Introduction

The first part of Mickaël Lafages' PhD Thesis [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] is concerned about solving more efficiently argumentation problems that are expressed in Dung's Argumentation Framework (AF) and its semantics. In Dung's AF, solutions of an argumentation problem are sets of arguments (defined under the notion of extension) which, when considered together, win the argumentation. Finding all the possible solutions of an argumentation problem, i.e. all its winning sets of arguments, can be very time consuming. Many argumentation problem instances, particularly large, 1 are too hard to be solved in an acceptable time, as shown by the results of the ICCMA argumentation solver competition. 2 This hardness is not relative to the current state of the art but rather to the intrinsic theoretical complexity of the argumentation semantics that are tackled [START_REF] Dvorak | Computational problems in formal argumentation and their complexity[END_REF].

Considering the foreseen scaling-up challenge in addition to the complexity, there is a need for heuristics, methods and algorithms efficient enough to tackle such issues and make possible the use of automated argumentation models, even in such settings. Enhancing the computational time of enumerating the solutions of an argumentation framework has been the object of study of many works, resulting in the elaboration of several recent algorithms such as [START_REF] Alfano | Efficient computation of extensions for dynamic abstract argumentation frameworks: An incremental approach[END_REF][START_REF] Cerutti | Exploiting parallelism for hard problems in abstract argumentation[END_REF][START_REF] Liao | Toward incremental computation of argumentation semantics: A decompositionbased approach[END_REF][START_REF] Alviano | The pyglaf argumentation reasoner[END_REF] (see [START_REF] Charwat | Methods for solving reasoning problems in abstract argumentation-a survey[END_REF] for an overview).

To address this issue, we propose the AFDivider algorithm, a distributed and clustering-based algorithm that has for main purpose to find all the possible solutions of an argumentation problem. Those solutions are defined in terms of semantics labelling [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF][START_REF] Baroni | An introduction to argumentation semantics[END_REF], a three status based function mapping that assigns to each argument of an AF an acceptance status: accepted, rejected or undecided. An empirical analysis of the AFDivider algorithm shows that the new approach of computing Dung-like semantics is relevant and very appropriate for some types of argumentation problems. This work led to several publications: [START_REF] Lafages | Clustering and distributed computing in abstract argumentation[END_REF][START_REF] Doutre | A distributed and clustering-based algorithm for the enumeration problem in abstract argumentation[END_REF][START_REF] Castagna | Online handbook of argumentation for ai[END_REF][START_REF] Doutre | A Distributed and Clustering-based Algorithm for the Enumeration Problem in Abstract Argumentation (JIAF 2020)[END_REF].

The present report describes how to use, install and generate benchmarks with AFDivider solver. Chapter 1 on the next page describes the user manual of the AFDivider solver. Chapter 2 on page 10 describes the installation procedure of the AFDivider solver. Chapter 3 on page 14 describes AFDivider project structure. Finally, Chapter 4 on page 17 concludes this report.

For details about documentation on theoretical and analysis explanations, refer to the PhD manuscript [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]. For details on source code documentation, refer to Section 3.2 on page 16.

Chapter 1 Solver Manual 1.1 General Presentation

The AFDivider solver enumerates extension-based semantics, even though the internal algorithm presented below is based on labelling semantics. It has been designed for Dung's original semantics: the complete, the stable and the preferred semantics. In this section, the algorithm is briefly presented. For more information on AFDivider , see [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF].

Given a Dung's argumentation framework AF = ⟨A, K⟩ and a semantics σ ∈ {complete, stable, preferred}, the AFDivider algorithm, rather than building labellings that cover the whole AF (which could be time consuming), computes the semantics labellings using a distributed and clustering-based method. Here are its four major steps graphically represented in Figure 1.1:

1. A pretreatment on AF removes "trivial" parts of it.

2. Clusters in AF are identified.

3. The labellings under semantics σ in each of these clusters are computed in parallel.

4. The results of each cluster are reunified to get the labellings of AF . Algorithms 1 and 2 on this page and on the next page give the formal definition of the AFDivider algorithm. They are said to be generic algorithms in the sense that:

• Any clustering method can be used to split the AF.

• Any sound and complete procedure that computes the semantics σ , can be used to compute the labellings of the different clusters.

Algorithm 1: AFDivider algorithm.

Input: Let AF = ⟨A, K⟩ be an AF and σ be a semantics Result: L σ ∈ 2 L (AF) : the set of the σ -labellings of AF Local variables:

• ℓ ′ gr : the grounded labelling restricted to the arguments labelled in and out • CCSet: the set of connected components of AF hard (AF after the removal of the arguments labelled in and out in the grounded labelling) • af i : a connected component • ClustSet: the set of cluster structures of af i • L σ (af i): the set of all σ -labellings of af i

1 ℓ ′ gr ← ComputeGroundedLabelling(AF) 2 CCSet ← SplitConnectedComponents(AF , ℓ ′ gr) 3 for all af i ∈ CCSet do in parallel 4 ClustSet ← ComputeClusters(af i) 5 L σ (af i) ← ComputeCompLabs(σ ,ClustSet) 6 L σ ← ∅ 7 if ∄af i ∈ CCSet s.t. L σ (af i) = ∅ then L σ ← {ℓ ′ gr } × ∏ af i ∈CCSet L σ (af i) 8 return L σ 1.

Input Format

So far, the AF encoding format recognized by our solver is the so-called "APX Format". The APX encoding of the AF illustrated in Figure 1.2 on page 5 is given in Figure 1.3 on page 5.

Functionalities 1.3.1 Required Arguments

Following are the required arguments and their meaning:

• -s: Path to the external solver This option specifies the path to the external solver used for computing the labelling at cluster level. See Sections 4.2.3 and 5.1 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF], for more details. Input: Let ClustSet be a set of cluster structures for a component af , σ be a semantics Result: L σ ∈ 2 L (af) : the set of the σ -labellings of af Local variables:

• κ j : a cluster structure • L κ j σ : the set of all σ -labellings of κ j • P κ j : the set of configurations corresponding to the σ -labellings of κ j • P: the set of all reunified labelling profiles 1 for all

κ j ∈ ClustSet do in parallel 2 L κ j σ ← ComputeClustLabs(σ , κ j) 3 P κ j ← IdentifyConfigs(L κ j σ , κ j) 4 L σ = ∅ 5 P = ReunifyCompConfigs(κ j ∈ClustSet P κ j ,ClustSet) 6 for all p ∈ P do 7 L σ ← L σ ∪   ∏ ξ ∈p {ℓ|ℓ ∈ ProfileLabellings(ξ , κ j ∈ClustSet L κ j σ)}   8 if σ = pr then L σ ← {ℓ|ℓ ∈ L σ s.t. ∄ℓ ′ ∈ L σ s.t. in (ℓ) ⊂ in (ℓ ′)} 9 return L σ • -fo: Input Format.
So far, the solver recognizes only the APX format described in Section 1.2 on the previous page.

