
HAL Id: hal-03684680
https://ut3-toulouseinp.hal.science/hal-03684680v1

Submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PasTiS: building an NVIDIA Pascal GPU simulator for
embedded AI applications

Michaël Adalbert, Thomas Carle, Christine Rochange

To cite this version:
Michaël Adalbert, Thomas Carle, Christine Rochange. PasTiS: building an NVIDIA Pascal GPU
simulator for embedded AI applications. 11th European Congress on Embedded Real-Time Sys-
tems (ERTS 2022), 3AF Midi-Pyrénées: the French Society of Aeronautic and Aerospace; SEE : the
French Society for Electricity, Electronics, and Information & Communication Technologies, Jun 2022,
Toulouse, France. �hal-03684680�

https://ut3-toulouseinp.hal.science/hal-03684680v1
https://hal.archives-ouvertes.fr


PasTiS: building an NVIDIA Pascal GPU simulator
for embedded AI applications

Michaël Adalbert∗†, Thomas Carle†, Christine Rochange†
∗IRT SystemX, Palaiseau, France

†IRIT - Univ. Toulouse III - CNRS, Toulouse, France, name.surname@irit.fr

Index Terms—GPU, cycle-accurate simulator, timing analysis
Abstract—We present PasTiS, a simulator for the NVIDIA Pas-

cal GPU architecture family, with a focus on timing simulation.
PasTiS supports a subset of the Pascal ISA, sufficient to simulate
the execution of neural networks. We present this subset, as
well as the underlying microarchitecture that we modelled using
information available from NVIDIA, from scientific publications,
and from our own experiments. We demonstrate the precision of
the simulator by comparing it to measurements on the NVIDIA
Jetson TX2 development board, on neural network applications.

I. INTRODUCTION

Real-time systems are increasingly embedding machine
learning software which requires a huge computing power. For
example, the control systems of autonomous vehicles rely on
neural networks (NNs) to detect roads and objects, compute
trajectories and plan the actions to be performed. These
algorithms are computation-intensive and inherently parallel,
which drives the industry to adopt massively parallel hardware
such as many-core and GPU accelerators. In particular, GPUs
have received a lot of attention these last years, both from the
industry and from the real-time research community.

Scheduling tasks in a timing-critical system, so as to ensure
that they will meet their timing constraints, requires being
able to determine their respective worst-case execution time
(WCET). Various approaches to WCET analysis exist and are
based on static analysis techniques and/or measurements [10].
The estimated WCET can then be deterministic (i.e. expressed
as a single upper bound) or probabilistic (i.e. several WCET
values are produced, each associated to a probability of being
exceeded) [9]. In this paper, we focus on systems where strict
upper bounds on execution times are needed, and thus consider
static WCET analysis approaches.

Static WCET analysis aims at determining invariants on the
code of the task under analysis. Some invariants are related
to the software (e.g. loop bounds), others to the state of the
hardware (processor, cache memories, etc.). They are all used
to build an integer linear program (ILP) that maximizes the
execution time of the task over all the possible paths in the
control flow graph (CFG) [17]. OTAWA is an open-source
framework that offers many built-in facilities to generate
WCET analysis tools [4].

This work was partially supported by the ANR LabEx CIMI (grant
ANR-11-LABX-0040) within the French State Programme “Investissements
d’Avenir.”

Computing hardware-related invariants requires modeling
the behaviour of the computing platform. This is usually
done manually by translating the knowledge we have of the
hardware (from documentation provided by the processor man-
ufacturer or designer) into a formal model, although automatic
translation from a VHDL specification of the processor (when
available) has also been considered [24].

However, most of existing work considers CPU-only plat-
forms. The very specific execution model of GPUs (Single
Instruction Multiple Threads - SIMT) requires a substantial
revisiting of hardware models. First, the lockstep execution of
batches (warps) of threads requires rethinking the concept of
basic block and instruction sequence due to possible branch
divergence: all the threads in a warp do not necessarily follow
the same control flow. Second, GPUs implement hardware
scheduling schemes for warps and blocks of threads that must
be accounted for in WCET estimations. Third, their memory
system is noticeably different from that of standard CPUs and
requires specific analyses.

The closed nature of most GPUs and the lack of official
documentation on their micro-architecture have slowed down
the understanding and modeling of their micro-architectural
behaviour, which plays a crucial role in the execution time.
These reasons explain that so far, no decent (industrial or aca-
demic) WCET analyzer for GPU-accelerated code is available.

As part of the French national Confiance.ai 1 program that
brings together industry and academic researchers to build
trustworthy Artificial Intelligence, we ambition to extend static
WCET analysis techniques to GPUs. The work presented in
this paper was mainly supported by the Labex CIMI2 through
the AVATAr project, and is a first step towards this objective:
we show how we were able to conduct experiments to uncover
some of the execution mechanisms and hardware parameters
of an NVIDIA Pascal GPU and how we have built a cycle-level
simulator that is able to run CUDA programs. We compare the
execution times evaluated by the simulator to those measured
on a Jetson TX2 board and demonstrate the accuracy of our
model.

The insights provided in the paper can be used by industrial
actors to assess the viability of using a GPU in their embedded
systems: they give a clearer view of how a GPU program is
actually executed and of the specificity with respect to CPU

1https://www.confiance.ai/en/
2https://cimi.univ-toulouse.fr/en/



execution. Although we focus on a particular NVIDIA GPU,
the general mechanisms that we describe are common to all
GPUs.

Contributions: In this paper, we present how we have
proceeded to understand the behavior of an NVIDIA Pascal
GPU and how we have used this knowledge to develop a cycle-
level simulator called PasTiS (Pascal Timing Simulator).

