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Incremental Capacity Analysis as a diagnostic method applied to second
life Li-ion batteries

Lucas Albuquerque · Fabien Lacressonnière · Xavier Roboam · Christophe Forgez

Abstract This work is inserted in the context of second life
Li-ion batteries: for such storage devices, their first life char-
acteristics are unknown and a simple capacity measurement
might not be sufficient to fully characterize and get it ready
for its second life. The Incremental Capacity Analysis (ICA)
was used in this study to give a more intimate diagnosis of
the batteries’ Degradation Modes (DMs), providing a link
with physical degradation phenomena. This method was ap-
plied to a lithium-ion battery module (NMC/Graphite) which
was used in an electrical vehicle and to a single cell from a
similar module in order to verify its potential use in this con-
text. Both IC curves were then compared to a DM simulation
using the ′Alawa software, capable of simulating different
ageing phenomena and their effects on the IC curves. More-
over, this work gives an intrinsic view and explanation of the
IC signature for the mentioned battery technology.

1 Introduction

The increasing number of batteries produced and consumed
nowadays can be attributed to the rise of electric vehicles
(EVs) into the market. However, this step towards transport
decarbonization created a problem of its own: what to do
with these batteries after they are not suitable anymore to
power said EVs? The answer to this question is either re-
cycling or ending up in a landfill, creating another environ-
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mental problem in itself. Nonetheless, there are innovative
projects nowadays, like ELSA [1] and Batteries2020 [2],
that are striving to give a second life to these batteries. Offer-
ing a second chance to these batteries would mean lowering
their environmental impacts during their life cycle.

The end of an EV battery life is defined by the US Ad-
vanced Battery Consortium as a 20% drop of cell capacity
from the rated value, or a 20% drop from rated power den-
sity at 80% depth of discharge (DoD) [3]. In other cases, the
battery end of life can be considered achieved when its resis-
tance has doubled in value. Yet, after being used in an EV,
these batteries can still be useful in other applications and
can be selected and rebuilt for a new purpose, such as En-
ergy Storage Systems (ESS) for stationary applications [4].

In order to have a homogeneous battery selection issued
from various first lives, it is important to characterize the
cells of a battery pack with respect to State of Health (SoH).
However, in this study the Incremental Capacity Analysis
(ICA) was here used to give a more intimate diagnosis of
the batteries, pursuing a more precise characterization of the
cells or modules for the assembly of the second life battery.
This refine selection means a more homogeneous battery, in
which the cells would age similarly during the second life.

This paper is organized as follows. In the second part,
a few diagnostic methods are presented and the feasibility
of their use in second life applications is discussed. The
third part presents the ICA as a diagnostic tool to determine
with accuracy the battery DMs. The experimental procedure
is detailed and the results are explained and compared to
other studies. To further visualize the effects of degradation,
the fourth part presents the results of a Hybrid Pulse Power
Characterization (HPPC) test. The fifth and last part con-
firms the experimental results with a simulation toolbox for
battery degradation called ′Alawa.
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2 Diagnostic methods for second life batteries

There exist many diagnostic methods for Li-ion batteries,
but some are better suited than others to characterize the cell
for a possible second life. They mainly give as outputs the
SoH in terms of capacity (1) or impedance (2) [3,5].

SoH(Q)[%] = 100∗
Qpresent

Qnominal
(1)

SoH(Z)[%] = 100∗
(

2−
Zpresent

Znominal

)
(2)

Where Q is the battery capacity in Ah and Z is the impedance
in Ohms. Precise methods based on machine learning are
employed in Battery Management Systems (BMS), but they
track the battery usage since their beginning of life to esti-
mate the SoH [6]. In a situation where the previous usage is
unknown, these methods would lack precision or not be ap-
plicable due to the small sample or nonexistence of first life
data. Other methods such as the electrochemical impedance
spectroscopy have been proven to be precise and capable of
determining the DMs occurring inside the battery [7], but it
requires specialised equipment capable of exciting the cells
in order to extract their reaction to the applied frequency
spectrum.

Since Li-ion battery degradation has been proven to be
path dependent [8], meaning that their first life will influ-
ence the longevity and performance during their second life,
two batteries can present the same SoH but have different
degradation patterns. That is why, for a second life applica-
tion, a diagnostic technique such as the ICA can be better
suited to determine these degradation patterns in a battery
cell or module. This method can be applied with simple lab-
oratory equipment such as a power supply or an electronic
load. With this technique, it is possible to estimate the Loss
of Lithium Inventory (LLI) and the Loss of Active Material
(LAM) in the positive and the negative electrodes of a Li-ion
cell. These DMs are a better representation of the battery
first life when compared to a simple capacity measurement.

