre-requisite Software Installations
The following softwares must be installed on your client development environment:

• Python3

• An SSH client

• The version control system Git. In addition to Git, you can also install a graphical interface to git,
such as: SourceTree or Tortoise Git or any other.

• An IDE will help a lot. The development of AFDivider have been made using Pycharm. In the
following, we will use Pycharm in the installation guide.

Note: All the mentioned softwares have a fully functional and free version.

Note: You will find online installation guide for each software and following your operating system.

2.2 Git Repository: Download and Installation
The git repository is accessible at: https://gitlab.irit.fr/argumentation/afdivider

We recommend you to use ssh to connect to the repository and to use an ssh-key.
To do that:

1. Generate an ssh public key, if not done yet, as explain there: https://www.scaleway.com/en/
docs/console/my-project/how-to/create-ssh-key/

2. Copy your public key (see the previous tutorial), go to: https://gitlab.irit.fr/-/profile/
keys and add your key to the IRIT Gitlab.

3. To verify that every think is ok, enter the following command in your terminal:

1 ssh −T git@gitlab.irit.fr

Then, to clone AFDivider git repository from command line, do the following:

1 $ git clone git@gitlab.irit.fr:argumentation/afdivider.git

You can also clone the git repository directly from your graphical git tool.

10

https://gitlab.irit.fr/argumentation/afdivider
https://www.scaleway.com/en/docs/console/my-project/how-to/create-ssh-key/
https://www.scaleway.com/en/docs/console/my-project/how-to/create-ssh-key/
https://gitlab.irit.fr/-/profile/keys
https://gitlab.irit.fr/-/profile/keys

1 # For linux: sudo apt−get install libblas−dev liblapack−dev mpich
2

3 brew install openblas lapack mpich
4

5 pip3 install numpy mpi4py
6 pip3 install petsc petsc4py
7 pip3 install slepc slepc4py
8 pip3 install scikit−learn
9

10 python3 −mpip install matplotlib
11 pip3 install graphviz
12 pip3 install script
13 pip3 install scipy
14 pip3 install futures
15 pip3 install python−constraint
16 pip3 install unittest
17 pip3 install sphinx sphinx−argparse sphinx−rtd−theme

Figure 2.1: Third libraries installation script

2.3 Third Party Libraries Installation
In the git repository there is a script to install the required third library package, called packageInstall.sh.
This script has been written for mac but indications are given to adapt it for linux, as shown in Figure 2.1.

Note: The installation of petsc and slepc may take some time

2.4 Importing the Project into Pycharm
To import AFDivider project into Pycharm, follow this tutorial:

https://www.jetbrains.com/help/pycharm/

importing-project-from-existing-source-code.html

2.5 Launch Configuration Settings
You can create as examples the following launch configurations :

• AFDivider Solver launch configuration:

– Script path: <PathToYour>/AFDivider/main.py

– Parameters: -s <pathToInternalSolver> -fo apx -p EE-PR -f <pathToAfFile>

--clustering-mode <clusteringMode> --representation <outputMode>

– Python interpreter: <path to your python 3>

• Data plot configuration:

11

https://www.jetbrains.com/help/pycharm/importing-project-from-existing-source-code.html
https://www.jetbrains.com/help/pycharm/importing-project-from-existing-source-code.html

Figure 2.2: AFDivider launch configuration example

– Script path: <PathToYour>/AFDivider/dataScript/extractor.py

– Parameters: --mode plot --input-dataframePaths <list of dataframes>

– Python interpreter: <path to your python 3>

2.6 Internal solvers
Solvers can be found on Osirim at the following location:

/users/adria/mlafages/afdivider/out/solvers

They can be copied to your client with the following command to your current directory:

1 scp <your osirim account>@osirim−slurm.irit.fr:/users/adria/mlafages/afdivider/out/solvers/∗ .

Then, when running AFDivider a solver can be specified with the option -s.

12

Figure 2.3: Data plot configuration example

13

Chapter 3

Project Documentation

3.1 Project Structure
AFDivider project structure is illustrated in Figure 3.1 on the following page.

At the directory root, we have:

• The python script main.py: the entry point of AFDivider solver.

• The packageInstall.sh script that installs the third party library as explained in Section 2.3 on
page 11

• The .gitignore file

The meaning of the sub-folders is:

• The dungAf folder contains the data structures and algorithms that are directly linked to Dung’s
Argumentation Framework.

• The tools folder contains algorithms and tools used by the main algorithm.

• The dataScript folder contains all that is related to data extraction and presentation.

• The slurm folder contains all that is related to Osirim and Slurm. Chapter 4 on page 17 details
everything about it.

• The test folder contains automatic test scripts.

• The dataframe folder contains the processed data produced by different experiments on Osirim,
stored as dataframes.

• The sphinx folder contains all the sphinx configuration file to automatically generate a documen-
tation website for AFDivider project. See Section 3.2 on page 16 for more information.

• The instances folder contains AF instances.

• The ChocoConnector folder contains everything related to Choco, that is a CSP solver.

Note: Experiments showed that using the python library “constraint” met our needs and fi-
nally, Choco is not used in AFDivider . However we let the files in the project if needed.

14

AFDivider

main.py

packageInstall.sh

.gitignore

dungAf

theory.py

afParser.py

semanticComputer.py

afDivider.py

tools

worker.py

timer.py

utils.py

benchmarkGenrator.py

dataScript

cutAnalysis.py

extractor.py

runExtraction.sh

extractor.sh

slurm

. . .
tests

unittests.py

parseTests.py

dataframe

. . .
instances

. . .
sphinx

. . .
ChocoConnector

. . .
raf

. . .

Figure 3.1: AFDivider project directory tree view

15

• The raf folder should contain the data structures and algorithms that are directly linked to Recur-
sive Argumentation Framework.

Note: The adaptation of AFDivider algorithm for RAF is a perspective fully feasible relying on
the work made in [11] .

A detailled documentation of the AFDivider project code source is available by generating a website
as explained in Section 3.2. This documentation concerns the code source of AFDivider algorithms as
well as the data retrieval and the analysis tools developed for AFDivider .

3.2 Code Documentation
To generate code source documentation, we use a tool named sphinx that builds a local website from the
python docstrings, present in the different files, describing packages, modules, classes and functions. For
docstrings formatting we use the default sphinx formatting language: the reStructuredText language.

A full documentation of how to use sphinx and reStructuredText language is available here: https:
//www.sphinx-doc.org/en/master/contents.html.

You can see in the project code source plenty of examples on how docstrings should be made.
Given that the sphinx configuration has already been made and that this configuration is stored in the

git repository, in this section we focus on how to update the documentation site after some code and doc-
string changes. If needed a short tutorial on how to generate sphinx documentation website is available
here:
https://betterprogramming.pub/auto-documenting-a-python-project-using-sphinx-8878f9ddc6e9

In order to generate your new documentation local website, follow these steps:

1 cd <path to your local project directory>/sphinx
2 # If new files have been added do:
3 sphinx−apidoc −o −f source/ ../
4 make html
5 # To open the new generated website on your web browser do:
6 open build/index.html

If you do not have the open command installed, open with your browser the file:
file:///<path to your git repository>/sphinx/build/html/index.html.

16

https://www.sphinx-doc.org/en/master/contents.html
https://www.sphinx-doc.org/en/master/contents.html
https://betterprogramming.pub/auto-documenting-a-python-project-using-sphinx-8878f9ddc6e9

Chapter 4

Experimental Environment Documentation

This chapter presents the experimental environment used to analyse AFDivider performances. Notice
that this chapter has been written in March 2022. Some changes may have occurred since.