Section II describes the general organization and execution
model of GPUs, with a focus on our target (NVIDIA Pascal
architecture). In Section III, we detail two key aspects of the
GPU behaviour (thread divergence and accesses to the shared
memory), and how we proceeded to understand them. We then
introduce the PasTiS simulator in Section IV, and evaluate
its performance in Section V. Related work is discussed in
Section VI. Section VII concludes the paper.

II. GPU ORGANIZATION AND EXECUTION MODEL

In this section we present the global organization and
execution model of GPUs. We borrow the NVIDIA terminol-
ogy which is widely accepted in the community, but similar
concepts exist in GPUs from other manufacturers.

A. Heterogeneous computation

At the highest level, a GPU is an accelerator on which a
CPU can offload functions called kernels. A kernel is specified
in a particular language (or a language extension, such as
CUDA or OpenCL) that enables the description of parallel
computation. The offloading of a kernel to a GPU generates
threads that all execute the same code. The number of threads
is specified by the programmer, as a number of blocks and
a number of threads per block, and should be as high as
possible in order to fully benefit from the GPU’s resources.
This is illustrated in Figure 3. In this example, a CPU function
(lines 2-11) modifies each element in an array, depending on
its initial value. Instead of processing elements sequentially, it
invokes a GPU kernel (line 7) for a number of threads equal
to the array size (n × BLK). The code of the kernel is given
on lines 12-18. Each thread executing this code determines
its identifier (line 13) – a value between 0 and n × BLK,
and according to the initial value of the element (line 14), it
computes its new value (lines 15 and 17). The CPU and the
GPU have distinct main memories and the GPU cannot access
the CPU memory. For this reason, the CPU function has to
allocate space in the GPU memory (line 4) and to transfer
input data from the CPU memory to the GPU memory (line
5) and output data from the GPU memory to the CPU memory
(line 8).

B. General organization

On the hardware side, a GPU is a collection of clusters
called Streaming Multiprocessors (SMs). Figure 1.a shows
that the NVIDIA Pascal GPU of the Jetson TX2 contains two
SMs, that share an L2 cache. Each SM contains in turn four
processing blocks, denoted SMPs, that share an L1 instruction
cache and two L1 data caches (each shared by two SMPs),
as well as a fast multi-banked memory referred to as the

shared memory (Figure 1.b). An SMP includes 32 Cuda Cores
(CCs) that perform ALU and floating-point (32- and 16-bit)
operations, a 64-bit FP unit, 8 Special Function Units and
8 Load/Store Units (Figure 1.c). It is then able to execute
several operations in parallel, e.g. 32 integer instructions or
8 memory loads. In addition, the GPU contains resources to
host thousands of active threads so that context switching is
extremely fast.

When a kernel is offloaded to a GPU, each block of threads
(e.g. 1024 threads in the example of Figure 3) is mapped to one
SM. This mapping is performed by the hardware, following a
heuristic that tries to maximize the use of the SMs [21].

C. Execution model

At the lowest level, GPUs implement the Single Instruction
Multiple Threads (SIMT) execution model, which can be
seen as a mix between simultaneous multithreading and the
SIMD3 model. A block of threads is organized into fixed
pools of 32 threads called warps4. All the threads inside a
warp are executed in lockstep: in a given clock cycle, they all
execute the same instruction. This reduces the complexity of
the instruction fetch and decoding logic since these operations
are shared between the 32 threads of a warp.

Warps are the smallest schedulable entities in a GPU. An
SMP contains an instruction buffer for each active warp,
which stores the next instructions to be executed by the
warp. At each execution cycle, a hardware warp scheduler is
responsible for electing a warp for execution among those that
are ready, following a given scheduling policy [19]. A warp
is ready for execution when all data dependencies have been
resolved (which is checked using a scoreboard, as explained
in Section II-D), when its next instruction is available in its
instruction buffer and when the required functional units are
available. The instruction to be executed by the elected warp
is sent to a dispatch unit that pushes the instruction to the
required functional units. Each SMP has two dispatch units:
one for memory operations (which target LSUs) and one for
the other instructions. The full processing of an instruction is
depicted in Figure 2.

As long as all threads inside a warp agree on the control flow
(i.e. they follow the same direction at conditional branches),
the SIMT execution scheme is straightforward. However, when
threads within the same warp disagree on whether or not to
take a branch, both paths are executed in sequence one after
the other, with only one part of the threads being active on each
path. This phenomenon is known as thread divergence [8].We
explain in Section III-A how thread divergence is handled in
Pascal GPUs.

D. Scoreboard update and scheduling instructions

Recent NVIDIA GPUs handle pipeline hazards using a
software programmed scoreboard: in a Pascal GPU program,
the compiler inserts so-called scheduling instructions [11]

3Single Instruction Multiple Data
4The number of threads in a warp is not the same in all GPUs depending

on the vendors. In NVIDIA GPUs, warps are always composed of 32 threads.



SM

L2

SM

Instruction Cache

SMP SMP

Data Cache

SMP SMP

Data Cache

Shared Memory

Instruction Buffer

Warp Scheduler

Dispatcher Dispatcher

Registers

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC

FP64

CCCC LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SMP

(a) GPU (b) SM (c) SMP

Fig. 1. Architecture of a Pascal GPU

between each group of three successive instructions. These
are responsible for updating the scoreboard with information
needed to enforce data dependencies (minimum instruction
latencies, setup of local fences).

E. Memory hierarchy

All the SMs share a global memory that can be used by their
threads to communicate between SMs, and a constant memory
which stores constants. The global memory is also used to
communicate between the CPU and the GPU through the use
of a hardware copy engine that transfers data and instructions
between the CPU and GPU memory spaces. Threads can also
access a private local memory, which is in practice an area of
the global memory. The global, constant and local memories
are accessed through a cache hierarchy composed of an L2
cache, shared by all the SMs, and L1 caches, local to each
SM. The memory hierarchy of the Pascal GPU is displayed in
Figure 4.