3 Incremental Capacity Analysis

3.1 Principle

The ICA and Differential Voltage Analysis (DVA) are two
similar methods that give an intimate view of the electro-
chemical processes inside the cell. Many papers have been
previously published on these methods, but most of them
focus on the estimation of the SoH during the first life [9–
11]. In [9], it is possible to see how the Open Circuit Volt-
age (OCV) plateaus, which represent the convolution of the
phase transitions inside the electrodes when being lithiated

or delithiated, become peaks in the IC curve by applying
equation (3) [9]. In which the tips represents the existence
of just one phase in one of the electrodes.

IC =
dQcell [Ah]
dVcell [V ]

(3)

Where dQcell is the variation in capacity with respect
to the voltage dVcell . As illustrated in [12], the effects of the
DMs can be translated in a shift between the electrode poten-
tials, in the case of LLI, or a contraction in the case of LAM,
which can happen separately in each electrode (LAMPE or
LAMNE ). These changes in the electrode OCV curves are
ultimately going to change the overall signature of the IC
curve and the amplitude and shift of the peaks can be used
to estimate said DMs.

In order to acquire the IC curve, it is necessary to mea-
sure the OCV for each State of Charge (SoC) value of the
battery. However, to obtain this measurement, it is neces-
sary to charge or discharge the battery with low currents.
Lower currents improve the precision of the measurement
by preventing high diffusion effects inside the electrode ma-
terials and thus the precision of the IC curve. These diffu-
sion effects can mix the electrode phase transitions into one
single indistinguishable curve, as seen in [13]. This study
concludes that C/6 is a good compromise between time and
precision, but there are studies that go as far as C/2, like [14].

3.2 Experimental tests

Two NMC/Graphite Li-ion batteries were studied in this work.
One module is composed of 12 cells connected in series
which had been used in an EV. The second battery is a sin-
gle cell similar to the ones used in the module and it has also
been used in an EV. The nominal capacity of the module and
the cell is equal to 25 Ah, according to the manufacturer’s
datasheet. Fig. 1 shows the cell used in the module.

Fig. 1 A NMC/G Li-ion cell tested in this work. The module consists
of twelve of these cells in series.

First of all, several charge and discharge cycles were
done with the module and the cell in order to determine
and compare their discharged capacities. During the tests,
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they were both placed in a climate chamber at 25°C. The
charge protocol used was a CC-CV profile, in which a con-
stant current (CC) is applied until the battery has reached its
maximum allowed voltage (4.2 V per cell), then the power
supply switches to constant voltage (CV) regulation until a
low current of C/50 (0.5 A) is reached. The discharging pro-
cess was stopped when the voltage across a cell was equal
to 2.7V (the discharge voltage limit).

During the experimental tests, the twelve cells of the
module were equilibrated (the voltage response for each cell
was the same). Hence, in this study, the diagnosis of the
module was based on one particular cell of the module (noted
cellm in this study). Fig. 2 shows the discharge curves in
volts by ampere-hours for the cellm and the single cell. As
shown, the discharge capacity of the module is equal to 27.5
Ah whereas it is equal to 23 Ah for the single cell, evidenc-
ing that this last has a lower SoH. Moreover, it is clearly vis-
ible that the phase transition voltage plateaus and the overall
curves shift towards lower voltages, which indicates ageing
and a resistance increase. These observations support the in-
terest in using the ICA and a resistance measurement as di-
agnostic tools to understand the DM effects on the single
cell.

Fig. 2 Discharge curves (with a C-rate of 0.2C) for a cell issued from
the module and the single cell.

In order to obtain the DMs in both the cellm and the sin-
gle cell, the IC curve was plotted. As a first step to obtain
the curve, a filtering on the voltage measurements is neces-
sary before the derivative is calculated. As previously done
in [15], the first filter applied to the voltage measurement
was a moving average filter, giving a rough outline of the
IC curve. Then the result was further smoothed by a Gaus-
sian filter, in which the values of the averaging window are
weighted with a Gaussian curve, where the center values
have a bigger impact on the averaged value and the ones
in the extremities have a lesser impact. The size of the av-

eraging window is increased to smoothen the curve until its
peaks start decreasing in amplitude.

3.3 Interpretations

As previously said, the interest of the ICA is to analyze and
identify the battery degradation phenomena intimately. To
further understand and visualise the effects of ageing in the
NMC/Graphite technology, the ICA method was applied to
the single cell in order to compare its signature with cellm.
Fig. 3 shows both IC curves from a voltage measurement
during the charging process. Several differences on the IC
curves appear. These differences could be governed by age-
ing processes in the single cell.

Fig. 3 Comparison between the IC curve of cellm (from the module)
and the single cell.