4.1 Osirim

4.1.1 Presentation

Osirim (Observatoire des Systèmes d’Indexation et de Recherche d’Information Multimédia)1 is one
of IRIT’s platforms. It offers a homogeneous environment for indexing and searching information in
multimedia contents (text, sound, image, video, digital signal). Its main objectives are to host scientific
projects requiring the storage and sharing of several terabytes of data to perform experiments on these
large volumes, the sharing of software tools, in particular for evaluation, the sharing of reference corpora,
and the dissemination of results and software.

Osirim gathers a set of corpora, evaluation tools, analysis software, and search engines with the main
goal of offering a space of mutualization where researchers can exchange their knowledge and benefit
from results obtained in other laboratories.

The platform is open to IRIT researchers and students working in these fields but also to anyone
outside IRIT wishing to use its hardware or software resources under certain conditions.

It is accessible at: https://osirim.irit.fr/.

4.1.2 Infrastructure
The Osirim platform is composed of a computing cluster of 1120 cores spread over 26 computing servers
+ 28 Nvidia GTX 1080 TI cards spread over 7 servers as well as 3 Nvidia Quadro RTX6000 cards (24
GB RAM). This cluster is structured as follows and Figure 4.1 on the next page provides an illustration
of it.

4.1.2.1 User connection nodes

These nodes (“Nœuds de connexion utilisateurs” in Figure 4.1 on the next page) are used to validate
programs before launching them on the computing cluster. These interactive nodes are shared among all
users and should not be used for long jobs.

1Translation: Observatory of Multimedia Information Indexing and Retrieval Systems

17

https://osirim.irit.fr/

Figure 4.1: Osirim Infrastructure

4.1.2.2 CPUs compute nodes (co2-nc01, ..., co2-nc26)

These nodes are servers dedicated to computation. A process running on a compute node accesses data
hosted on the storage area (“Baie de stockage” in Figure 4.1), performs processing and saves the result
on this area.

The technical characteristics of the 10 compute nodes co2-nc01 to co2-nc10 are as follows:

Ten IBM X3755 M3 servers each consisting of:

• 4 AMD Opteron 6262HE processors with 16 cores at 1.6Ghz

• 512 GB of RAM

• 2 x 300 GB of disk in RAID1

• 2 x 10 Gb/s network

The technical characteristics of the 12 co2-nc11 to co2-nc22 compute nodes are as follows:

Three DELL C6420 chassis containing 12 servers each composed of:

• 2 Intel Xeon Gold 6136 processors with 12 cores at 3 Ghz

• 192 GB of RAM

• 2 x 256 GB of disk in RAID1

• 10 Gb/s network

18

The technical characteristics of the 4 co2-nc23 to co2-nc26 compute nodes are as follows:

One DELL C6525 chassis containing 4 servers each composed of:
• 2 AMD EPYC Rome 7402 processors with 24 cores at 2.8 Ghz

• 512 GB of RAM

• 2 x 256 GB of disk in RAID1

• 10 Gb/s network

4.1.2.3 GPU computing nodes (co2-ng01, ..., co2-ng07)

These nodes are servers dedicated to GPU calculations. Each of the 7 servers is equipped with 4 Nvidia
Geforce GTX 1080TI graphics cards.

The technical characteristics of these 7 servers are as follows:

Seven DELL T630 servers:
• 2 Xeon 2640 V4 processors (20 threads)

• 2 x 400 GB SSD in RAID1

• 1 x 10 Gb/s network

• 4 Nvidia GTX 1080 TI GPUs (3584 cuda cores, 11 GB RAM)

4.1.2.4 The co2-ng09 GPU computing node

This node (that is not presented in Figure 4.1 on the previous page) is dedicated to GPU computing. It is
equipped with 3 Nvidia Quadro RTX6000 graphics cards.

The technical characteristics of this server are as follows:

DELL R740 server:
• 2 Xeon Gold 6230 20 cores processors

• 2 x 223 GB SSD in RAID1

• network 1 x 10 Gb/s

• 3 Nvidia Quadro RTX 6000 GPUs (4608 cuda cores, 576 NVIDIA Tensor cores, 72 NVIDIA RT
cores, 24 GB RAM)

4.1.2.5 1 PB storage array

A process running on a compute node accesses data hosted on the storage area, performs processing, and
saves the result to the storage area. Data storage on the Osirim platform is provided by an EMC Isilon
array consisting of:

• 11 X400 nodes with 36 SATA disks of 3 TB each

• each node is connected to the network via a trunk of 2 links of 10Gb/s

• the useful volume is about 1 PB

19

OneFS is the OS of the storage array that integrates the file system, volume management and data
security. The whole system is a single distributed file system with a single namespace that has the ability
to present data to servers using multiple protocols. NFS and HDFS are the access protocols used on
Osirim.

4.1.3 Slurm
Slurm (Simple Linux Utility for Resource Management) is an open source computer task scheduling so-
lution that allows you to create clusters of Linux servers with fault tolerance, such as ip-failover, compute
farm, task scheduling system. This solution can be used on clusters of various sizes, from two to several
thousand servers.

Installed on Osirim, it is via Slurm that jobs can be launched on Osirim compute nodes.

As a cluster resource manager, Slurm has three main functions:

1. It allocates access to resources (compute nodes) for users for a defined period of time so that they
can perform tasks;

2. It provides a framework for starting, executing, and monitoring tasks (normally tasks that are par-
allel) across all assigned nodes;

3. It arbitrates access to resources by managing a queue of ongoing tasks.

See https://slurm.schedmd.com/documentation.html for more information on Slurm.

4.1.4 Singularity
Singularity is a container platform installed on Osirim. It allows you to create and run containers that
package up pieces of software in a way that is portable and reproducible. You can thus build a container
using Singularity on your computer, and then run it on any server/clusters/computer supporting Singular-
ity. Your container is a single file in which are embedded all required library and software dependencies.
As a consequence, when using Singularity, installing third libraries on Osirim is no more required. This
is the practice recommended by Osirim technical team.

Figure 4.2 on the following page illustrates the difference between containers and virtual machines.
Virtual machines and containers are represented by the top blocks of same color. We can see that each
virtual machine (on the left side of the schema) embeds an OS, an application and software dependencies
while containers (in the right side) only embed an application and software dependencies.

AFDivider project started before the installation of singularity on Osirim. Currently AFDivider pro-
gram and dependencies are directly installed on Osirim compute cluster. However the external solvers
used in the step 3 of the algorithm are in Singularity containers (See Section 4.2.2 on page 22).

Developments to embed AFDivider into a container is encouraged to facilitate future features. Fur-
thermore the ICCMA competition also uses containers but Docker ones. There exists a way to go from
one to the other container format.

4.2 AFDivider Experiment Environment: Osirim Resources
As an overview, for AFDivider experiments we used two directories in which all sources, input and output
data, required and produced by the different operations are stocked:

20

https://slurm.schedmd.com/documentation.html

Figure 4.2: Virtual Machines vs Containers

• /users/adria/mlafages (in the following it will be referenced as “∼”): this directory contains
all input sources.

It contains the following directories:

– afdivider: it contains all AFDivider repository and other operating files (See Section 4.2.1).

– dataframes: it contains dataframes representing the condensed data of experiments. Those
dataframes are produced by the ∼/afdivider/datascript/runExtraction.sh script.

– env: it contains python3 environment.

– solvers iccma2019: it contains all the other solvers used in the experiments, embedded into
singularity containers.

• /projets/adria/afdivider/benchmark: this directory contains the data produced by the ex-
perimentation (statistics and extension semantics). Each of its sub-directories contains the exper-
iments of a given solver and is named after that solver (See Section 4.2.3 on page 23 for more
details).