• -p: Problem Type

This option specifies the AF problem type. A choice has to be made between the following values:

-EE-PR: enumeration of the preferred semantics -EE-CO: enumeration of the complete semantics -EE-ST: enumeration of the stable semantics

• --clustering-mode: Clustering Mode This option specifies the clustering method to use for solving the problem. A choice has to be made between the following values:

spectral: The spectral clustering method is usually used for data mining. It clusters data, here AF arguments, following a certain "similarity" criterion that captures how much an argument is connected to another. For more details, see Section 5.2.1 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]. uscc chain: The USCC Chain is a home made clustering method. It consists of creating clusters following Strongly Connected Component (SCC). Each part of the partition is an union of SCC. It differs from USCC Tree clustering method by the way SCC are joined together. For more details, See Section 5.2.2 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]. uscc tree: The USCC Tree is a home made clustering method. It consists of creating clusters following SCC. Each part of the partition is an union of SCC. It differs from USCC Chain clustering method by the way SCC are joined together. For more details, See Section 5.2.2 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]. arg(e).

arg(f).

arg(g).

arg(h).

arg(i).

att(d,g).

att(e,f).

att(f,g). att(g,f).

att(g,h).

att(h,i).

Figure 1.3: AF Encoding

full random: The Random clustering method is, as indicated by its name, a random partition generation method.

Options

1.

--pool-size: Thread pool size This option specifies the thread pool size. As explained in the source code documentation (see Section 3.2 on page 16), the tasks made in parallel, firstly at component level then at cluster level, are performed by so-called "workers". The thread-pool size indicates the number of tasks that can be performed simultaneously. For instance, if this value option is 4, then the labelling of at most 4 clusters will be computed simultaneously.

Note:

In the current version (March 2022), the operation of writing a particular induced AF as a text file is not made using this tread-pool but an ephemeral thread. Some development and experiments may be done to see if it is worth to make it using the thread-pool.

As specified in Section 1.1 on page 2, the AFDivider algorithm can use any sound and complete procedure to compute labellings at cluster level for induced AF, that is the AF induced by a precise cluster context. See Sections 4.2.3 and 5.1 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF], for more details. The --pool-size option does not encompass the number of threads created by this sound and complete procedure (which is specified by the option -s). As an example, we used in our experiments several solver that were themselves multithreaded.

In theory, the number of the thread-pools should be related to the number of cores allocated to the solver. However, it is difficult to determined the best value given that the external sound and complete procedure may be multithreaded.

When executed on Osirim in slurm environment (See Chapter 4 on page 17), if the slurm environment variable SLURM CPUS PER TASK is defined then its value is used for the pool size.

If nothing is specified the pool size is fixed to 3.

The priority for setting the pool size value is as follows:

SLURM CPUS PER TASK value ≻ --pool-size value ≻ 3 (default value) Line 1 specifies the size of the thread pool, that is the maximal number of workers. Line 2 specifies the CPU time and the Real time used to cut and cluster the AF. Note: In most of the time logs, the CPU time is not relevant and should be ignored for the current version (March 2022). Indeed, the CPU time measurement should be adapted to the fact that several tasks may be done in parallel and that tasks may have subtasks executed in different threads. This value should be the sum of all CPU time of related tasks. Some development is needed to make this measurement fairer. See classes ComponentWorker, ClusterWorker, Worker and WorkerManager. In contrast all real time measurements are reliable.

Lines 3-12 specify the clustering made of the AF. The FixPart correspond to the in -labelled and out -labelled arguments of the grounded labelling. The component and their respective clusters are specified.

In lines 14-42 are given the computation details of each component. The cutting, clustering, labellings, CSP solving and maximality check (if needed) times are first given. The component labelling reunification is the sum of the two last steps and then the total component labelling time is given. Finally, the number of labellings computed for the component is given.

Line 44 specifies the time of all component labellings. For the real time value, it coincides thus with the time of the total component labelling time of hardest-solving component.

Line 45 specifies the number of labellings that will be created by the cartesian product of the computed component labellings. This value is printed before the product operation.

Line 46 specifies the time of enumeration construction.

Line 47 specifies the printing time, whether on stdout or storage file (See --storage-filename option).

Line 48 specifies the total resolution time.

If no path is specified for the --stats-filename option, then the statistics file is printed on stdout.

3. --storage-filename: Data result storage file This option specifies the path to the data log file that gathers all the computed extensions.

The default solution format (see option --representation) of the current version (Mars 2022) is the one used in ICCMA 2017. Figure 1.5 on page 9 gives an example of data file. Each extension is delimited by brackets as well as the set of extensions.

If no path is specified for the --storage-filename option, then the data file is printed on stdout.

4. --representation: Data output format This option specifies the type of output to compute. A choice has to be made between the following values:

• verbose: This mode is the default one. It enumerates all the extensions of an AF.

• compact: This mode computes the Compact Enumeration Representation (See Chapter 6 of [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF]) instead of enumerating all the extensions.

• both: This mode computes both output type. It has been implemented to compare the resolution time of each output mode. Indeed to make a fair comparison, it has to be according to the same AF partition and all clustering methods implemented on the current version of AFDivider (Mars 2022) are non-deterministic.

--clustering-randomness: Clustering Random Deviation

This option accepts as value a real between 0 and 1. When specified, a clustering is first made based on the chosen method (see option --clustering-mode). Then the result is altered to produce a new partition with a difference rate (from the first one) near the value specified in option.

In the process of finding the partition with the specified deviation rate, the arguments are changed from one part to another with respect to the AF structure. The idea is to produce connected parts. An argument can be moved to another part only if it attacks or it is attacked by an argument of that part.