In addition, each SM features a so-called shared memory.
In the GPUs terminology, shared memory refers to a fast
memory local to each SM, that is shared by threads that
belong to the same block. NVIDIA reports a 100x lower latency
for shared memory accesses compared to uncached global
memory accesses, making it a key factor in the acceleration
of kernel execution. It is implemented as an interleaved multi-
banked SRAM with 32 banks storing 32-bit words. In the
ideal case, threads of a given warp access either words from
different banks or the same word from a given bank. The
hardware is optimized to serve such requests with minimal
latency and maximal throughput by grouping them into a
single transaction. However, whenever two or more threads

from the same warp try to access different addresses in
the same bank at the same time, this results in a conflict.
The bank then serves each request in sequence as part of
a separated transaction, and all the threads in the warp wait
until all requests have been served before executing the next
instruction. This obviously degrades performance.

III. REVERSE ENGINEERING THE PASCAL GPU
EXECUTION

A. Thread divergence

Thread divergence occurs when threads within a warp do
not all follow the same direction after a conditional branch.
For example, in the code in Figure 3, threads execute either
line 15 or line 17 depending on their own evaluation of the
condition on line 14. As mentioned earlier, the SIMT execution
model does not allow threads that belong to the same warp to
execute different instructions. As a result, each path (i.e. line
15 or line 17) is executed one after the other one, and each
thread is active along one of these paths only.

According to [2], thread divergence is handled using a
hardware mask mechanism that temporarily deactivates the
threads that must not execute one path. In order to deal
with nested conditional branches, a stack (called SIMT stack
in the remainder of the paper) holds the activation masks,
along with some additional information. In order to better
understand the behavior of the SIMT stack, we read a NVIDIA
patent dedicated to this mechanism [20]. In this section we
present a model of the divergence handling mechanisms of
the Pascal GPU, based on this patent and on experiments that
we conducted in order to verify and clarify the behaviour of
the GPU on conditional branches.



  

Fetch
SIMT
stack

I$

Instruction
buffer

Warp
scheduler

Scoreboard

Dispatch 1
Register

file

FU LSU

Buffer

Commit

Dispatch 2

Fig. 2. Detailed view of the modeled elements for one SMP in the PasTiS
simulator. In blue, the elements related to the non-functional semantics of
instructions. In green, the elements related to the warp-level semantics.

When a kernel is launched, a stack is allocated for each
corresponding warp. In the stacks, a 32-bit mask is stored
along with the address of the next instruction to execute (next
program counter or npc) and of the address of the instruction at
which the threads must wait for reconvergence (reconvergence
program counter or rpc). Each stack is initialized with an entry
composed of: a mask in which all the threads in the warp are
active, the start address of the program as npc and the last
address in memory as rpc (note that it does nos need to be
a valid instruction address). The left part of Figure 5 shows
the state of the SIMT stack for a warp executing the kernel of
Figure 3: the next instruction to be executed is at address 0x8,
the end of the program is at address 0xFFFF and all the threads
of the warp are currently active. The GPU handles divergence
and reconvergence through the use of dedicated instructions
which are automatically inserted in the code by the compiler.
In practice these instructions are responsible for modifying
the SIMT stack of their warp. The SSY and PBK instructions
prepare the stack for a possible divergence; they contain the
reconvergence address. When SSY @addr or PBK @addr is
executed, the top entry of the stack is popped. A new entry is
pushed to handle the execution after reconvergence: the npc

1 #define BLK 1024
2 void fun(int *a, int n){
3 int *d_a;
4 cudaMalloc((void **)&d_a,n*BLK*sizeof(int));
5 cudaMemcpy(d_a, a, n*BLK*sizeof(int),
6 cudaMemcpyHostToDevice);
7 kern<<<n,BLK>>>(d_a, n);
8 cudaMemcpy(a, d_a, n*BLK*sizeof(int),
9 cudaMemcpyDeviceToHost);

10 cudaFree(d_a);
11 }
12 __global__ void kern(int *t, int n){
13 int tid=blockIdx.x*blockDim.x+threadIdx.x;
14 if (t[tid] < 0)
15 t[tid] = 0;
16 else
17 t[tid] *= 2;
18 }
19

Fig. 3. Example Cuda program

SMP

Shared
Memory

L1
Cache

SM

L2 Cache

GPU Memory

Global

Local

Constant

Fig. 4. Memory hierarchy

is the reconvergence address (@addr), and the rpc and the
mask are copied from the popped entry. A second new entry
is then pushed to handle the potentially diverging portion of
code: the npc is the actual next instruction (the npc of the
popped entry + 8, since instructions are encoded on 64 bits),
the rpc is the reconvergence address (@addr) and the mask is
the same as in the popped entry. In the example of Figure 5,
we consider that the instruction at address 0x8 is a SSY or
PBK instruction that prepares the stack for a future conditional
branch (corresponding to the if-else construct in the code of
Figure 3), with a reconvergence of the control flow at address
0x70. The stack is updated (in the right part) with two entries.
The bottom entry will be used after reconvergence: the npc
is the address of reconvergence of the control flow (0x70).
The top entry is used to let all active threads execute the
next instruction (0x10) naturally. Note that these instructions
do not create divergence but instead prepare the stack for a
possible upcoming divergence, which is why the mask remains
unchanged at this point. In our experiments, we encountered



the SSY instruction before branch instructions that correspond
to either an IF or a SWITCH construct, and the PBK instruction
before branch instructions corresponding to a loop, although
the official documentation from NVIDIA indicates that PBK

instructions are not supported by Pascal (and next-generation)
GPUs.