4.2.1 AFDivider Directory

The project sources are located in ∼/afdivider. It is actually the local git repository. In addition to the
architecture described in Section 3.1 on page 14 are two directories that are ignored by git:

• ∼/afdivider/out: it contains three directories

– slurm: it contains all slurm job log files. The name of the file corresponds to the job ID. This
ID is useful to keep track of your running experiments (See Section 4.3.9 on page 40).

– solvers: it contains the different solvers used in our experiments. There, the solver programs
are not embedded into singularity containers, contrary to those in ∼/solvers iccma2019.

– tmpData: it contains all the temporary induced AFs generated to compute the semantics. This
directory should be regularly emptied.

21

• ∼/afdivider/runs: it contains log files that indicate succinctly the information related to an
experiment or an extraction job launch. The detailed log file made during those processes are
stocked into ∼/afdivider/out/slurm.

Following, the∼/afdivider/datascript/runExtraction.sh script (see Section 3.1 on page 14
for more details) the log file of an extraction job is stored at ∼/afdivider/runs/extraction.
Figure 4.3 is an example of extraction log file. It simply specifies the job ID of the extraction. Then
this ID can be used to monitor the job. Notice that this file is erased at each extraction, unless the
∼/afdivider/datascript/runExtraction.sh script is modified.

1 Submitted batch job 6618839

Figure 4.3: Extraction

Following, the scripts ∼/afdivider/slurm/runAll, that launches the experiments for the other
solvers, and ∼/afdivider/slurm/runAllAFDiv, that launches the experiments for AFDivider
solver, the log files are stored in that directory. Figure 4.4 gives an example of one of those
files. It indicates the Osirim compute partition type on which the experiments have been launched
(Partition: 24CPUNodes), the number of CPU cores used (NbCPU: 6), the maximal number of
simultaneous experiments (MaxParallel: 4), the number of experiment launches to do, which is
the size of the job array (NbTasks: 24), the timeout of each task (Timeout per tasks: 60m)
and to finish the ID of the first task of the job array. In this example, we use at most 24 cores and
so, the equivalent of one full CPU of the 24CPUNodes partition.

Note: The names of those log files can be changed if needed by modifying ∼/afdivider/slurm
/runAll and ∼/afdivider/slurm/runAllAFDiv scripts. Changing those names can be useful
in order to keep track of all experiment settings without erasing them.

1 Partition: 24CPUNodes
2 NbCPU: 6
3 MaxParallel: 4
4 NbTasks: 24
5 Timeout per tasks: 60m
6 Submitted batch job 6330565

Figure 4.4: Experiment log file

4.2.2 Solver Containers
So far, in ∼/solvers iccma2019 are stored the singularity containers of the following solvers:

• coquiaas iccma2019.sif

• pyglaf iccma2019.sif

• argpref iccma2019.sif

• eqargsolver iccma2019.sif

• taas-dredd iccma2019.sif

22

Figure 4.5: Data repository

• aspartix iccma2019.sif

• mu-toksia iccma2019.sif

• yonas iccma2019.sif

See [11], Section 5.3.1 “Success Count Comparison” for details and references.
Those solver containers are used as follows:

1 $ singularity run $solver $to −p $problem −fo $format −f $file

The value of the $solver variable can be as an example: ∼/solvers iccma2019/coquiaas iccma2019

.sif. $to is the timeout in seconds. The argument -p specifies the problem type, -fo the format of the
input AF (whether APX or TGF), -f the path to the AF.

4.2.3 Data Repository

4.2.3.1 Structure

The directory /projets/adria/afdivider/benchmark/ contains all experiments statistics and data.
As shown by Figure 4.5, each of its sub-directories contains the data of some solver.

As shown by Figure 4.6 on the next page, AFDiv directory contains all the experiments of AFDivider.
Each first depth directory corresponds to experiments made using a given external solver. Each second
depth directory corresponds to experiments made for a given output mode: verbose (which here is called
enum), compact or both output mode (See Section 1.3.2 on page 5 --representation option). Each
third depth directory corresponds to experiments made for different semantics. It is either the complete,
or the preferred or the stable semantics. To finish, each fourth depth directory corresponds to experiments
made for a given clustering method: spectral, uscc-chain or uscc-tree.

Notice that each statistics file name is built following this pattern:

<AF file name>-<clustering method>-<output mode>-<deviation rate>Rand.<slurm job

ID>.stat

Inside AFDiv/aspartix2019/enum/AFDiv-Asp-spectral/EE-PR, we have as an example the follow-
ing statistic file:

BA 100 60 2.apx-spectral-verbose-0.0Rand.6617391.stat

The data repository of each other solver is as represented by Figure 4.7 on the next page. Notice that
each statistics file name is built following this pattern:

<AF file name>.<slurm job ID>.stat

As an example we have the directory /projets/adria/afdivider/benchmark/cegartix-run.sh/EE-PR
following statistic file: ttc 20151217 1257.gml.80.apx.6340218.stat.

23

AFDiv

aspartix2019

both

EE-CO

spectral

uscc-chain

uscc-tree

EE-PR

. . .
EE-ST

. . .
enum

. . .
compact

. . .
mutoksia2019

. . .
pyglaf2017

. . .

Figure 4.6: AFDiv directory tree view

Solver

EE-CO

EE-PR

EE-ST

Figure 4.7: Other solver directory tree view

24

1 Job id: 6541002
2 Nb cpu: 6
3 Solver name: AFDivider
4 Semantic: EE−PR
5 AF name: BA 160 20 4.apx
6 Timeout: 3600
7 Clustering mode: spectral
8 Clustering randomness: 0.0
9 Output mode: no−enumeration

10 [2020−05−14 17:31:45,302] INFO: Nb workers: 6
11 [2020−05−14 17:31:45,448] INFO: Cutting and clustering time: 0.135596 (CPU), 0.169449 (Real)
12 [2020−05−14 17:31:45,448] INFO: Clustering partition:
13 FixPart has 1 cluster(s):
14 [’a1’, . . . , ’a99’]
15 Component 1 has 1 cluster(s):
16 [’a44’, ’a56’, ’a62’, ’a76’]
17

18 . . .
19

20 Component 14 has 1 cluster(s):
21 [’a155’, ’a160’]
22 [2020−05−14 17:31:45,625] INFO: Clusters labelling time: 0.093569 (CPU), 0.177065 (Real)
23 [2020−05−14 17:31:45,626] INFO: Nb extensions to construct: 24576
24 [2020−05−14 17:31:45,626] INFO: Enumeration construction time: 0.000813 (CPU), 0.000781 (Real)
25 [2020−05−14 17:31:45,626] INFO: Printing time: 0.000229 (CPU), 0.000242 (Real)
26 [2020−05−14 17:31:45,626] INFO: Total time: 0.230207 (CPU), 0.347537 (Real)
27 {{[a116,a150],[a73]},{[a103],[a66]},{[a124],[a35]},{[a36,a43,a95,a53],[a49,a36,a95,a53],[a15,a49]},{[a16],[a111,a59

]},{[a29,a83],[a0,a45]},{[a9],[a148]},{[a155],[a160]},{[a144],[a65]},{[a56,a76],[a44,a62]},{[a33],[a128]},{[a63
],[a135]},{[a120,a126],[a118]},{[a17,a90],[a30,a145,a12]},{[a151,a97,a68,a106,a139,a159,a131,a69,a119,a127,
a115,a107,a21,a113,a75,a91,a4,a143,a146,a98,a104,a100,a18,a101,a130,a80,a46,a74,a147,a48,a84,a47,a20,a82,
a86,a121,a132,a92,a96,a142,a38,a34,a122,a55,a158,a14,a99,a93,a61,a57,a87,a50,a152,a136,a42,a154,a78,a133,
a138,a137,a26,a141,a125,a51,a108,a32,a114,a129,a81,a39,a11,a25,a64,a54,a28,a110,a156,a22,a24,a71,a109,a7,
a157]}}