The difference rate used is the recall value. See https://scikit-learn.org/stable/modules/ generated/sklearn.metrics.recall_score.html for more informations.

The partition found with the nearest difference value to the one specified is the final chosen one.

By default the value of the --clustering-randomness option is 0. That is the partition produces by the method is not altered.

1 [[a37,a48, The following softwares must be installed on your client development environment:

• Python3

• An SSH client

• The version control system Git. In addition to Git, you can also install a graphical interface to git, such as: SourceTree or Tortoise Git or any other.

• An IDE will help a lot. The development of AFDivider have been made using Pycharm. In the following, we will use Pycharm in the installation guide.

Note: All the mentioned softwares have a fully functional and free version.

Note: You will find online installation guide for each software and following your operating system.

Git Repository: Download and Installation

The git repository is accessible at: https://gitlab.irit.fr/argumentation/afdivider We recommend you to use ssh to connect to the repository and to use an ssh-key.

To do that:

1. Generate an ssh public key, if not done yet, as explain there: https://www.scaleway.com/en/ docs/console/my-project/how-to/create-ssh-key/ 2. Copy your public key (see the previous tutorial), go to: https://gitlab.irit.fr/-/profile/ keys and add your key to the IRIT Gitlab.

3. To verify that every think is ok, enter the following command in your terminal:

1 ssh -T git@gitlab.irit.fr

Then, to clone AFDivider git repository from command line, do the following:

1 $ git clone git@gitlab.irit.fr:argumentation/afdivider.git

You can also clone the git repository directly from your graphical git tool.

Third Party Libraries Installation

In the git repository there is a script to install the required third library package, called packageInstall.sh. This script has been written for mac but indications are given to adapt it for linux, as shown in Figure 2.1.

Note:

The installation of petsc and slepc may take some time

Importing the Project into Pycharm

To import AFDivider project into Pycharm, follow this tutorial:

https://www.jetbrains.com/help/pycharm/ importing-project-from-existing-source-code.html

Launch Configuration Settings

Internal solvers

Solvers can be found on Osirim at the following location: /users/adria/mlafages/afdivider/out/solvers They can be copied to your client with the following command to your current directory: 1 scp <your osirim account>@osirim-slurm.irit.fr:/users/adria/mlafages/afdivider/out/solvers/ * .

Then, when running AFDivider a solver can be specified with the option -s. At the directory root, we have:

• The python script main.py: the entry point of AFDivider solver.

• The packageInstall.sh script that installs the third party library as explained in Section 2.3 on page 11

• The .gitignore file

The meaning of the sub-folders is:

• The dungAf folder contains the data structures and algorithms that are directly linked to Dung's Argumentation Framework.

• The tools folder contains algorithms and tools used by the main algorithm.

• The dataScript folder contains all that is related to data extraction and presentation.

• The slurm folder contains all that is related to Osirim and Slurm. Chapter 4 on page 17 details everything about it.

• The test folder contains automatic test scripts.

• The dataframe folder contains the processed data produced by different experiments on Osirim, stored as dataframes.

• The sphinx folder contains all the sphinx configuration file to automatically generate a documentation website for AFDivider project. See Section 3.2 on page 16 for more information.

• The instances folder contains AF instances.

• The ChocoConnector folder contains everything related to Choco, that is a CSP solver.

Note: Experiments showed that using the python library "constraint" met our needs and finally, Choco is not used in AFDivider . However we let the files in the project if needed. • The raf folder should contain the data structures and algorithms that are directly linked to Recursive Argumentation Framework.

AFDivider

Note: The adaptation of AFDivider algorithm for RAF is a perspective fully feasible relying on the work made in [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] .

A detailled documentation of the AFDivider project code source is available by generating a website as explained in Section 3.2. This documentation concerns the code source of AFDivider algorithms as well as the data retrieval and the analysis tools developed for AFDivider .

Code Documentation

To generate code source documentation, we use a tool named sphinx that builds a local website from the python docstrings, present in the different files, describing packages, modules, classes and functions. For docstrings formatting we use the default sphinx formatting language: the reStructuredText language.

A full documentation of how to use sphinx and reStructuredText language is available here: https: //www.sphinx-doc.org/en/master/contents.html.

You can see in the project code source plenty of examples on how docstrings should be made.

Given that the sphinx configuration has already been made and that this configuration is stored in the git repository, in this section we focus on how to update the documentation site after some code and docstring changes. If needed a short tutorial on how to generate sphinx documentation website is available here: https://betterprogramming.pub/auto-documenting-a-python-project-using-sphinx-8878f9ddc6e9

In order to generate your new documentation local website, follow these steps:

Chapter 4 Experimental Environment Documentation

This chapter presents the experimental environment used to analyse AFDivider performances. Notice that this chapter has been written in March 2022. Some changes may have occurred since.

Osirim

Presentation

Osirim (Observatoire des Systèmes d'Indexation et de Recherche d'Information Multimédia) 1 is one of IRIT's platforms. It offers a homogeneous environment for indexing and searching information in multimedia contents (text, sound, image, video, digital signal). Its main objectives are to host scientific projects requiring the storage and sharing of several terabytes of data to perform experiments on these large volumes, the sharing of software tools, in particular for evaluation, the sharing of reference corpora, and the dissemination of results and software.

Osirim gathers a set of corpora, evaluation tools, analysis software, and search engines with the main goal of offering a space of mutualization where researchers can exchange their knowledge and benefit from results obtained in other laboratories.

The platform is open to IRIT researchers and students working in these fields but also to anyone outside IRIT wishing to use its hardware or software resources under certain conditions.

It is accessible at: https://osirim.irit.fr/.

Infrastructure

The Osirim platform is composed of a computing cluster of 1120 cores spread over 26 computing servers + 28 Nvidia GTX 1080 TI cards spread over 7 servers as well as 3 Nvidia Quadro RTX6000 cards (24 GB RAM). This cluster is structured as follows and Figure 4.1 on the next page provides an illustration of it.

User connection nodes

These nodes ("Noeuds de connexion utilisateurs" in Figure 4.1 on the next page) are used to validate programs before launching them on the computing cluster. These interactive nodes are shared among all users and should not be used for long jobs. These nodes are servers dedicated to computation. A process running on a compute node accesses data hosted on the storage area ("Baie de stockage" in Figure 4.1), performs processing and saves the result on this area.