Actual divergence happens when a branch (BRA @addr)
instruction is executed conditionally by only a subset of the
threads of a warp. When this happens, the top entry of the
corresponding stack is popped. Two new entries are then
pushed:

• the first pushed entry concerns the threads which do not
take the branch: the rpc is the same as in the popped
entry, the npc corresponds to the next instruction in the
code (i.e. the current npc + 8) and the mask activates
only the threads that do not take the branch (the ones for
which the condition is false);

• the second entry has the target address of the branch
as npc and the same rpc as the popped entry; its mask
activates only the threads that take the branch (the ones
for which the condition is true).

As a consequence, the GPU first executes the threads that
take the branch, until they reach a reconvergence instruction
which is added by the compiler: SYNC of BRK (depending on
whether a SSY or a PBK was executed before). This process is
illustrated in Figure 6. In this example, the threads reach a BRA
0x48 instruction at address 0x10. We assume that threads 0
and 1 of the considered warp execute the else part of the code
because the elements they access in table t are positive, while
the rest of the threads execute the if part. As a consequence,
only threads 0 and 1 take the branch instruction while all other
threads in the warp continue in sequence. As displayed in the
right part of the figure, the top entry is replaced by two new
entries: one for threads 0 and 1 (activation mask 0xC0000000)
and one for the rest of the threads (mask 0x3FFFFFFF).
To the best of our knowledge, no documentation explicitly
describes the order in which the entries are pushed on the stack
when divergence occurs (and thus the corresponding execution
order of the branches). In our experiments, the first threads to
execute are always the ones taking the branch.

The reconvergence instructions pop the top entry from the
stack, as illustrated in Figure 7. In the example, threads 0 and
1 reach a SYNC (or BRK) instruction: their entry is popped from
the stack. The GPU then resumes the execution with the group
of threads active in the mask of the new entry at the top of
the stack: the threads that do not take the branch. When they
reach a SYNC (or BRK) instruction, their corresponding entry
is popped from the stack: the reconvergence is done and the
execution flow resumes at the reconvergence address (which
is the npc of the entry at the top of the stack at this point).

B. Shared memory accesses

We needed to characterize the timing behavior of the shared
memory in order to implement it in the simulator. The major
difficulty was to derive the number of transactions generated

Before:

0x8 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x10 0x70 0xFFFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 5. SIMT stack when executing SSY/PBK 0x70

Before:

0x10 0x70 0xFFFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x48 0x70 0xC0000000

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 6. SIMT stack when executing BRA 0x48 by the first 2 threads

Before:
0x48 0x70 0xC0000000

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask
After:

0x18 0x70 0x3FFFFFFF

0x70 0xFFFF 0xFFFFFFFF

npc rpc mask

Fig. 7. SIMT stack when executing SYNC/BRK by threads 0 and 1

by the hardware. It depends on (i) the memory addresses ac-
cessed by threads in a warp, and (ii) the size of the transferred
data. To determine this number, we wrote a microbenchmark
in which we control the size of the transferred data and the
target memory addresses, so as to tune the number of conflicts
in the memory banks. We then executed the benchmark on the
Jetson TX2 board and observed the number of transactions
using the NVIDIA nvprof profiling tool.

size of accesses (# bits)
mask 32 64 128

000000FF 1 2 4
0000FFFF 1 2 4
00FFFFFF 1 2 4
FFFFFFFF 1 2 4

TABLE I
NUMBER OF TRANSACTIONS FOR CONSECUTIVE ACCESSES

We report in Table I the number of observed transactions
when threads in a warp make accesses to consecutive areas of
the memory (e.g. thread 0 accesses a 32-bit word at address
0, thread 1 accesses a 32-bit word at address 4, etc.). Table I
also displays the activation mask that we use in order to
control which threads are active. For 32-bit accesses, a single



size of accesses (# bits)
# mask 32 64 128
1 00000001 1 2 4
2 00000003 2 3 5
3 00000007 3 4 6
4 0000000F 4 5 7
5 0000001F 5 6 8
6 0000003F 6 7 9
7 0000007F 7 8 10
8 000000FF 8 9 11
9 000001FF 9 10 11
10 000003FF 10 11 12
11 000007FF 11 12 13
12 00000FFF 12 13 14
13 00001FFF 13 14 15
14 00003FFF 14 15 16
15 00007FFF 15 16 17
16 0000FFFF 16 17 18
17 0001FFFF 17 17 18
18 0003FFFF 18 18 19
19 0007FFFF 19 19 20
20 000FFFFF 20 20 21
21 001FFFFF 21 21 22
22 003FFFFF 22 22 23
23 007FFFFF 23 23 24
24 00FFFFFF 24 24 25
25 01FFFFFF 25 25 25
26 03FFFFFF 26 26 26
27 07FFFFFF 27 27 27
28 0FFFFFFF 28 28 28
29 1FFFFFFF 29 29 29
30 3FFFFFFF 30 30 30
31 7FFFFFFF 31 31 31
32 FFFFFFFF 32 32 32

TABLE II
TRANSACTIONS ISSUED WHEN ALL THREADS ARE IN CONFLICT

transaction is issued by the hardware, regardless of the number
of active threads: each memory bank composing the shared
memory is accessed by one and only one thread, and the
transaction accounts for up to 32 non-conflicting accesses
to 32-bit words. For 64-bit accesses, two transactions are
issued, regardless of the number of active threads. In this
setting, when more than 16 threads are active, at least one
bank is accessed by two threads that request different words:
this conflict is handled by issuing two transactions. However,
when less than 17 threads are active and are consecutive,
the accesses made by the active threads are non-conflicting,
and we initially expected to measure a single transaction,
as in the case of 32-bit accesses. For 128-bit accesses, four
transactions are issued, regardless of the number of threads.
Once again, we expected this behavior when more than 24
threads are active, but based on the number of conflicting
accesses in the banks, we expected a single transaction when
less than 9 (consecutive) threads are active, two transactions
when between 9 and 15 consecutive threads are active, and
three transactions when between 16 and 23 consecutive threads
are active.