28

29

30 0.865u 0.676s 0:01.30 117.6% 0+0k 16+48io 0pf+0w

Figure 4.8: AFDivider data file example

1 Job id: 6444052
2 Nb cpu: 6
3 Solver name: aspartix iccma2019.sif
4 Problem: EE−PR
5 AF name: BA 160 20 4.apx
6 Timeout: 3600
7 Format: apx
8

9 [[a116, . . .] . . .]
10

11 real 0m 2.51s
12 user 0m 3.52s
13 sys 0m 0.34s

Figure 4.9: Other solver data file example

25

4.2.3.2 Data File

The data file produced by AFDivider contains three types of information:

• The experiment parameters

• The statistics

• The computed semantics

Figure 4.8 on the previous page shows an example of data file with the compact enumeration repre-
sentation as output format. We can observe that it is basically a statistics file combined with a storage file,
as presented in Section 1.3.2 on page 5, with some more information. As header, we have the experiment
parameters: job ID, number of cores, solver name, semantics, AF name, timeout (in second), clustering
mode, deviation rate and output format. The last line of the file is the output of the GNU time command.

Note: There is a time gap between the real time given by the GNU time command and the real time given
by AFDivider program itself. This time gap has not yet been identified. It is probably due to the fact that
the program does not not kill all threads immediately after the computation of the semantics.

The data file produced by other solvers are as the example given in Figure 4.9 on the previous page.
Notice that the output of the time command is different from the previous example. It is because at that
time, the shell installed on Osirim and thus the time command were not the same.

4.3 Experiment Process Manual

In this section are presented the different processes to properly conduct experiments.

4.3.1 Overview

Computation nodes

Stockage nodes

Connexion
nodes

Osirim

Client

1

2

3

4

Code upload

Experiment launching

Data extractor launching

Data download

Figure 4.10: Experiment operating diagram

26

First of all, let consider the diagram illustrated in Figure 4.10 on the previous page. It gives, with
some simplifications, the main steps to conduct experiments:

1. Code uploading: the git repository has to be updated from the remote repository in order to have
the latest version of AFDivider and others operating files.

2. Experiment launching: Once the files updated, experiments are launch on Osirim compute cluster
with slurm jobs.

3. Data extractor launching: When the experiment jobs are finished, an extraction job has to be
launched in order to process the data and to produce a dataframe with all experiment results.

4. Data download: To finish the produced dataframe is download on the client computer to be anal-
ysed. From it, charts and high level statistics are produced.

In the following subsections each of these steps are detailed.

4.3.2 Connection to Osirim
In order to connect to Osirim, you need to install the ssh client on your computer. Install also the scp
command that will be useful to download and upload files that are not in the git repository.

In your terminal, enter the following command:

1 $ ssh <your osirim account>@osirim−slurm.irit.fr

Then enter your password.
Once connected, you can explore the two repositories where AFDivider project files are stocked:

/users/adria/mlafages and /projets/adria/afdivider/.

4.3.3 Project Refresh
After your commit and push from your client, to refresh your project on Osirim, connect and enter the
following command:

1 $ cd /users/adria/mlafages/afdivider
2 $ git pull

4.3.4 Slurm Job
Before presenting the various script and configuration files used in the experiment process, let introduce
some basic notions of slurm.

A slurm job is simply a computer process, that is a script, a program to be executed. To launch
slurm jobs, we use the commands srun or sbatch. The difference between the two is that srun is
interactive and blocking (you get the result in your terminal and you cannot write other commands until
it is finished), while sbatch is batch processing and non-blocking (results are written to a file and you can
submit other commands right away).

Both have same options except that sbatch admits “job arrays” or “task arrays”. A slurm task array
is a collection of jobs that differ from each other by only a single index parameter. Creating a task array
provides an easy way to group related jobs together. For example, if you have a parameter study that

27

slurm

expConfigAFDiv

instanceScriptAFDiv

expScriptAFDiv

jobCounterAFDiv

jobRunnerAFDiv

runAllAFDiv

expConfigSing

instanceScriptSing

expScriptSing

jobCounterSing

jobRunnerSingularity

runAll

exec

instanceScript

simpleTest

Figure 4.11: Tree view of slurm folder

requires you to run your application five times, each with a different input parameter, you can use a task
array instead of creating five separate slurm scripts and submitting them separately.

As an example, the following command line will launch 1000 times the testarray.sh with a maxi-
mum of 5 tasks in parallel:

1 $ sbatch −−array [1−1000]%5 testarray.sh

Both srun and sbatch commands have various options. They are all presented in slurm documenta-
tion available here: https://slurm.schedmd.com/.

They can be specified:

• As arguments of the srun and sbatch commands. See the script presented in Figure 4.17 on
page 32 as an example.

• With a script header. See the script presented in Figure 4.15 on page 31 as an example.

4.3.5 Experiment Configuration and Scripts
The configuration and script files for the experiments are stored in the folder: ∼/afdivider/slurm.
Figure 4.11 lists its content.

Let explain the utility of each file:

• The exec script, shown in Figure 4.12 on the following page, allows to wrap a command to execute
inside the timeout command. It limits the execution of the command given in parameter to the
timeout specified as the first parameter. A priori there is no need to modify this file.

• The expConfigAFDiv file specifies the type of experiments to run for AFDivider solver. Fig-
ure 4.13 on the following page shows an example of configurations. Each line represents a config-
uration with the following information, separated by a white space:

1. Problem type

28

https://slurm.schedmd.com/

1 #!/bin/tcsh
2 timeout $argv:q
3 echo

Figure 4.12: The exec script

1 EE−PR spectral compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix−V−interface−2019.sh
2 EE−PR uscc chain compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix−V−interface−2019.sh
3 EE−PR uscc tree compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix−V−interface−2019.sh

Figure 4.13: expConfigAFDiv file example

2. Clustering method to used

3. Output format

4. Folder in which the AF instances to solved are located (all will be solved)

5. Clustering randomness to apply

6. Internal solver to used at cluster level

• The instanceScriptAFDiv file, shown is Figure 4.14 on the next page, is the script that launches
a task to solve one instance, using the exec script. It prints some information that will be stored in
the statistics file, before the experiment launch.

A priori there is no need to modify this file. The variable parameters for AFDivider experiment are
specified in expConfigAFDiv and runAllAFDiv files and in expScriptAFDiv script header.

• The expScriptAFDiv script, shown in Figure 4.15 on page 31, constructs the shell command lines
corresponding to the experiment configurations specified in expConfigAFDiv. For each configu-
ration and for AF instance, it:

– Creates the directory to store the statistics file produced (if not existing)
Notice that the experiment statistics files are stored in /projets/adria/afdivider/bench

mark/rawExpeAFDiv/. Afterward the checked statistics files should be placed manually in
the /projets/adria/afdivider/benchmark/AFDiv/ directory.

– Specifies the statistics file name according to the experiment configuration

– Prepares the shell command line for the resolution of the AF instance

Each shell command line created is stored in an array $commands. Then, the slurm batch called in
jobRunnerAFDiv will execute each command using the current task ID $SLURM ARRAY JOB ID.

Note: A timeout is specified for the slurm task with the --time parameter (line 44) however, ex-
periments shew that it was not reliable. That is why we wrap the different tasks into the slurm/exec
script.