The technical characteristics of the 10 compute nodes co2-nc01 to co2-nc10 are as follows:

Ten IBM X3755 M3 servers each consisting of:

• 4 AMD Opteron 6262HE processors with 16 cores at 1.6Ghz

• 512 GB of RAM • 2 x 300 GB of disk in RAID1 • 2 x 10 Gb/s network
The technical characteristics of the 12 co2-nc11 to co2-nc22 compute nodes are as follows:

Three DELL C6420 chassis containing 12 servers each composed of: These nodes are servers dedicated to GPU calculations. Each of the 7 servers is equipped with 4 Nvidia Geforce GTX 1080TI graphics cards.

The technical characteristics of these 7 servers are as follows:

Seven DELL T630 servers:

• 2 Xeon 2640 V4 processors (20 threads)

• 2 x 400 GB SSD in RAID1 A process running on a compute node accesses data hosted on the storage area, performs processing, and saves the result to the storage area. Data storage on the Osirim platform is provided by an EMC Isilon array consisting of:

• 11 X400 nodes with 36 SATA disks of 3 TB each

• each node is connected to the network via a trunk of 2 links of 10Gb/s

• the useful volume is about 1 PB OneFS is the OS of the storage array that integrates the file system, volume management and data security. The whole system is a single distributed file system with a single namespace that has the ability to present data to servers using multiple protocols. NFS and HDFS are the access protocols used on Osirim.

Slurm

Slurm (Simple Linux Utility for Resource Management) is an open source computer task scheduling solution that allows you to create clusters of Linux servers with fault tolerance, such as ip-failover, compute farm, task scheduling system. This solution can be used on clusters of various sizes, from two to several thousand servers.

Installed on Osirim, it is via Slurm that jobs can be launched on Osirim compute nodes.

As a cluster resource manager, Slurm has three main functions:

1. It allocates access to resources (compute nodes) for users for a defined period of time so that they can perform tasks;

2. It provides a framework for starting, executing, and monitoring tasks (normally tasks that are parallel) across all assigned nodes;

3. It arbitrates access to resources by managing a queue of ongoing tasks.

See https://slurm.schedmd.com/documentation.html for more information on Slurm.

Singularity

Singularity is a container platform installed on Osirim. It allows you to create and run containers that package up pieces of software in a way that is portable and reproducible. You can thus build a container using Singularity on your computer, and then run it on any server/clusters/computer supporting Singularity. Your container is a single file in which are embedded all required library and software dependencies. As a consequence, when using Singularity, installing third libraries on Osirim is no more required. This is the practice recommended by Osirim technical team. Figure 4.2 on the following page illustrates the difference between containers and virtual machines. Virtual machines and containers are represented by the top blocks of same color. We can see that each virtual machine (on the left side of the schema) embeds an OS, an application and software dependencies while containers (in the right side) only embed an application and software dependencies.

AFDivider project started before the installation of singularity on Osirim. Currently AFDivider program and dependencies are directly installed on Osirim compute cluster. However the external solvers used in the step 3 of the algorithm are in Singularity containers (See Section 4.2.2 on page 22).

Developments to embed AFDivider into a container is encouraged to facilitate future features. Furthermore the ICCMA competition also uses containers but Docker ones. There exists a way to go from one to the other container format.

AFDivider Experiment Environment: Osirim Resources

As an overview, for AFDivider experiments we used two directories in which all sources, input and output data, required and produced by the different operations are stocked: • /users/adria/mlafages (in the following it will be referenced as "∼"): this directory contains all input sources.

It contains the following directories:

afdivider: it contains all AFDivider repository and other operating files (See Section 4.2.1).

dataframes: it contains dataframes representing the condensed data of experiments. Those dataframes are produced by the ∼/afdivider/datascript/runExtraction.sh script.

env: it contains python3 environment.

solvers iccma2019: it contains all the other solvers used in the experiments, embedded into singularity containers.

• /projets/adria/afdivider/benchmark: this directory contains the data produced by the experimentation (statistics and extension semantics). Each of its sub-directories contains the experiments of a given solver and is named after that solver (See Section 4.2.3 on page 23 for more details).

AFDivider Directory

The project sources are located in ∼/afdivider. It is actually the local git repository. In addition to the architecture described in Section 3.1 on page 14 are two directories that are ignored by git:

• ∼/afdivider/out: it contains three directories slurm: it contains all slurm job log files. The name of the file corresponds to the job ID. This ID is useful to keep track of your running experiments (See Section 4.3.9 on page 40).

solvers: it contains the different solvers used in our experiments. There, the solver programs are not embedded into singularity containers, contrary to those in ∼/solvers iccma2019.

-tmpData: it contains all the temporary induced AFs generated to compute the semantics. This directory should be regularly emptied.), the number of experiment launches to do, which is the size of the job array (NbTasks: 24), the timeout of each task (Timeout per tasks: 60m) and to finish the ID of the first task of the job array. In this example, we use at most 24 cores and so, the equivalent of one full CPU of the 24CPUNodes partition.

Note:

The names of those log files can be changed if needed by modifying ∼/afdivider/slurm /runAll and ∼/afdivider/slurm/runAllAFDiv scripts. Changing those names can be useful in order to keep track of all experiment settings without erasing them.

Solver Containers

So far, in ∼/solvers iccma2019 are stored the singularity containers of the following solvers:

• coquiaas iccma2019.sif

• pyglaf iccma2019.sif • argpref iccma2019.sif • eqargsolver iccma2019.sif
• taas-dredd iccma2019.sif The value of the $solver variable can be as an example: ∼/solvers iccma2019/coquiaas iccma2019 .sif. $to is the timeout in seconds. The argument -p specifies the problem type, -fo the format of the input AF (whether APX or TGF), -f the path to the AF.

Data Repository

Structure

The directory /projets/adria/afdivider/benchmark/ contains all experiments statistics and data. As shown by Figure 4.5, each of its sub-directories contains the data of some solver. As shown by Figure 4.6 on the next page, AFDiv directory contains all the experiments of AFDivider. Each first depth directory corresponds to experiments made using a given external solver. Each second depth directory corresponds to experiments made for a given output mode: verbose (which here is called enum), compact or both output mode (See Section 1.3.2 on page 5 --representation option). Each third depth directory corresponds to experiments made for different semantics. It is either the complete, or the preferred or the stable semantics. To finish, each fourth depth directory corresponds to experiments made for a given clustering method: spectral, uscc-chain or uscc-tree.