We designed a first experiment in which all active threads
access different words in the same bank at the same time,
and in which we vary the number of active threads from 1 to
32 and the size of the access from 32 to 128 bits. For each

…

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4

Word 0

Word 1

Word 2

Word 3

1

0

2

3

Word 4 4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

1

0

2

3

4

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Word 0

Word 1

Word 2

Word 3

Word 4

6

5

7

Bank 5 Bank 6 Bank 7

…

Bank 8 Bank 9 Bank 10 Bank 11 Bank 12

Word 0

Word 1

Word 2

Word 3

9

8

10

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

9

8 Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Word 0

Word 1

Word 2

Word 3

Word 4

Bank 13 Bank 14 Bank 15

10 10 10

11 11 11 11

12 12 12 12

13 13 13 13

14 14 14 14

15 15 1515

Fig. 8. Conflicts between shared memory accesses

combination of active threads and access size, we measured
the number of issued transactions using nvprof. We discov-
ered that threads of a warp that perform memory accesses
are grouped in one pool of 32 threads when the accesses
performed are 32-bit wide, in two pools of 16 (threads 0 to 15
and 16 to 31) when the accesses are 64-bit wide and in four
pools of 8 (threads 0 to 7, 8 to 15, 16 to 23 and 24 to 31) when
the accesses are 128-bit wide. The results of the experiment are
displayed in table II. By default, one transaction is issued for
each pool of threads when a warp executes a memory access.
As reported in Table II we measured that even when all the
threads in a given pool are inactive, a transaction is still issued
for the pool. Since transactions are issued pool-wise, only
threads from the same pool can generate conflicting accesses
to the memory banks. We ran some additional experiments
to confirm that hypothesis. In these experiments we forced
conflicts to happen between threads from the same pool on
two separate banks. The banks accessed by threads of different
pools are not the same, in order to evaluate if the hardware
tries to coalesce accesses from different groups in transactions.
Figure 8 displays an example of such an experiment. For space
reasons, we only display the first 5 words of the first 16 banks
of the shared memory. In the example, threads 0 to 15 perform
128-bit accesses to the memory: each thread thus performs
accesses to 4 consecutive banks. Since accesses are of size 128
bits, threads 0 to 7 are in a pool (shown with orange disks)
while threads 8 to 15 are in another pool (shown with green
disks). Threads 16 to 31 are not displayed, once again for space
reasons, and without loss of generality we can assume that they
are not active in the example. The threads are programmed so
that in the orange pool, threads 0 to 4 are in conflict on banks
0 to 3 and threads 5 to 7 are in conflict on banks 4 to 7, and
in the green pool threads 8 to 11 are in conflict and threads 12
to 15 also. Running the corresponding program on the GPU
generates a total of 9 transactions.

After multiple experiments in which we varied the config-
uration of the conflicts, we observed that transactions were
generated in order to deal with the conflicts of each pool
separately, and that for each pool, the number of generated
transactions corresponds to one plus the maximum number



of conflicts on any bank between threads of the pool. In
the example of Figure 8, the maximum number of conflicts
on any bank is 4 for the orange pool, and 3 for the green
pool. In our hypothesis, the GPU is thus expected to generate
(4 + 1) + (3 + 1) = 9 transactions which is exactly what
we measured. Following our observations, we derived the
following formula to compute the number of transactions
issued by the hardware:

nTrans =

nPools∑
i=1

(1 + max
j∈[|0,31|]

(conflict(pooli, bankj)))

where nTrans is the number of issued transactions, nPools
is the number of thread pools (1, 2 or 4) and conflict(p, b)
is the number of conflicting accesses by threads of pool p on
bank b.

We used the same benchmarks and measured the number of
cycles for the accesses instead of the number of transactions.
We could derive the following formula:

dur = 22+base+2×
nPools∑
i=1

( max
j∈[|0,31|]

(conflict(pooli, bankj)))

where dur is the duration in cycles of the execution of the
memory instruction and base is a constant duration which
depends on the size of the accesses: 1 cycle for 32-bit accesses,
8 cycles for 64-bit accesses and 16 cycles for 128-bit accesses.

IV. THE PASTIS SIMULATOR

A. Global architecture of the simulator

The simulation of a CUDA program with PasTiS mimicks
a real execution shared between a CPU host and a GPU
accelerator target, as illustrated in Figure 9. The CPU parts
of the program (e.g. the fun function), are compiled and
executed natively by the CPU of the machine that hosts the
simulation, and the call to a GPU kernel is replaced by
a call to PasTiS (which is developed in C language). The
simulator code and the CPU part of the program are linked
together and share the same memory space. As a result, the
simulator can read and write in a memory zone accessible to
the host program5. Before starting the cycle-level simulation,
the simulate function stores the parameters in the constant
memory and initializes special registers for each thread (e.g.
with its identifiers, such as blockIdx.x), as expected by the
GPU assembly code.

PasTiS is organized around three main modules that work
together to enable a cycle-accurate simulation of GPU code:

1) an instruction set simulator: it is responsible for decoding
and functionally simulating GPU binary code. This means
maintaining the contents of registers and of the memory
all along the execution, by emulating the semantics of
the program’s instructions. The instruction set simulator
is agnostic of the timing aspects of the execution.

5PasTiS is intended to simulate and determine the duration of the execution
on the GPU, but not of the operations of the copy engine.