A priori there is no need to modify expScriptAFDiv script, except to change its header. The lines
2-5 are slurm batch parameters:

– “#SBATCH --mail-type=END” indicates that a mail will be send when the slurm batch will
be fully executed

29

1 #!/bin/tcsh
2 set solver = ”AFDivider”
3 set semantic = ”$1”
4 set file = ”$2”
5 set clusteringMode = ”$3”
6 set clusteringRandomness = ”$4”
7 set nbcpu = ”$5”
8 set to = ”$6”
9 set outputMode = ”$7”

10 set internalSolver = ”$8”
11

12 echo ”Job id:” ”$SLURM JOB ID”
13 echo ”Nb cpu:” ”$nbcpu”
14 echo ”Solver name:” ”$solver:t”
15 echo ”Semantic:” ”$semantic”
16 echo ”AF name:” ”$file:t”
17 echo ”Timeout:” ”$to”
18 echo ”Clustering mode:” ”$clusteringMode”
19 echo ”Clustering randomness:” ”$clusteringRandomness”
20 echo ”Output mode:” ”$outputMode”
21 echo ”Solver used at cluster level:” ”$internalSolver”
22

23 time /users/adria/mlafages/afdivider/slurm/exec ”$to” /logiciels/Python−3.5.2/bin/python3 /users/adria/mlafages/
afdivider/main.py −s ”$internalSolver” −p ”$semantic” −fo apx −f ”$file” −−clustering−mode ”$clusteringMode”
−−clustering−randomness ”$clusteringRandomness” −−representation ”$outputMode”

Figure 4.14: The instanceScriptAFDiv script

– “#SBATCH --mail-user=mlafages@irit.fr” specifies to which address to send the mail

– “#SBATCH --output=/users/adria/mlafages/afdivider/out/slurm/%A.out” speci-
fies the output log file corresponding to the slurm batch. The %A will be replaced by the job
ID, which is also the ID of the first task of the task array.

– “#SBATCH --mem-per-cpu=7500M” specifies the RAM allocated to each task per CPU used.
As an example if 6 cores are allocated to a task and that for each cpu 7500Mo are allocated,
then the task will have access to at most 45 Go of RAM.

• The jobCounterAFDiv script, shown in Figure 4.16 on page 32, counts, following the experiment
configurations specified in expConfigAFDiv, the number of tasks to do, that is the total num-
ber of instances to solve. The computed number is used in the runAllAFDiv script then in the
jobRunnerAFDiv script. A priori there is no need to modify this file.

• The jobRunnerAFDiv script, shown in Figure 4.17 on page 32, displays the slurm parameters for
the job (which are received in parameters by the runAllAFDiv script):

– The slurm partition on which the batch has to be launched

– The number of CPU per task

– The maximal number of tasks in parallel

– The number of tasks

– The timeout for each task

30

1 #!/bin/tcsh
2 #SBATCH −−mail−type=END
3 #SBATCH −−mail−user=mlafages@irit.fr
4 #SBATCH −−output=/users/adria/mlafages/afdivider/out/slurm/%A.out # STDOUT
5 #SBATCH −−mem−per−cpu=7500M
6

7 set nbcpu = $1
8 set to = $2
9 @ srunTo = $to / 60 + 1

10

11 set firstJobId = ”$SLURM ARRAY JOB ID”
12 echo ”First job id” $firstJobId
13

14 set commands = ()
15

16 foreach config (”‘cat /users/adria/mlafages/afdivider/slurm/expConfigAFDiv‘”)
17 set config = ($config)
18 set semantic = ”$config[1]”
19 set clusteringMode = ”$config[2]”
20 set outputMode = ”$config[3]”
21 set instanceFolder = ”$config[4]”
22 set clusteringRandomness = ”$config[5]”
23 set internalSolver = ”$config[6]”
24

25 echo $semantic $clusteringMode $outputMode $clusteringRandomness
26

27 foreach file (‘ls −d $instanceFolder/*‘)
28 set dir = /projets/adria/afdivider/benchmark/rawExpeAFDiv/”$internalSolver:t”/$semantic
29 if (! −d $dir) then
30 mkdir −p $dir
31 endif
32

33 set outFilename = $dir/$file:t−”$clusteringMode”−”$outputMode”−”$clusteringRandomness”Rand.”
$firstJobId”.stat

34

35 echo ”OutFilename:” ”$outFilename”
36

37 set currentCommand = ”$outFilename /users/adria/mlafages/afdivider/slurm/instanceScriptAFDiv $semantic
$file $clusteringMode $clusteringRandomness $nbcpu $to $outputMode $internalSolver”

38 set commands = ($commands:q ”$currentCommand”)
39 end
40 end
41

42 set currentCommand = ($commands[$SLURM ARRAY TASK ID])
43

44 srun −−time=$srunTo −o $currentCommand:q

Figure 4.15: The instanceScriptAFDiv script

31

1 #!/bin/tcsh
2

3 set nbTask = 0
4 foreach config (”‘cat /users/adria/mlafages/afdivider/slurm/expConfigAFDiv‘”)
5 set firstChar = ‘echo $config | cut −c1‘
6 if (”$firstChar” == ”#”) then
7 continue
8 endif
9 set config = ($config)

10 set fileFolder = ”$config[4]”
11

12 set nbFile = ‘ls $fileFolder | wc −l‘
13 @ nbTask = ($nbTask + $nbFile)
14 end
15

16 echo $nbTask

Figure 4.16: The jobCounterAFDiv script

1 #!/bin/tcsh
2

3 set partition = $1
4 set nbcpu = $2
5 set maxParallel = $3
6 set nbTasks = $4
7 set to = $5
8

9 echo ”Partition:” ”$partition”
10 echo ”NbCPU:” ”$nbcpu”
11 echo ”MaxParallel:” ”$maxParallel”
12 echo ”NbTasks:” ”$nbTasks”
13 echo ”Timeout:” ”$to sec”
14

15 sbatch −−partition=”$partition” −−cpus−per−task=”$nbcpu” −−array=1−”$nbTasks”%”$maxParallel” /users/adria/
mlafages/afdivider/slurm/expScriptAFDiv ”$nbcpu” ”$to”

Figure 4.17: The jobRunnerAFDiv script

Then it launches the slurm batch to execute all the slurm task array specified in the expScriptAFDiv
script. A priori there is no need to modify this file.

• The runAllAFDiv script, dispayed in Figure 4.18 on the following page, is the most high level
script to launch all the mechanism. It calls the jobRunnerAFDiv script with the required param-
eters (slurm partition, number of CPU per task, maximal number of tasks in parallel, number of
tasks, timeout for each task) and saves the log of the batch launch in /users/adria/mlafages/afdivider/
runs/runAFDiv.log.

This file has to be modified if needed to change those parameters and the location of the log file.

All the previous scripts and configuration files have their counterparts for the experiments of other
solvers:

• The expConfigSing file specifies the type of experiments to run for other solvers. Figure 4.19

32

1 /users/adria/mlafages/afdivider/slurm/jobRunnerAFDiv 24CPUNodes 6 4 ‘/users/adria/mlafages/afdivider/slurm/
jobCounterAFDiv‘ 3600 > /users/adria/mlafages/afdivider/runs/runAFDiv.log

Figure 4.18: The runAllAFDiv script

1 /users/adria/mlafages/solvers iccma2019/aspartix iccma2019.sif EE−PR /users/adria/mlafages/afdivider/instances/AF/
hardInstances/ apx

2 /users/adria/mlafages/solvers iccma2019/mu−toksia iccma2019.sif EE−PR /users/adria/mlafages/afdivider/instances/AF
/hardInstances/ apx

Figure 4.19: The expConfigSing file

shows an example of configurations. Each line represents a configuration with the following infor-
mation, separated by a white space:

1. Path to Solver

2. Problem type

3. Folder in which the AF instances to solved are located (all will be solved)

4. Input format

• The instanceScriptSing file, shown in Figure 4.20 on the next page, is the script that launches
a task to solve one instance, using the exec script. It prints some information that will be stored in
the statistics file, before the experiment launch.