Notice that each statistics file name is built following this pattern:

<AF file name>-<clustering method>-<output mode>-<deviation rate>Rand.<slurm job ID>.stat

Inside AFDiv/aspartix2019/enum/AFDiv-Asp-spectral/EE-PR, we have as an example the following statistic file:

BA 100 60 2.apx-spectral-verbose-0.0Rand.6617391.stat

The data repository of each other solver is as represented by Figure 4 The data file produced by AFDivider contains three types of information:

• The experiment parameters

• The statistics • The computed semantics Figure 4.8 on the previous page shows an example of data file with the compact enumeration representation as output format. We can observe that it is basically a statistics file combined with a storage file, as presented in Section 1.3.2 on page 5, with some more information. As header, we have the experiment parameters: job ID, number of cores, solver name, semantics, AF name, timeout (in second), clustering mode, deviation rate and output format. The last line of the file is the output of the GNU time command. Note: There is a time gap between the real time given by the GNU time command and the real time given by AFDivider program itself. This time gap has not yet been identified. It is probably due to the fact that the program does not not kill all threads immediately after the computation of the semantics.

The data file produced by other solvers are as the example given in Figure 4.9 on the previous page. Notice that the output of the time command is different from the previous example. It is because at that time, the shell installed on Osirim and thus the time command were not the same.

Experiment Process Manual

In this section are presented the different processes to properly conduct experiments. 1. Code uploading: the git repository has to be updated from the remote repository in order to have the latest version of AFDivider and others operating files.

Overview

2. Experiment launching: Once the files updated, experiments are launch on Osirim compute cluster with slurm jobs.

3. Data extractor launching: When the experiment jobs are finished, an extraction job has to be launched in order to process the data and to produce a dataframe with all experiment results.

Data download:

To finish the produced dataframe is download on the client computer to be analysed. From it, charts and high level statistics are produced.

In the following subsections each of these steps are detailed.

Connection to Osirim

In order to connect to Osirim, you need to install the ssh client on your computer. Install also the scp command that will be useful to download and upload files that are not in the git repository.

In your terminal, enter the following command:

$ ssh <your osirim account>@osirim-slurm.irit.fr

Then enter your password. Once connected, you can explore the two repositories where AFDivider project files are stocked: /users/adria/mlafages and /projets/adria/afdivider/.

Project Refresh

After your commit and push from your client, to refresh your project on Osirim, connect and enter the following command:

$ cd /users/adria/mlafages/afdivider $ git pull

Slurm Job

Before presenting the various script and configuration files used in the experiment process, let introduce some basic notions of slurm.

A slurm job is simply a computer process, that is a script, a program to be executed. To launch slurm jobs, we use the commands srun or sbatch. The difference between the two is that srun is interactive and blocking (you get the result in your terminal and you cannot write other commands until it is finished), while sbatch is batch processing and non-blocking (results are written to a file and you can submit other commands right away).

Both have same options except that sbatch admits "job arrays" or "task arrays". A slurm task array is a collection of jobs that differ from each other by only a single index parameter. Creating a task array provides an easy way to group related jobs together. As an example, the following command line will launch 1000 times the testarray.sh with a maximum of 5 tasks in parallel:

1 $ sbatch --array [1-1000]%5 testarray.sh Both srun and sbatch commands have various options. They are all presented in slurm documentation available here: https://slurm.schedmd.com/.

They can be specified:

• As arguments of the srun and sbatch commands. See the script presented in Figure 4.17 on page 32 as an example.

• With a script header. See the script presented in Figure 4.15 on page 31 as an example.

Experiment Configuration and Scripts

The configuration and script files for the experiments are stored in the folder: ∼/afdivider/slurm. Figure 4.11 lists its content. Let explain the utility of each file:

• The exec script, shown in Figure 4.12 on the following page, allows to wrap a command to execute inside the timeout command. It limits the execution of the command given in parameter to the timeout specified as the first parameter. A priori there is no need to modify this file.

• The expConfigAFDiv file specifies the type of experiments to run for AFDivider solver. Folder in which the AF instances to solved are located (all will be solved)

5. Clustering randomness to apply 6. Internal solver to used at cluster level • The instanceScriptAFDiv file, shown is Figure 4.14 on the next page, is the script that launches a task to solve one instance, using the exec script. It prints some information that will be stored in the statistics file, before the experiment launch.

A priori there is no need to modify this file. The variable parameters for AFDivider experiment are specified in expConfigAFDiv and runAllAFDiv files and in expScriptAFDiv script header.

• The expScriptAFDiv script, shown in Figure 4.15 on page 31, constructs the shell command lines corresponding to the experiment configurations specified in expConfigAFDiv. For each configuration and for AF instance, it:

-Creates the directory to store the statistics file produced (if not existing) Notice that the experiment statistics files are stored in /projets/adria/afdivider/bench mark/rawExpeAFDiv/. Afterward the checked statistics files should be placed manually in the /projets/adria/afdivider/benchmark/AFDiv/ directory.

-Specifies the statistics file name according to the experiment configuration -Prepares the shell command line for the resolution of the AF instance Each shell command line created is stored in an array $commands. Then, the slurm batch called in jobRunnerAFDiv will execute each command using the current task ID $SLURM ARRAY JOB ID.

Note: A timeout is specified for the slurm task with the --time parameter (line 44) however, experiments shew that it was not reliable. That is why we wrap the different tasks into the slurm/exec script.