1 #define BLK 1024
2 void fun(int *a, int n){
3 parameter_t par[2];
4 par[0].kind = PTR; par[0].val.ptr = a;
5 par[1].kind = INT; par[1].val.i = n;
6 simulate("kern.cubin", n, BLK, par);
7 // instead of kern<<<n,BLK>>>(a,n);
8 }
9

Fig. 9. Modification of the example in Figure 3 to invoke the simulator

2) a model of the warp-level execution semantics: it simu-
lates warp selection and scheduling policies, as well as
control flow and intra-warp thread divergence.

3) a model of the timing aspects of the execution: it
maintains the state of the architectural components (e.g.
contents of cache memories, occupation of functional
units, contents of the scoreboard, etc.) and determines
instruction latencies in such a way that it is able to
determine the full state of the GPU after each simulated
clock cycle. Thanks to this module, PasTiS is able to
derive the total execution time of a kernel.

When the simulator is launched, elements modeling the
memory, caches, scoreboard, registers and SIMT stacks are
allocated. Then, a loop simulates the execution cycle by
cycle: for each SMP, if a warp is ready for execution, the
warp scheduler simulator selects the warp to execute and the
instruction set simulator decodes and emulates the correspond-
ing instruction. The latency of the instruction is computed
depending on its nature, the state of the caches, and the
potential memory access conflicts. Finally the state of the
hardware simulator is updated according to the effect of the
current instruction.

B. Instruction set simulator

The instruction set simulator is in charge of decoding
the binary code of the program and emulating its execution
from a functional perspective. For this purpose, we rely on
GLISS [23], a tool that accepts the description of an ISA
(its encoding and its semantics) and generates a library of
functions that can be invoked to decode an instruction or to
evaluate its impact onto the processor’s state (registers and
memory contents). We have described a large part of the Pascal
ISA in the GLISS format.

The Pascal GPUs use the same ISA as the Maxwell genera-
tion. Unfortunately, the low-level (SASS)6 language is not doc-
umented by NVIDIA: only the instruction names are provided,
but not their encoding nor their exact semantics. We thus
had to conduct reverse engineering in order to determine the
missing information. The work reported in [11] was a valuable
starting point for this task, which is really tedious and which
we have limited to the subset of instructions that appear in
our benchmark applications (in particular matrix products and

6PTX is a common ISA for all Nvidia GPUs, while SASS is a micro-
architecture specific ISA. SASS code is generated by JIT or AOT compilation
of PTX sources



a feed-forward fully-connected neural network). The Maxas
tool7 was very useful to uncover the entire encoding scheme
for some of the instructions. To understand the semantics of
the instructions, we carefully analyzed the mapping between
source and binary code, and we could clarify uncertainties
based on NVIDIA-related forums.

The method for deriving the encoding of instructions is the
following:

1) compile a GPU kernel to a .cubin binary file using the
nvcc compiler

2) disassemble the .cubin file using nvdisasm
3) select an instruction to investigate
4) modify the disassembled program to generate multiple

instances of the instruction with varying operands and
options

5) re-assemble the program using maxas
6) disassemble again, and compare the binary encodings of

the instructions
The second step to building an instruction set simulator

is to describe the semantics of the instructions. Once again
some reverse engineering had to be performed for this step.
To do so we once again start by writing a kernel (e.g. a matrix
product), which we compile and disassemble. We then proceed
as follows, in a systematic manner:

1) figure out the most probable semantics of the instruction
using its name

2) run the program on the GPU and on the simulator, verify
if the results are equal

3) if the results are not the same, execute the program step
by step in the simulator and on the GPU with cuda-gdb

4) find the first instruction for which the state (register and
memory values) in the simulated and executed program
differ

5) collect results and source operands on both sides
6) find the purpose of this instruction in the executed pro-

gram
7) implement this semantics in the simulator
8) try again from 2)

C. State of the implementation and current limitations

As of today, our implementation of PasTiS supports integer
and floating point arithmetic instructions, memory accesses to
all memories of the GPU, conditional branching and instruc-
tions for thread divergence/reconvergence handling, schedul-
ing instructions, memory fences and synchronization barriers.
Functionally speaking, the floating point arithmetic is handled
natively by the machine that performs the simulation, so results
may differ from the ones obtained on the Jetson TX2.

We currently simulate a direct-mapped cache hierarchy. In
our experiments, this policy is enough to get precise results in
terms of cache misses, but we expect this precision to fall as
we experiment with ever larger kernels. As a consequence we
are currently working on experimenting other policies, based
on existing results [18].

7https://github.com/NervanaSystems/maxas

Another limitation is the warp scheduler whose policy re-
mains unknown at this point. For now, a warp is simulated until
its completion or until it reaches a synchronization barrier, at
which point another warp is elected for simulation. Using this
policy the simulation is functionally correct but does not faith-
fully represent the memory latency hiding mechanisms that
the real GPU implements. As a consequence, our simulation
timing results are close to the measurements on the actual GPU
as long as at most one warp is active on each SMP, but the
overhead is growing as we add more warps to the simulation.
Determining a realistic warp scheduling policy is the next step
in our research. To do so, we can rely on existing work [21]
and on our simulator: once again we will work by trial and
error, by first assuming a policy, implement it and validate it
or not following the results of the simulations.

V. PERFORMANCE EVALUATION

We conducted two kinds of experiments to assess the
functional correctness and the timing precision of PasTiS.
Since our objective is the simulation (and in a second step
the static analysis) of neural network applications, we started
by experimenting PasTis on integer matrix multiplications,
which represent the major building block of neural network
computations. We then implemented a simple feed-forward
neural network for handwritten numbers recognition which we
trained on the MNIST dataset [1] and tested our simulator on
the inference function of this network.