• The expScriptSing script, shown in Figure 4.21 on page 35, constructs the shell command lines
corresponding to the experiment configurations specified in expConfigSing. For each configura-
tion and for AF instance, it:

– Verifies if the configuration is valid (that is, that the solver and instance folder exist)

– Creates the directory to store the resulting statistics file (if not existing)
Notice that the experiment statistics files are stored in /projets/adria/afdivider/bench

mark/<solverName>.

– Specifies the statistics file name according to the experiment configuration

– Prepares the shell command line for the resolution of the AF instance

Each shell command line created is stored in an array $commands. Then, the slurm batch called in
jobRunnerSingularity will execute each command using the current task ID stored in $SLURM
ARRAY JOB ID.

Note: A timeout is specified for the slurm task with the --time parameter (line 44) however, ex-
periments shew that it was not reliable. That is why we wrap the different tasks into the slurm/exec
script.

A priori there is no need to modify the expScriptSing script, except to change its header. The
lines 2-5 are slurm batch parameters:

33

1 #!/bin/tcsh
2 set solver = ”$1”
3 set problem = ”$2”
4 set file = ”$3”
5 set nbcpu = ”$4”
6 set to = ”$5”
7 set format = ”$6”
8

9 echo ”Job id:” ”$SLURM JOB ID”
10 echo ”Nb cpu:” ”$nbcpu”
11 echo ”Solver name:” ”$solver:t”
12 echo ”Problem:” ”$problem”
13 echo ”AF name:” ”$file:t”
14 echo ”Timeout:” ”$to”
15 echo ”Format:” ”$format”
16

17 singularity run $solver $to −p $problem −fo $format −f $file

Figure 4.20: The instanceScriptSing script

– “#SBATCH --mail-type=END” indicates that a mail will be send when the slurm batch will
be fully executed

– “#SBATCH --mail-user=mlafages@irit.fr” specifies to which address to send the mail

– “#SBATCH --output=/users/adria/mlafages/afdivider/out/slurm/%A.out” speci-
fies the output log file corresponding to the slurm batch. The %A will be replaced by the job
ID, which is also the ID of the first task of the task array.

– “#SBATCH --mem-per-cpu=7500M” specifies the RAM allocated to each task per CPU used.
As an example if 6 cores are allocated to a task and that for each cpu 7500Mo are allocated,
then the task will have access to at most 45 Go of RAM.

• The jobCounterSing script, shown in Figure 4.22 on page 36, counts, following the experi-
ment configurations specified in expConfigSing, the number of tasks to do, that is the total
number of instances to solve. The computed number is used in the runAll script then in the
jobRunnerSingularity script. A priori there is no need to modify this file.

• The jobRunnerSingularity script, shown in Figure 4.23 on page 36, displays the slurm param-
eters for the job (which are received in parameters by the runAll script):

– The slurm partition on which the batch has to be launched

– The number of CPU per task

– The maximal number of tasks in parallel

– The number of tasks

– The timeout for each task

Then it launches the slurm batch to execute all the slurm task array specified in the expScriptSing
script. A priori there is no need to modify this file.

34

1 #!/bin/tcsh
2 #SBATCH −−mail−type=END
3 #SBATCH −−mail−user=mlafages@irit.fr
4 #SBATCH −−output=/users/adria/mlafages/afdivider/out/slurm/%A.out # STDOUT
5 #SBATCH −−mem−per−cpu=7500M
6

7 set nbcpu = $1
8 set to = $2
9 @ srunTo = $to / 60 + 1

10

11 set firstJobId = ”$SLURM ARRAY JOB ID”
12 echo ”First job id” $firstJobId
13

14 set commands = ()
15

16 ... # Configuration verification
17

18 foreach config (”‘cat /users/adria/mlafages/afdivider/slurm/expConfigSing‘”)
19 set firstChar = ‘echo $config | cut −c1‘
20 if (”$firstChar” == ”#”) then
21 continue
22 endif
23 set config = ($config)
24 set solver = ”$config[1]”
25 set problem = ”$config[2]”
26 set fileFolder = ”$config[3]”
27 set format = ”$config[4]”
28

29 foreach file (‘ls −d $fileFolder/*.$format‘)
30 set dir = /projets/adria/afdivider/benchmark/$solver:t/$problem
31 if (! −d $dir) then
32 mkdir −p $dir
33 endif
34

35 set outFilename = $dir/$file:t.”$firstJobId”.stat
36

37 echo ”OutFilename:” ”$outFilename”
38

39 set isNotSif = ‘echo $solver | grep ’.sif$’‘
40 if ($isNotSif == ””) then
41 set currentCommand = ”$outFilename /users/adria/mlafages/afdivider/slurm/instanceScript $solver

$problem $file $nbcpu $to $format”
42 else
43 set currentCommand = ”$outFilename /users/adria/mlafages/afdivider/slurm/instanceScriptSing $solver

$problem $file $nbcpu $to $format”
44 endif
45

46 set commands = ($commands:q ”$currentCommand”)
47 end
48 end
49

50 set currentCommand = ($commands[$SLURM ARRAY TASK ID])
51 srun −−time=$srunTo −o $currentCommand:q

Figure 4.21: The expScriptSing script

35

1 #!/bin/tcsh
2

3 set nbTask = 0
4 foreach config (”‘cat /users/adria/mlafages/afdivider/slurm/expConfigSing‘”)
5 set firstChar = ‘echo $config | cut −c1‘
6 if (”$firstChar” == ”#”) then
7 continue
8 endif
9 set config = ($config)

10 set fileFolder = ”$config[3]”
11

12 set nbFile = ‘ls $fileFolder | wc −l‘
13 @ nbTask = ($nbTask + $nbFile)
14 end
15

16 echo $nbTask

Figure 4.22: The jobCounterSing script

1 #!/bin/tcsh
2

3 set partition = $1
4 set nbcpu = $2
5 set maxParallel = $3
6 set nbTasks = $4
7 set to = $5
8

9 echo ”Partition:” ”$partition”
10 echo ”NbCPU:” ”$nbcpu”
11 echo ”MaxParallel:” ”$maxParallel”
12 echo ”NbTasks:” ”$nbTasks”
13 echo ”Timeout:” ”$to sec”
14

15 sbatch −−partition=”$partition” −−cpus−per−task=”$nbcpu” −−array=1−”$nbTasks”%”$maxParallel” /users/adria/
mlafages/afdivider/slurm/expScriptSing $nbcpu $to

Figure 4.23: The jobRunnerSingularity script

36

1 /users/adria/mlafages/afdivider/slurm/jobRunnerSingularity 24CPUNodes 6 4 ‘/users/adria/mlafages/afdivider/slurm/
jobCounterSing‘ 3600 > /users/adria/mlafages/afdivider/runs/runSing.log

Figure 4.24: The runAll script

1 #!/bin/tcsh
2 set solver = ”$1”
3 set semantic = ”$2”
4 set file = ”$3”
5 set nbcpu = ”$4”
6 set to = ”$5”
7 set format = ”$6”
8

9 echo ”Job id:” ”$SLURM JOB ID”
10 echo ”Nb cpu:” ”$nbcpu”
11 echo ”Solver name:” ”$solver:t”
12 echo ”Semantic:” ”$semantic”
13 echo ”AF name:” ”$file:t”
14 echo ”Timeout:” ”$to”
15 echo ”Format:” ”$format”
16

17 time /users/adria/mlafages/afdivider/slurm/exec $to $solver −p $semantic −fo $format −f $file

Figure 4.25: The instanceScript script

• The runAll script, dispayed in Figure 4.24, is the most high level script to launch all the mech-
anism. It calls the jobRunnerSingularity script with the required parameters (slurm partition,
number of CPU per task, maximal number of tasks in parallel, number of tasks, timeout for each
task) and saves the log of the batch launch in /users/adria/mlafages/afdivider/runs/run-

Sing.log.