A priori there is no need to modify expScriptAFDiv script, except to change its header. The lines 2-5 are slurm batch parameters:

-"#SBATCH --mail-type=END" indicates that a mail will be send when the slurm batch will be fully executed #!/bin/tcsh set solver = "AFDivider"

set semantic = "$1" set file = "$2" set clusteringMode = "$3" set clusteringRandomness = "$4"
set nbcpu = "$5" set to = "$6" set outputMode = "$7" set internalSolver = "$8"

echo "Job id:" "$SLURM JOB ID" echo "Nb cpu:" "$nbcpu" echo "Solver name:" "$solver:t" echo "Semantic:" "$semantic" echo "AF name:" "$file:t" echo "Timeout:" "$to" echo "Clustering mode:" "$clusteringMode" echo "Clustering randomness:" "$clusteringRandomness" echo "Output mode:" "$outputMode"

echo "Solver used at cluster level:" "$internalSolver" time /users/adria/mlafages/afdivider/slurm/exec "$to" /logiciels/Python-3.5.2/bin/python3 /users/adria/mlafages/ afdivider/main.py -s "$internalSolver" -p "$semantic" -fo apx -f "$file" --clustering-mode "$clusteringMode" --clustering-randomness "$clusteringRandomness" --representation "$outputMode" Figure 4.14: The instanceScriptAFDiv script -"#SBATCH --mail-user=mlafages@irit.fr" specifies to which address to send the mail -"#SBATCH --output=/users/adria/mlafages/afdivider/out/slurm/%A.out" specifies the output log file corresponding to the slurm batch. The %A will be replaced by the job ID, which is also the ID of the first task of the task array.

-"#SBATCH --mem-per-cpu=7500M" specifies the RAM allocated to each task per CPU used.

As an example if 6 cores are allocated to a task and that for each cpu 7500Mo are allocated, then the task will have access to at most 45 Go of RAM.

• The jobCounterAFDiv script, shown in Figure 4.16 on page 32, counts, following the experiment configurations specified in expConfigAFDiv, the number of tasks to do, that is the total number of instances to solve. The computed number is used in the runAllAFDiv script then in the jobRunnerAFDiv script. A priori there is no need to modify this file.

• The jobRunnerAFDiv script, shown in Figure 4.17 on page 32, displays the slurm parameters for the job (which are received in parameters by the runAllAFDiv script):

-The slurm partition on which the batch has to be launched echo "NbCPU:" "$nbcpu" echo "MaxParallel:" "$maxParallel" echo "NbTasks:" "$nbTasks" echo "Timeout:" "$to sec" sbatch --partition="$partition" --cpus-per-task="$nbcpu" --array=1-"$nbTasks"%"$maxParallel" /users/adria/ mlafages/afdivider/slurm/expScriptAFDiv "$nbcpu" "$to" Figure 4.17: The jobRunnerAFDiv script Then it launches the slurm batch to execute all the slurm task array specified in the expScriptAFDiv script. A priori there is no need to modify this file.

-
• The runAllAFDiv script, dispayed in Figure 4.18 on the following page, is the most high level script to launch all the mechanism. It calls the jobRunnerAFDiv script with the required parameters (slurm partition, number of CPU per task, maximal number of tasks in parallel, number of tasks, timeout for each task) and saves the log of the batch launch in /users/adria/mlafages/afdivider/ runs/runAFDiv.log.

This file has to be modified if needed to change those parameters and the location of the log file.

All the previous scripts and configuration files have their counterparts for the experiments of other solvers:

• The expConfigSing file specifies the type of experiments to run for other solvers. Figure 4 • The instanceScriptSing file, shown in Figure 4.20 on the next page, is the script that launches a task to solve one instance, using the exec script. It prints some information that will be stored in the statistics file, before the experiment launch.

• The expScriptSing script, shown in Figure 4.21 on page 35, constructs the shell command lines corresponding to the experiment configurations specified in expConfigSing. For each configuration and for AF instance, it:

-Verifies if the configuration is valid (that is, that the solver and instance folder exist)

-Creates the directory to store the resulting statistics file (if not existing) Notice that the experiment statistics files are stored in /projets/adria/afdivider/bench mark/<solverName>.

-Specifies the statistics file name according to the experiment configuration -Prepares the shell command line for the resolution of the AF instance Each shell command line created is stored in an array $commands. Then, the slurm batch called in jobRunnerSingularity will execute each command using the current task ID stored in $SLURM ARRAY JOB ID.

Note: A timeout is specified for the slurm task with the --time parameter (line 44) however, experiments shew that it was not reliable. That is why we wrap the different tasks into the slurm/exec script.

A priori there is no need to modify the expScriptSing script, except to change its header. The lines 2-5 are slurm batch parameters:

#!/bin/tcsh set solver = "$1" set problem = "$2" set file = "$3" set nbcpu = "$4" set to = "$5" set format = "$6" echo "Job id:" "$SLURM JOB ID" echo "Nb cpu:" "$nbcpu" echo "Solver name:" "$solver:t" echo "Problem:" "$problem" echo "AF name:" "$file:t" echo "Timeout:" "$to" echo "Format:" "$format" singularity run $solver $to -p $problem -fo $format -f $file -"#SBATCH --mail-type=END" indicates that a mail will be send when the slurm batch will be fully executed -"#SBATCH --mail-user=mlafages@irit.fr" specifies to which address to send the mail -"#SBATCH --output=/users/adria/mlafages/afdivider/out/slurm/%A.out" specifies the output log file corresponding to the slurm batch. The %A will be replaced by the job ID, which is also the ID of the first task of the task array.

-"#SBATCH --mem-per-cpu=7500M" specifies the RAM allocated to each task per CPU used.

As an example if 6 cores are allocated to a task and that for each cpu 7500Mo are allocated, then the task will have access to at most 45 Go of RAM.

• The jobCounterSing script, shown in Figure 4.22 on page 36, counts, following the experiment configurations specified in expConfigSing, the number of tasks to do, that is the total number of instances to solve. The computed number is used in the runAll script then in the jobRunnerSingularity script. A priori there is no need to modify this file.

• The jobRunnerSingularity script, shown in echo "NbCPU:" "$nbcpu" echo "MaxParallel:" "$maxParallel" echo "NbTasks:" "$nbTasks" echo "Timeout:" "$to sec" sbatch --partition="$partition" --cpus-per-task="$nbcpu" --array=1-"$nbTasks"%"$maxParallel" /users/adria/ mlafages/afdivider/slurm/expScriptSing $nbcpu $to echo "Job id:" "$SLURM JOB ID" echo "Nb cpu:" "$nbcpu" echo "Solver name:" "$solver:t" echo "Semantic:" "$semantic" echo "AF name:" "$file:t" echo "Timeout:" "$to" echo "Format:" "$format" time /users/adria/mlafages/afdivider/slurm/exec $to $solver -p $semantic -fo $format -f $file This file has to be modified if needed to change those parameters and the location of the log file.