The integer matrix multiplication benchmark uses the shared
memory as is usually the case in ”real-life” kernels: the
program starts by a copy of the contents of the matrices
to multiply from the global memory to the shared memory,
then each thread performs the computation of one element of
the result matrix and stores it directly in the global memory.
We started the evaluation with a multiplication of two 4 × 4
integer matrices, which is handled by 16 threads of one warp
(the 16 other threads are not active for this computation).
The results are depicted in Figure 10. First of all the results
are functionally correct: we obtain the same result matrix in
the simulation as in the actual execution on the Jetson TX2.
Second, the number of reported transactions to the shared
memory is the same in the simulation and in the execution.
Finally, the number of cycles reported in the simulation is
9.7% higher than in the measurements performed on the
execution. We expected an overhead since we do not know
all the implementation details of the GPU. In this experiment,
we believe that the overhead is linked to the L2 cache of
the GPU: in the Jetson TX2, the copy of the input data (the
two input matrices) from the CPU to the GPU is performed
through the L2 cache of the GPU. As a consequence, the
cache is warm when the execution of the kernel starts on
the GPU. Unfortunately, PasTiS does not simulate the copy
of the inputs from the CPU to the GPU: it considers that the
inputs are already in the global memory and thus starts the
simulation of the kernel with a cold cache. We performed the
same experiment on 8 × 8 (resp. 11 × 11 matrices), in order
to test the simulator with 2 (resp. 4) active warps in parallel.



size : 4*4, block : 4*4 threads
Measures GPU Simulator Overhead

shared memory reads 8 8 0
shared memory writes 2 2 0

cycles 1131 1241 9.7%

Fig. 10. Matrix multiplication on one warp

size : 8*8, block : 8*8 threads
Measures GPU Simulator Overhead

shared memory reads 32 32 0
shared memory writes 4 4 0

cycles 1381 1491 7.9%

Fig. 11. Matrix multiplication on two warps

Since our target GPU is composed of 4 SMP each capable of
running one warp in parallel, this is the maximum number of
warps that can be executed/simulated without influence from
the warp schedulers policy. Once again, the results of the
simulation are functionally correct, and we obtain an overhead
of 7.9% (resp. 6.1%) in terms of execution cycles (reported in
Figures 11 and 12 respectively). We consider that these results
validate our model of the shared memory.

Our neural network benchmark is a simple feed-forward
network composed of 3 dense layers which performs the
classification of input images representing handwritten digits
(taken from the MNIST dataset). The first (resp. second, third)
layer is composed of 784 (resp. 128, 64) weights and 128
(resp. 64, 10) biases, and the activation function is ReLU for
all three layers. Each layer is implemented as a separate kernel
which performs a matrix multiplication analogous to the one
of our first experiment, and then calls an activation function.
The network was written in C/CUDA, trained on the Jetson
TX2, and the trained parameters were exported so they could
be used for inference in the simulation as well.

In the experiments we first measured the difference between
the simulated and executed floating point operations and its
influence on the results of the network. As expected, we
measured a slight difference in the computed probabilities
(the result layer). However the difference only appears after
the 14th decimal digit, and does not affect the classification
results: the classification precision of the network is 98.4375%
both on the Jetson TX2 and on PasTiS. Unfortunately, this
benchmark heavily relies on the 64-bit floating point unit and
on some hardware prefetch optimizations whose behaviour is
not correctly modeled yet in PasTiS. As a result the cycles
count of the simulation sees a more than 100% overhead com-
pared to the actual measurement. We are currently working on
correcting this issue.

VI. RELATED WORK

With the ongoing adoption of GPUs in embedded and time-
critical systems, the real-time community has started to work
on the characterization of the timing aspects of GPUs. Since
NVIDIA is currently the leader in the market of GPGPUs, and

size : 11*11, block : 11*11 threads
Measures GPU Simulator Overhead

shared memory read 88 88 0
shared memory write 8 8 0

cycles 1580 1677 6.1%

Fig. 12. Matrix multiplication on four warps

in particular for the embedded systems segment, most of the
research has focused on understanding and taming the NVIDIA
GPUs. The main problems with these GPUs lie in their closed
nature: NVIDIA does not provide a complete documentation
of its GPUs, and many aspects that are relevant to their timing
behavior is undocumented. As a result, most of the scientific
production yet has been dedicated to reverse-engineering vari-
ous aspects of the execution of kernels on NVIDIA GPUs with
three major drawbacks. First, it is extremely tedious and time-
consuming. Second, we approach the GPUs as black boxes
and rely on experiments and measurements to characterize
their behavior, with no guarantee that a particular case was
not missed. Finally, as NVIDIA builds new GPU families,
there is no guarantee that a new-generation GPU will still
behave in the same way than the previous ones: the reverse
engineering experiments must be conducted again to validate
the hypothesis again. The same is true for the CUDA API and
drivers, as well as for the instruction set architecture which
are also closed source.

At the higher level of description, the community has so-far
covered the behavior of the stream queues which control the
interface between the CPUs and the GPU [3], [25], as well
as the timing aspects of the memory copies between the CPU
and the GPU memory spaces [7]. The memory hierarchy and
scheduler hierarchy (at the block and warp mapping levels) has
also been documented for particular GPU families [16], [18],
[21], although no reverse engineering has yet been performed
to unravel the exact warp scheduling policy.

A noticeable exception is [22], in which the authors weigh
the pros and cons of using AMD GPUs for research in
the real-time domain. The authors report that the general
organization of AMD GPUs does not differ from the NVIDIA
ones, with mainly small dimensioning differences (number of
SMs, number of threads per warp), and in the terminology.
One important difference is the absence of integrated GPUs
(iGPUs: SoCs in which the GPU and CPUs share the same
memory) in the AMD offer, and a more flexible choice in the
mapping of the thread blocks in the AMD GPUs. According
to the authors, the main point in favor of AMD is that they
decided to make their software stack (in particular their drivers
and APIs) open source and to vastly document it. However the
authors report that the vast amount of documentation is not
centralized, making it tedious to find information (the same
as for NVIDIA GPUs, although for other reasons), and that
the API and drivers code is not yet stable enough to make
it completely worthwhile to invest time in understanding its
inner workings and in designing compatible real-time modules



since they may not be compatible to the next revision of the
API (the equivalent for NVIDIA GPUs to reverse engineering
a particular aspect of a particular GPU which may behave
differently in the next family of GPUs).