This file has to be modified if needed to change those parameters and the location of the log file.

Finally, two more scripts exist in order to make simple tests:

• The instanceScript script, shown in Figure 4.25, launches a task to solve one instance. It prints
some information before the experiment launch.

• The simpleTest script, shown in Figure 4.26 on the next page, creates a simple slurm task while
calling the instanceScript script. It takes two parameters: the AF instance to solve and the
solver to use.

4.3.6 Experiment Launching
Following Section 4.3.5 on page 28, here are the following procedures to launch experiments for AFDi-
vider or other solvers.

4.3.6.1 AFDivider

For AFDivider here are the following steps. Notice that some steps may be non necessary:

1. Connect to Osirim

37

1 #!/bin/tcsh
2 #SBATCH −−mail−type=END
3 #SBATCH −−mail−user=mlafages@irit.fr
4 #SBATCH −−output=/users/adria/mlafages/afdivider/out/slurm/%A.out # STDOUT
5 #SBATCH −−mem−per−cpu=7500M
6

7 set file = $2
8 set solver = $1
9 srun /users/adria/mlafages/afdivider/slurm/instanceScript $solver EE−PR $file

Figure 4.26: The simpleTest script

2. Refresh your project

3. Modify the expScriptAFDiv script to set the wanted mail address to be notified at the end of the
experiment

4. Modify the expScriptAFDiv script to set the wanted amount of memory allocated per CPU

5. Set your experiment configurations in the expConfigAFDiv

6. Modify the runAllAFDiv script to your convenience

7. Execute the runAllAFDiv script as follows:

1 $ /users/adria/mlafages/afdivider/slurm/runAllAFDiv

4.3.6.2 Other solvers

For other solvers, here are the following steps. Notice that some steps may be non necessary:

1. Connect to Osirim

2. Refresh your project

3. Modify the expScriptSing script to set the wanted mail address to be notified at the end of the
experiment

4. Modify the expScriptSing script to set the wanted amount of memory allocated per CPU

5. Set your experiment configurations in the expConfigSing

6. Modify the runAll script to your convenience

7. Execute the runAll script as follows:

1 $ /users/adria/mlafages/afdivider/slurm/runAll

38

4.3.7 Data Extraction Launching

To launch a data extraction, do the following steps:

1. Connect to osirim

2. Edit the extractor.sh file to specify:

• The directory path where solver’s data are stored, with the option --dirPath.
Notice that the path should be the one in which the sub-directories are the solver data archive.
Practically, this path is either /projets/adria/afdivider/benchmark for other solvers or
a path for AFDivider following this pattern:

/projets/adria/afdivider/benchmark/AFDiv/<internalSolver>/<outputMode>

As an example:

/projets/adria/afdivider/benchmark/AFDiv/aspartix2019/enum

In the case all sub-directories are not to be processed, the option --retrieval-selection

must be specified.

Note: Inside a solver directory, only three sub-directories will be processed: EE-PR, EE-ST,
EE-CO.

• The solver selection with the option --retrieval-selection, as the following example
shows it:

1 srun /users/adria/mlafages/afdivider/dataScript/extractor.py −−mode retrieval −−dirPath /projets/adria/
afdivider/benchmark −−output−dataframePath /users/adria/mlafages/dataframeTest.csv −−retrieval−
selection aspartix iccma2019.sif coquiaas iccma2019.sif

• The output dataframe file, with the option --output-dataframePath.

3. Edit if needed the runExtraction.sh script to specify the extration log file. If not modified, the
log file will be /users/adria/mlafages/afdivider/runs/extraction.

4. Run the runExtraction.sh script:

1 $ /users/adria/mlafages/afdivider/dataScript/runExtraction.sh

4.3.8 Data Retrieval

Finally to retrieve the dataframe created to your client. Do the following command from your client
terminal:

1 $ scp <your osirim account>@osirim−slurm.irit.fr:/users/adria/mlafages/dataframeTest.csv .

This will copy the dataframe to your current directory.

39

4.3.9 Slurm Monitoring
To monitor slurm jobs you can connect to https://osirim.irit.fr/etat-de-la-plateforme/ with
your osirim account credentials. From there you can:

• See the cluster workload of each compute nodes of Osirim (see Section 4.1.2 on page 17).

• For each node type, see the running jobs and the job queue.

• Cancel jobs using their ID.

To facilitate the job identification, you can go to ∼/afdivider/out/slurm. The greatest file ID
(the ID is an integer number) is the newest launch. Notice that all slurm log files go there, whether it is
for data extraction or experiments jobs. Figure 4.28 on page 42 represents an extraction file log while
Figure 4.27 on the following page an experiment one. Let explain each of them.

Consider Figure 4.27 on the following page. The first line indicates the ID of the job or the ID of
the first task if the job is a task array (See Section 4.3.4 on page 27 for more details). The second line
specifies the task. Here, AFDivider solver is called to compute the Compact Enumeration Representation
of preferred semantics using the spectral clustering method. The “0.0” correspond to the wanted random
deviation rate from the clustering produced by the spectral clustering (See Section 1.3.2 on page 5, option:
--clustering-randomness). As a consequence, in this experiment batch no changes are made. The
following lines specify the paths to the statistics files produced by the experiments.

Now, consider Figure 4.28 on page 42. The first line indicates the command executed by the job.
Here, the data of the statistics/storage file are retrieved from the directory: /projets/adria/afdi-

vider/benchmark/AFDiv/aspartix2019/enum and the dataframe created has been stored at this lo-
cation: /users /adria/mlafages/dataframeAspartixAFDiv.csv. The following lines specify the
tree view of the explored files. In the case where a bug would happen, this tree view is very useful to
troubleshoot, to see from the parsing of which file the problem comes from.

40

https://osirim.irit.fr/etat-de-la-plateforme/

1 First job id 6619180
2 EE−PR spectral compact 0.0
3 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/amador−transit 20151216 1706.

gml.80.apx−spectral−compact−0.0Rand.6619180.stat
4 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/auckland−regional−transport−

authority 20110207 0347.normalized.gml.80.apx−spectral−compact−0.0Rand.6619180.stat
5 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 100 60 2.apx−spectral−

compact−0.0Rand.6619180.stat
6 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 100 80 3.apx−spectral−

compact−0.0Rand.6619180.stat
7 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 120 70 1.apx−spectral−

compact−0.0Rand.6619180.stat
8 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 120 80 2.apx−spectral−

compact−0.0Rand.6619180.stat
9 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 120 90 5.apx−spectral−

compact−0.0Rand.6619180.stat
10 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 140 60 2.apx−spectral−

compact−0.0Rand.6619180.stat
11 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 140 90 3.apx−spectral−

compact−0.0Rand.6619180.stat
12 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 160 20 4.apx−spectral−

compact−0.0Rand.6619180.stat
13 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 160 50 1.apx−spectral−

compact−0.0Rand.6619180.stat
14 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 160 60 2.apx−spectral−

compact−0.0Rand.6619180.stat
15 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 160 60 5.apx−spectral−

compact−0.0Rand.6619180.stat
16 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 180 40 2.apx−spectral−

compact−0.0Rand.6619180.stat
17 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 180 60 4.apx−spectral−

compact−0.0Rand.6619180.stat
18 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 180 70 1.apx−spectral−

compact−0.0Rand.6619180.stat
19 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/BA 200 70 4.apx−spectral−

compact−0.0Rand.6619180.stat
20 OutFilename: /projets/adria/afdivider/benchmark/main.py/aspartix2019/EE−PR/basin−or−us.gml.20.apx−spectral−

compact−0.0Rand.6619180.stat

Figure 4.27: Slurm Experiment log file

41

1 python extractor.py −−mode=retrieval −−dirPath=/projets/adria/afdivider/benchmark/AFDiv/aspartix2019/enum −−
output−dataframePath /users/adria/mlafages/dataframeAspartixAFDiv.csv