Finally, two more scripts exist in order to make simple tests:

• The instanceScript script, shown in Figure 4.25, launches a task to solve one instance. It prints some information before the experiment launch.

• The simpleTest script, shown in Figure 4.26 on the next page, creates a simple slurm task while calling the instanceScript script. It takes two parameters: the AF instance to solve and the solver to use.

Experiment Launching

Following Section 4.3.5 on page 28, here are the following procedures to launch experiments for AFDivider or other solvers.

AFDivider

For AFDivider here are the following steps. Notice that some steps may be non necessary:

1. Connect to Osirim

Data Extraction Launching

To launch a data extraction, do the following steps:

1. Connect to osirim 2. Edit the extractor.sh file to specify:

• The directory path where solver's data are stored, with the option --dirPath.

Notice that the path should be the one in which the sub-directories are the solver data archive. Practically, this path is either /projets/adria/afdivider/benchmark for other solvers or a path for AFDivider following this pattern:

/projets/adria/afdivider/benchmark/AFDiv/<internalSolver>/<outputMode>

As an example:

/projets/adria/afdivider/benchmark/AFDiv/aspartix2019/enum

In the case all sub-directories are not to be processed, the option --retrieval-selection must be specified.

Note: Inside a solver directory, only three sub-directories will be processed: EE-PR, EE-ST, EE-CO.

• The solver selection with the option --retrieval-selection, as the following example shows it:

1 srun /users/adria/mlafages/afdivider/dataScript/extractor.py --mode retrieval --dirPath /projets/adria/ afdivider/benchmark --output-dataframePath /users/adria/mlafages/dataframeTest.csv --retrievalselection aspartix iccma2019.sif coquiaas iccma2019.sif

• The output dataframe file, with the option --output-dataframePath.

3. Edit if needed the runExtraction.sh script to specify the extration log file. If not modified, the log file will be /users/adria/mlafages/afdivider/runs/extraction.

4. Run the runExtraction.sh script:

1 $ /users/adria/mlafages/afdivider/dataScript/runExtraction.sh

Data Retrieval

Finally to retrieve the dataframe created to your client. Do the following command from your client terminal:

1 Figure 1 . 1 :

 111 Figure 1.1: AFDivider operating diagram

•Algorithm 2 :

 2 -f: Path to AF file This option specifies the path to the encoded AF. See the Input Format option. ComputeCompLabs algorithm.

Figure 1 . 2 :

 12 Figure 1.2: Example of an AF

Figure 1 . 5 :

 15 Figure 1.5: Data file example

#Figure 2 . 1 :

 21 Figure 2.1: Third libraries installation script

 You can create as examples the following launch configurations :• AFDivider Solver launch configuration:-Script path: <PathToYour>/AFDivider/main.py -Parameters: -s <pathToInternalSolver> -fo apx -p EE-PR -f <pathToAfFile> --clustering-mode <clusteringMode> --representation <outputMode> -Python interpreter: <path to your python 3>• Data plot configuration:

Figure 2 . 2 :

 22 Figure 2.2: AFDivider launch configuration example

Figure 2 . 3 :

 23 Figure 2.3: Data plot configuration example

Figure 3 . 1 :

 31 Figure 3.1: AFDivider project directory tree view

 cd <path to your local project directory>/sphinx # If new files have been added do: sphinx-apidoc -o -f source/ ../ make html # To open the new generated website on your web browser do: open build/index.html If you do not have the open command installed, open with your browser the file: file:///<path to your git repository>/sphinx/build/html/index.html.

Figure 4 . 1 :

 41 Figure 4.1: Osirim Infrastructure

Figure 4 . 2 :

 42 Figure 4.2: Virtual Machines vs Containers

Figure 4 . 4 :

 44 Figure 4.4: Experiment log file

Figure 4 . 5 : 1 $

 451 Figure 4.5: Data repository

Figure 4 . 10 :

 410 Figure 4.10: Experiment operating diagram

Figure 4 . 12 :Figure 4 . 13 : expConfigAFDiv file example 2 .

 4124132 Figure 4.12: The exec script EE-PR spectral compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix-V-interface-2019.sh EE-PR uscc chain compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix-V-interface-2019.sh EE-PR uscc tree compact instances/AF/hardInstances/ 0.0 out/solvers/aspartix19/aspartix-V-interface-2019.sh

1 set to = $ 2 @Figure 4 .

 124 Figure 4.15: The instanceScriptAFDiv script

Figure 4 . 1 set nbcpu = $ 2 set maxParallel = $ 3 set nbTasks = $ 4 set to = $ 5 echo

 412345 Figure 4.16: The jobCounterAFDiv script

Figure 4 .

 4 Figure 4.19: The expConfigSing file

Figure 4 .

 4 Figure 4.20: The instanceScriptSing script

Figure 4 .- 1 set to = $ 2 @Figure 4 .

 4124 Figure 4.21: The expScriptSing script

Figure 4 . 1 set nbcpu = $ 2 set maxParallel = $ 3 set nbTasks = $ 4 set to = $ 5 echo

 412345 Figure 4.22: The jobCounterSing script

Figure 4 .Figure 4 .

 44 Figure 4.23: The jobRunnerSingularity script

Figure 4 .

 4 Figure 4.25: The instanceScript script

#

 !/bin/tcsh #SBATCH --mail-type=END #SBATCH --mail-user=mlafages@irit.fr #SBATCH --output=/users/adria/mlafages/afdivider/out/slurm/%A.out # STDOUT #SBATCH --mem-per-cpu=7500M set file = $2 set solver = $1 srun /users/adria/mlafages/afdivider/slurm/instanceScript $solver EE-PR $file

Figure 4 . 1 $ 1 $

 411 Figure 4.26: The simpleTest script

 Statistics log fileThis option specifies the path to the statistics log file that gathers all the execution statistics. Figure 1.4 on page 8 shows an example of file. Here is its meaning, given line by line.

2. --stats-filename:

•

 ∼/afdivider/runs: it contains log files that indicate succinctly the information related to an experiment or an extraction job launch. The detailed log file made during those processes are stocked into ∼/afdivider/out/slurm.Following, the ∼/afdivider/datascript/runExtraction.sh script (see Section 3.1 on page 14 for more details) the log file of an extraction job is stored at ∼/afdivider/runs/extraction. Figure 4.3 is an example of extraction log file. It simply specifies the job ID of the extraction. Then this ID can be used to monitor the job. Notice that this file is erased at each extraction, unless the ∼/afdivider/datascript/runExtraction.sh script is modified.