Other works are dedicated to defining WCET analysis meth-
ods for more abstract GPUs (usually a simulated GPU e.g. [2]
with simplifying assumptions) [5], [6], [12]–[15]. The main
limitation in these works is the simplifying assumptions made
on the execution behavior of the GPUs: although the methods
work for the target simulated GPU, they are either incomplete
(focusing on a particular aspect) or cannot be applied to COTS
GPUs which implement more complex hardware optimization
strategies.

VII. CONCLUSION

This paper presents how we reversed-engineered some as-
pects of the NVIDIA Pascal GPU of the Jetson TX2 board,
and how we implemented them in the PasTiS simulator
that we are currently developing. PasTiS supports the actual
NVIDIA SASS assembly language, which makes it capable of
simulating kernels that are compiled for Pascal GPU targets.
We first explained the hidden mechanisms responsible for
handling thread divergence and reconvergence in the pres-
ence of conditional branch instructions. Then we uncovered
how transactions to the shared memory are handled by the
hardware. In PasTiS, we have modeled these mechanisms as
well as a consequent part of the Maxwell/Pascal ISA. We
were able to demonstrate the current accuracy of the simulator
on benchmarks implementing matrix products with the use
of shared memory. In our experiments, the simulator cycle
count suffers is overestimated by less than 10% compared to
the actual measurements on the board, and this overhead is
reduced as the size of the matrices grows. This confirms that
our model of the shared memory is correct.

As part of future work we intend to apply further our
methodology to other architectural elements (in particular
cache hierarchy, FP64 units and warp scheduler) in order to
complete our simulator, until we are able to simulate neural
networks with a high temporal precision. We will then release
the simulator code as open source. Once the model is precise
enough, we will use this knowledge to build static analysis
models in order to derive the worst-case execution time of
kernels running on the Jetson TX2 board.

REFERENCES

[1] Mnist handwritten digits data set. https://deepai.org/dataset/mnist.
[2] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers. General-purpose

graphics processor architectures. In Synthesis lectures on computer
architectures, Morgan & Claypool publishers, 2018.

[3] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. Gpu
scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE
Real-Time Systems Symposium (RTSS), 2017.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open
Toolbox for Adaptive WCET Analysis. In 8th International Workshop on
Software Technologies for Embedded and Ubiquitous Systems (SEUS),
2010.

[5] K. Berezovskyi. Timing analysis of general-purpose graphics processing
units for real-time systems: Models and analyses. In PhD dissertation,
University of Porto, 2015.

[6] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan computation
for gpu threads running on a single streaming multiprocessor. In 2012
24th Euromicro Conference on Real-Time Systems, 2012.

[7] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and P. Onaindia.
Understanding and exploiting the internals of gpu resource allocation
for critical systems. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8, 2019.

[8] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. Divergence
analysis and optimizations. In 2011 International Conference on Parallel
Architectures and Compilation Techniques, 2011.

[9] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic timing
analysis techniques for real-time systems. Leibniz Transactions on
Embedded Systems, 6(1), May 2019.

[10] R. Wilhelm et al. The worst-case execution-time problem—overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7(3), 2008.

[11] A. B. Hayes, F. Hua, J. Huang, Y. Chen, and E. Z. Zhang. Decoding cuda
binary. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, 2019.

[12] V. Hirvisalo. On static timing analysis of gpu kernels. In Workshop in
WCET Analysis, 2014.

[13] Y. Huangfu and W. Zhang. Static wcet analysis of gpus with predictable
warp scheduling. In 2017 IEEE 20th International Symposium on Real-
Time Distributed Computing (ISORC), 2017.

[14] Y. Huangfu and W. Zhang. Wcet analysis of the shared data cache
in integrated cpu-gpu architectures. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), 2017.

[15] Y. Huangfu and W. Zhang. Wcet analysis of gpu l1 data caches. In
2018 IEEE High Performance extreme Computing Conference (HPEC),
2018.

[16] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
nvidia volta gpu architecture via microbenchmarking. arXiv, apr 2018.

[17] Y.-T.S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 16(12), 1997.

[18] X. Mei and X. Chu. Dissecting gpu memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed
Systems, 28(1):72–86, 2017.

[19] Nvidia. Across thread out of order instruction dispatch in a multithreaded
microprocessor. https://patentimages.storage.googleapis.com/ab/e4/d4/
487e7e837f2ade/US7676657.pdf.

[20] Nvidia. Execution of divergent threads using a convergence barrier.
https://patentimages.storage.googleapis.com/42/1d/77/18beae47a1fc64/
US20160019066A1.pdf.

[21] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna. Dissecting the cuda scheduling hierarchy: a performance
and predictability perspective. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[22] N. Otterness and J. H. Anderson. AMD GPUs as an Alternative to
NVIDIA for Supporting Real-Time Workloads. In 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020), 2020.

[23] T. Ratsiambahotra, H. Casse, and P. Sainrat. A versatile generator
of instruction set simulators and disassemblers. In Int’l Symp. on
Performance Evaluation of Computer Telecommunication Systems, 2009.

[24] M. Schlickling and M. Pister. A Framework for Static Analysis of
VHDL Code. In 7th International Workshop on Worst-Case Execution
Time Analysis, 2007.

[25] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith. Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems. In 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018), 2018.