2 AFDiv−Asp19−UsccTree
3 EE−CO
4 ER 500 50 1.apx−uscc tree−verbose−0.0Rand.6617391.stat
5 ER 400 30 1.apx−uscc tree−verbose−0.0Rand.6617391.stat
6 auckland 0347.apx−uscc tree−verbose−0.0Rand.6617391.stat
7 EE−ST
8 ER 500 50 1.apx−uscc tree−verbose−0.0Rand.6617391.stat
9 ER 400 30 1.apx−uscc tree−verbose−0.0Rand.6617391.stat

10 auckland 0347.apx−uscc tree−verbose−0.0Rand.6617391.stat
11 EE−PR
12 ER 500 50 1.apx−uscc tree−verbose−0.0Rand.6617391.stat
13 ER 400 30 1.apx−uscc tree−verbose−0.0Rand.6617391.stat
14 auckland 0347.apx−uscc tree−verbose−0.0Rand.6617391.stat
15 AFDiv−Asp19−UsccChain
16 EE−CO
17 ER 400 30 2.apx−uscc chain−verbose−0.0Rand.6617391.stat
18 WS 400 32 50 10.apx−uscc chain−verbose−0.0Rand.6617391.stat
19 WS 500 16 90 30.apx−uscc chain−verbose−0.0Rand.6617391.stat
20 EE−ST
21 ER 400 30 2.apx−uscc chain−verbose−0.0Rand.6617391.stat
22 WS 400 32 50 10.apx−uscc chain−verbose−0.0Rand.6617391.stat
23 WS 500 16 90 30.apx−uscc chain−verbose−0.0Rand.6617391.stat
24 EE−PR
25 ER 400 30 2.apx−uscc chain−verbose−0.0Rand.6617391.stat
26 WS 400 32 50 10.apx−uscc chain−verbose−0.0Rand.6617391.stat
27 WS 500 16 90 30.apx−uscc chain−verbose−0.0Rand.6617391.stat
28 AFDiv−Asp19−Spectral
29 EE−CO
30 ER 400 10 5.apx−spectral−verbose−0.0Rand.6617391.stat
31 WS 400 16 70 70.apx−spectral−verbose−0.0Rand.6617391.stat
32 bw2.pfile−3−07.pddl.1.cnf.apx−spectral−verbose−0.0Rand.6617391.stat
33 EE−ST
34 ER 400 10 5.apx−spectral−verbose−0.0Rand.6617391.stat
35 WS 400 16 70 70.apx−spectral−verbose−0.0Rand.6617391.stat
36 bw2.pfile−3−07.pddl.1.cnf.apx−spectral−verbose−0.0Rand.6617391.stat
37 EE−PR
38 ER 400 10 5.apx−spectral−verbose−0.0Rand.6617391.stat
39 WS 400 16 70 70.apx−spectral−verbose−0.0Rand.6617391.stat
40 bw2.pfile−3−07.pddl.1.cnf.apx−spectral−verbose−0.0Rand.6617391.stat

Figure 4.28: Slurm Experiment log file

42

Chapter 5

Conclusion and Perspectives

This document provides everything needed to get started with AFDivider solver use and improvement.
Mickaël Lafages’ PhD Thesis [11] opens a bunch of feature-oriented perspectives for the AFDivider
algorithm. In addition to those, we give here some technical perspectives to enhance AFDivider project
as a whole:

• Create an installer for AFDivider solver and/or make it available as a package.

• Embed AFDivider solver into a Singularity container will facilitate its portability. No Osirim sup-
port for new package installations will be needed and a simple conversion to Docker container will
make it suitable for ICCMA competition.

• Configure Gitlab CI/CD to facilitate AFDivider solver tests and deployments, connecting Osirim
to Gitlab CI/CD (continuous integration/continuous deployment).

• Make the code documentation available on line, for example with Gitlab Pages (if possible, for
continuous integration and deployment).

43

Bibliography

[1] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient computation of extensions
for dynamic abstract argumentation frameworks: An incremental approach. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, pages 49–55, 2017.

[2] Mario Alviano. The pyglaf argumentation reasoner. In OASIcs-OpenAccess Series in Informatics,
volume 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation
semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[4] Martin Caminada. On the issue of reinstatement in argumentation. In JELIA, pages 111–123, 2006.

[5] Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Massimiliano Giacomin, and
Grigoris Antoniou. Exploiting parallelism for hard problems in abstract argumentation. In AAAI,
pages 1475–1481, 2015.

[6] Günther Charwat, Wolfgang Dvořák, Sarah A Gaggl, Johannes P Wallner, and Stefan Woltran.
Methods for solving reasoning problems in abstract argumentation–a survey. Artificial intelligence,
220:28–63, 2015.

[7] OHAAI Collaboration, Federico Castagna, Timotheus Kampik, Atefeh Keshavarzi Zafarghandi,
Mickaël Lafages, Jack Mumford, Christos T. Rodosthenous, Samy Sá, Stefan Sarkadi, Joseph Sin-
gleton, Kenneth Skiba, and Andreas Xydis. Online handbook of argumentation for ai: Volume 1,
2020.

[8] S. Doutre, M. Lafages, and M-C. Lagasquie-Schiex. A distributed and clustering-based algorithm
for the enumeration problem in abstract argumentation. In Proc. of PRIMA, pages 87–105. Springer,
2019.

[9] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. A Distributed and
Clustering-based Algorithm for the Enumeration Problem in Abstract Argumentation (JIAF 2020).
In 14èmes Journées d’Intelligence Artificielle Fondamentale (JIAF 2020), Actes des JIAF 2020,
pages 99–108, Angers, France, 2020. AFIA.

[10] Wolfgang Dvorak and Paul E. Dunne. Computational problems in formal argumentation and their
complexity. In Handbook of formal argumentation, pages 631–688. College publication, 2018.

[11] Mickaël LAFAGES. Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale
Cases. PhD thesis, Université de Toulouse, 2022.

44

[12] Mickaël Lafages, Sylvie Doutre, and Marie-Christine Lagasquie-Schiex. Clustering and distributed
computing in abstract argumentation. Rapport de recherche IRIT/RR–2018–11–FR, IRIT, Univer-
sité Paul Sabatier, Toulouse, décembre 2018.

[13] Beishui Liao. Toward incremental computation of argumentation semantics: A decomposition-
based approach. Annals of Mathematics and Artificial Intelligence, 67(3-4):319–358, 2013.

45

	Solver Manual
	General Presentation
	Input Format
	Functionalities
	Required Arguments
	Options

	Project Installation
	Pre-requisite Software Installations
	Git Repository: Download and Installation
	Third Party Libraries Installation
	Importing the Project into Pycharm
	Launch Configuration Settings
	Internal solvers

	Project Documentation
	Project Structure
	Code Documentation

	Experimental Environment Documentation
	Osirim
	Presentation
	Infrastructure
	Slurm
	Singularity

	AFDivider Experiment Environment: Osirim Resources
	AFDivider Directory
	Solver Containers
	Data Repository

	Experiment Process Manual
	Overview
	Connection to Osirim
	Project Refresh
	Slurm Job
	Experiment Configuration and Scripts
	Experiment Launching
	Data Extraction Launching
	Data Retrieval
	Slurm Monitoring

	Conclusion and Perspectives
	Bibliography