The analysis of the IC curves demands an understand-
ing of both the graphite and NMC electrodes behaviour si-
multaneously. Since the pair of curves presented on Fig. 3
comes from the charge profile, starting from the lowest volt-
ages where the graphite is almost fully delithiated until the
end of the first peak (2.7 V until 3.55 V for cellm or 3.6 V
for the single cell): the negative electrode passes from C6 to
LiC72 (diluted phases), then LiC36 and finally transitioning
to LiC18. At this point, the mentioned graphite intercalation
stages coexist, especially under high currents where diffu-
sion effects are intensified.

The second big peak between 3.6 V and 3.75 V is mainly
due to a NMC specific phase transition, where its structure
changes from a hexagonal to monoclinic (H1 to M) lattice
[16]. While so, the graphite transitions from LiC18 towards
LiC12 corresponding to the end of the plateau between stage
3 and 2 in the graphite charge curve observed in the liter-
ature [17]. The third and last visible peak between 3.75 V
and 4.1 V (shifted on the single cell IC curve) is primarily a
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result of the last phase change in the graphite electrode from
LiC12 to LiC6. This transition is the longest of all (kinetically
slower).

Due to the lack of a peak indicating the phase transition
H2 to H3 (hexagonal to hexagonal accompanied by a rapid
volume contraction) towards the end of the charge, reported
in Ni rich NMC cathodes, the NMC cathode present in the
batteries is presumed to have a relatively good reversibility
and this is translated into a good overall stability of the elec-
trode [18], so in a first moment, LAMPE does not seem to
be the main cause of ageing. However, the lower first peak
(3.5 V) amplitude can indicate small traces of active mate-
rial loss of the positive electrode LAMPE .

Moreover, as a result of LLI, the cut off voltage (low
SoC) of the positive electrode becomes higher as the lithium
is consumed and it shifts both electrode potential curves
away from each other. This means that at the end of a dis-
charge or the beginning of a charge cycle, the positive elec-
trode cannot reach lower voltage potentials due to the volt-
age limits (as in figure 8 from [19]). So, instead of having
a strong peak between 3.6 and 3.75 V, its amplitude is con-
siderably reduced. This indicates that LLI is the most promi-
nent degradation mode at this stage of ageing. The consump-
tion of lithium can also explain the overall shift of the IC
curve towards higher voltages, since it is probably consumed
during the thickening process of the SEI (Solid Electrolyte
Interphase) layer.

3.4 C-rate influence on the ICA

A study to further understand the influence of the C-rate on
the IC curve was also conducted. Fig. 4 shows IC curves
plotted for several C-rates. The applied filters follow the
same rule as explained in section 3.2. It was checked that
the peak amplitudes were not equally affected by the charge
or discharge regimes. The influence of the C-rate on the
IC curve can be explained by the difference in kinetics of
charge transfer and diffusion reactions in the electrodes for
the different current values. This corroborates to choose a
lower C-rate, in order to obtain an accurate IC plot. Hence,
the choice of the C-rate has to be a compromise between the
accuracy of the IC curve and the duration of the test for a
rapid evaluation of the second life Li-ion batteries.

The analysis of two peaks from the IC curve (charge
regime) for different C-rates was carried out and the results
are summarized in Tab. 1. When the C-rate increases, the
peak amplitudes are reduced and they shift toward higher
voltages due to the voltage drop governed by the internal re-
sistance. A reduction of peak areas is proportional to the
number of exchanged amperes-hours during the charging
process.

Fig. 4 Comparison between different C-rates in charging and discharg-
ing modes for the cellm.

Table 1 Comparison of peak amplitude and shift depending on the C-
rates.

IC peaks for different C-rates in charging mode
C-
rates

1st peak:
Amplitude

1st peak:
Voltage

2nd peak:
Amplitude

2nd peak:
Voltage

0.2C 66.4 Ah/V 3.5 V 96.76
Ah/V

3.64 V

0.5C 55.4 Ah/V
(-16.6%)

3.51 V
(+11 mV)

89.91
Ah/V
(-7.1%)

3.65 V
(+14 mV)

C 51.8 Ah/V
(-22%)