	Submitted batch job 6618839
	Figure 4.3: Extraction
	Following, the scripts ∼/afdivider/slurm/runAll, that launches the experiments for the other

solvers, and ∼/afdivider/slurm/runAllAFDiv, that launches the experiments for AFDivider solver, the log files are stored in that directory. Figure 4.4 gives an example of one of those files. It indicates the Osirim compute partition type on which the experiments have been launched (Partition: 24CPUNodes), the number of CPU cores used (NbCPU: 6), the maximal number of simultaneous experiments (MaxParallel: 4

 .7 on the next page. Notice that each statistics file name is built following this pattern:<AF file name>.<slurm job ID>.statAs an example we have the directory /projets/adria/afdivider/benchmark/cegartix-run.sh/EE-PR following statistic file: ttc 20151217 1257.gml.80.apx.6340218.stat.

	4.2.3.2 Data File	
		AFDiv
		aspartix2019
		both
		EE-CO
		spectral
		uscc-chain
		uscc-tree
		EE-PR
		. . .
		EE-ST
		. . .
		enum
		. . .
		compact
		. . .
		mutoksia2019
		. . .
		pyglaf2017
		. . .
	Figure 4.6: AFDiv directory tree view
	Figure 4.8: AFDivider data file example
	Job id: 6444052	
	Nb cpu: 6	
	Solver name: aspartix iccma2019.sif	
	Problem: EE-PR AF name: BA 160 20 4.apx Timeout: 3600	Solver EE-CO
	Format: apx	EE-PR
		EE-ST
	[[a116, . . .] . . .]	
	Figure 4.7: Other solver directory tree view
	real 0m 2.51s	
	user 0m 3.52s	
	sys 0m 0.34s	
	Figure 4.9: Other solver data file example

 For example, if you have a parameter study that

	slurm
	expConfigAFDiv
	instanceScriptAFDiv
	expScriptAFDiv
	jobCounterAFDiv
	jobRunnerAFDiv
	runAllAFDiv
	expConfigSing
	instanceScriptSing
	expScriptSing
	jobCounterSing
	jobRunnerSingularity
	runAll
	exec
	instanceScript
	simpleTest
	Figure 4.

11: Tree view of slurm folder requires you to run your application five times, each with a different input parameter, you can use a task array instead of creating five separate slurm scripts and submitting them separately.

 .19 /users/adria/mlafages/afdivider/slurm/jobRunnerAFDiv 24CPUNodes 6 4 '/users/adria/mlafages/afdivider/slurm/ jobCounterAFDiv' 3600 > /users/adria/mlafages/afdivider/runs/runAFDiv.log

	Figure 4.18: The runAllAFDiv script
	/users/adria/mlafages/solvers iccma2019/aspartix iccma2019.sif EE-PR /users/adria/mlafages/afdivider/instances/AF/
	hardInstances/ apx
	/users/adria/mlafages/solvers iccma2019/mu-toksia iccma2019.sif EE-PR /users/adria/mlafages/afdivider/instances/AF
	/hardInstances/ apx

This notion of largeness of an argumentation framework is related to the fact that the computation of the solutions is complex either because of the number of arguments, or of the number of interactions, or because of the structure of the argumentation framework.

http://argumentationcompetition.org

Translation: Observatory of Multimedia Information Indexing and Retrieval Systems

$ scp <your osirim account>@osirim-slurm.irit.fr:/users/adria/mlafages/dataframeTest.csv .This will copy the dataframe to your current directory.

Slurm Monitoring

To monitor slurm jobs you can connect to https://osirim.irit.fr/etat-de-la-plateforme/ with your osirim account credentials. From there you can:

• See the cluster workload of each compute nodes of Osirim (see Section 4.1.2 on page 17).

• For each node type, see the running jobs and the job queue.

• Cancel jobs using their ID.

To facilitate the job identification, you can go to ∼/afdivider/out/slurm. The greatest file ID (the ID is an integer number) is the newest launch. Notice that all slurm log files go there, whether it is for data extraction or experiments jobs. Figure 4.28 on page 42 represents an extraction file log while Figure 4.27 on the following page an experiment one. Let explain each of them.

Consider Figure 4.27 on the following page. The first line indicates the ID of the job or the ID of the first task if the job is a task array (See Section 4.3.4 on page 27 for more details). The second line specifies the task. Here, AFDivider solver is called to compute the Compact Enumeration Representation of preferred semantics using the spectral clustering method. The "0.0" correspond to the wanted random deviation rate from the clustering produced by the spectral clustering (See Section 1.3.2 on page 5, option: --clustering-randomness). As a consequence, in this experiment batch no changes are made. The following lines specify the paths to the statistics files produced by the experiments. Now, consider Figure 4.28 on page 42. The first line indicates the command executed by the job. Here, the data of the statistics/storage file are retrieved from the directory: /projets/adria/afdivider/benchmark/AFDiv/aspartix2019/enum and the dataframe created has been stored at this location: /users /adria/mlafages/dataframeAspartixAFDiv.csv. The following lines specify the tree view of the explored files. In the case where a bug would happen, this tree view is very useful to troubleshoot, to see from the parsing of which file the problem comes from.

Chapter 5 Conclusion and Perspectives

This document provides everything needed to get started with AFDivider solver use and improvement. Mickaël Lafages' PhD Thesis [START_REF] Mickaël | Algorithms for Enriched Abstract Argumentation Frameworks for Large-scale Cases[END_REF] opens a bunch of feature-oriented perspectives for the AFDivider algorithm. In addition to those, we give here some technical perspectives to enhance AFDivider project as a whole:

• Create an installer for AFDivider solver and/or make it available as a package.

• Embed AFDivider solver into a Singularity container will facilitate its portability. No Osirim support for new package installations will be needed and a simple conversion to Docker container will make it suitable for ICCMA competition.

• Configure Gitlab CI/CD to facilitate AFDivider solver tests and deployments, connecting Osirim to Gitlab CI/CD (continuous integration/continuous deployment).

• Make the code documentation available on line, for example with Gitlab Pages (if possible, for continuous integration and deployment).