3.54 V
(+46 mV)

91.22
Ah/V
(-5.7%)

3.67 V
(+35 mV)

4 HPPC profile characterization

As a complement to the ICA tests, a Hybrid Pulse Power
Characterization (HPPC) test was carried out with both the
module and the single cell in order to measure their inter-
nal resistances. One HPPC cycle profile consists on con-
stant current charge and discharge pulses, followed by a 10%
SoC constant current discharge and a 30 minute pause be-
tween cycles. The cycles are repeated until 10% SoC. One
sequence of the HPPC profile is shown in Fig. 5 where sev-
eral current rates were imposed at 0.1C, 0.2C, 0.5C, 1C,
1.5C and 2C. The duration of the pulses was fixed at 10 sec-
onds and the internal resistance was calculated by Ohm’s
law. Fig. 6 presents the internal resistances measured for
several SoC values. These values were calculated for cellm
and the single cell for a discharge current of 1C. As depicted
from Fig. 6, the single cell internal resistance is higher than
the cellm in a ratio of 1.7, regardless of the SoC value. This
internal resistance increase may be associated with ageing
mechanisms taken place in the single cell and can explain
the overall shift of the IC curve for the aged cell (Fig. 3),
as mentioned previously, and may be linked mainly to the
growth of the SEI layer.
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Fig. 5 Current pulses and the voltage reactions during one sequence of
the HPPC profile.

Fig. 6 Internal resistance comparison between cellm and the single
cell.

5 ICA comparison with the ′Alawa toolbox

Fig. 7 presents a comparison between the IC curves mea-
sured for cellm and the single cell and IC curves obtained by
using the ′Alawa toolbox developed by Matthieu Dubarry
et al. [20,21]. This software is able to simulate the DMs
through a model based on individual electrode potentials,
in which LLI is translated into a shift of the potentials and
LAMNE and LAMPE are contractions of the electrode curves.
The simulations are quantified based on a defined loss per
cycle.

In order to simulate the degradation as close as possi-
ble to the experimental results, a few parameters such as the
electrode ratio, the initial resistance and the SEI offset were
chosen. This last one is responsible for the initial shift be-
tween the electrode curves, consuming lithium-ions. These
parameters were modified until the obtained IC profile was
close to the experimental one from cellm. The same method-
ology was applied to simulate the DMs. The optimal result
was found when the toolbox was set to simulate 0.032% of
LLI and 0.01% of LAMPE per cycle during 500 cycles. These

Fig. 7 IC curves from ′Alawa simulation of 0.032% of LLI and 0.01%
of LAMPE per cycle (top) and IC curves from both the single cell and
cellm (bottom). %Q is the percentage of the initial battery capacity Q
in Ah.

Table 2 Comparison of the ′Alawa simulations and the measurements.
Note that LLI has been set to 0.032% per cycle and LAMPE and LAMNE
were set to 0.01% per cycle.

DMs simulation and measured values
Case Degradation

1st peak
Degradation
2nd peak

Translation
1st peak

Translation
2nd peak

Experimental
results

10.52% 37.83% 0.035 V 0.049 V

LLI 18.30% 44.27% 0.027 V 0.045 V
LLI +
LAMPE

14.10% 39.97% 0.022 V 0.038 V

LLI +
LAMNE

20.75% 40.54% 0.028 V 0.043 V

DMs result in a total of 16% of capacity loss and it is in ac-
cordance with the experimental value of 83.3% of SoH when
dividing the capacity of cellm to the aged one.

The total amount of capacity loss is due to LLI (16%),
but the active material loss from the positive electrode has
an influence on the IC curve as this electrode capacity has
been reduced. Generally, the lower voltages are limited by
the negative electrode and the higher voltage is limited by
the positive electrode. Tab. 2 summarizes the simulations re-
sults with ′Alawa and compares them with the real measured
values.

The results presented in Tab. 2 show that with regard to
peak degradation, the simulation with both LLI and LAMPE
combined are the closest to the experimental results, also
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supported by Fig. 7. The first peak is greatly reduced in the
simulation with LAMNE , as this peak is due to the first few
phase transitions in the graphite, as mentioned in section 3.
The peak translation in volts show close results in all of the
cases, mainly due to the formation of the SEI as previously
said. However, the differences are minimal, thus the peak
amplitudes seem to be more adequate to judge the accuracy
of the simulations.

6 Conclusions

In this paper, several tests were performed on a Li-ion mod-
ule composed of 12 cells connected in series in order to esti-
mate their state of health. These tests were also done with a
single Li-ion cell. The capacity and internal resistance mea-
surements allowed to distinguish a more important degrada-
tion for the single cell. An ICA was carried out to determine
the degradation modes in the cell. It has been shown that
the accuracy of the IC curves depends on the C-rate (ampli-
tudes of the peaks decrease with the C-rate). To determine
the degradation modes in the cell, the ‘Alawa toolbox was
used. A comparison between the IC curves (simulated and
measured) showed that the major degradation mode in the
cell is the loss of lithium inventory and the loss of active ma-
terial of the positive electrode. In the future, this study will
be extended in order to develop an experimental method,
based on the ICA, to determine with accuracy (and rapidly)
the degradation modes in Li-ion modules. This diagnostic
method will be applied in order to have a homogeneous
module selection to develop a second life battery.
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