
HAL Id: hal-03667386
https://ut3-toulouseinp.hal.science/hal-03667386v1

Submitted on 13 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Cache Analysis by Counting Integer Points
Pascal Sotin, Quentin Vermande, Hugues Cassé

To cite this version:
Pascal Sotin, Quentin Vermande, Hugues Cassé. Data Cache Analysis by Counting Integer Points.
29th International Conference on Real-Time Networks and Systems (RTNS 2021), Apr 2021, Nantes,
France. pp.112-122, �10.1145/3453417.3453424�. �hal-03667386�

https://ut3-toulouseinp.hal.science/hal-03667386v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Data Cache Analysis by Counting Integer Points
Pascal Sotin

IRIT – UT2J

Toulouse, France

pascal.sotin@irit.fr

Quentin Vermande

École Normale Supérieure

Paris, France

quentin.vermande@ens.fr

Hugues Cassé

IRIT – UPS

Toulouse, France

hugues.casse@irit.fr

ABSTRACT
The scheduling of reliable real-time systems require a precise and

sound analysis of the execution times of their tasks. Part of these

execution times is spent fetching data from the main memory to

the cache memories. These fetch events occur on cache misses, but

cache misses are hard to predict when the program accesses an

array. An imprecise cache miss analysis can lead to an imprecise

but still soundWorst-Case Execution Time (WCET) analysis. In this

article we present a framework for deriving an upper bound to the

number of times a data-accessing instruction triggers a cache miss.

Backed by this framework, we present an analysis that produces

numeric or symbolic bounds, by reasoning on a short history of

accesses and by counting the number of integer points in a volume

with an existing tool (Barvinok). Using such bounds will improve

the precision of the estimations delivered by the WCET analyses.

KEYWORDS
static analysis, data cache analysis, formal methods, worst-case

execution time analysis, precondition calculus

ACM Reference Format:
Pascal Sotin, Quentin Vermande, and Hugues Cassé. 2021. Data Cache

Analysis by Counting Integer Points. In 29th International Conference on Real-
Time Networks and Systems(RTNS’2021), April 7–9, 2021, NANTES, France.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3453417.3453424

1 INTRODUCTION
A cache memory is a hardware placed between the processor and the
main memory. It manages copies of blocks of the main memory in

order to speed up the execution of programs by giving fast answers

to the processor memory accesses. The memory can be read or

written and can contain instructions or data. An access treated by

the cache without fetching data from the main memory is called a

hit, and a miss otherwise.
Cache memories are primordial for the timing performances of

the processors. Disabling them would slow down the execution of

programs by one or two order of magnitudes. The reason why cache

memories perform so well is that they are much faster than main

memory and that they benefit from two patterns omnipresent in

programs: temporal and spatial locality of thememory accesses. This

means that programs tend to access repeatedly the same addresses

or close addresses, possibly interleaved with other accesses.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

RTNS’2021, April 7–9, 2021, NANTES, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00

https://doi.org/10.1145/3453417.3453424

Cache Analysis. The dynamic behaviour of cachesmakes that pre-

dicting the outcome of an access is non-trivial. However, a precise

characterization of the hits and misses is required for computing a

precise Worst-Case Execution Time (WCET) estimation. Therefore,

cache analyses were developed to derive that information.

Instruction cache analysis is a well-studied issue. The standard

approach is to categorize the accesses to the memory as always hit,
always miss, persistent1 or not classified [6–8].

For data cache analysis no fully satisfying solution was found

(see related work in Section 10). The classification performed for

the instruction cache do no apply straightforward due to fact that

the data accessed by an instruction depend on a computed address.

1 in t sum = 0 ;

2 for (in t i = 0 ; i < N ; i ++) {

3 sum += t [i] ; / / can r ead (t [i]) be a mi s s ?
4 }

Program 1: Summation of an array t of integers.

Consider the Program 1 and consider the read access to t[i]
nested within the loop (line 3). Can this access be a miss?

• The answer is no if the whole array t is already in the cache.

This property is not trivial to establish but it brings down

the miss bound from N to 0.

• The answer is also no as long as we stay in a memory block

in cache. This property would reduce the miss bound from N
to a fraction of N. Finding such property is a counting problem
rather than a classification problem.

Counting Integer Points. In [17], Verdoolaege et al. present a tool,

called Barvinok, that can count the integer points contained in

certain volumes, called parametric polytopes. Roughly speaking, it

performs the transformation:

♯
{
®n ∈ Zk

��� ϕ(®n, ®x)} ⇝ N(®x) (1)

where ♯S denotes the cardinality of the set S , ϕ is a (restricted)

logical formula, k is the dimension of the polytope, ®x denotes the

polytope parameters, and N is a count function that evaluates to

a natural number in constant time. This work might seem unre-

lated to our problem, but the authors of [17] motivate their work

with several counting questions occurring in program analyses and

optimizations, notably this one:

How many cache misses does a loop generate?

As we will see, the Barvinok tool can be used to solve data cache

analysis problems, but its application is not straightforward.

1
Persistent means hit or miss at the first iteration of the enclosing loop, then only

hits [5, 16].

1

https://doi.org/10.1145/3453417.3453424
https://doi.org/10.1145/3453417.3453424

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

RTNS’2021, April 7–9, 2021, NANTES, France Pascal Sotin, Quentin Vermande, and Hugues Cassé

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Proposal. In this article we present a static analysis that computes

a symbolic upper-bound for the number of data cache misses trig-

gered by one given memory access located inside a loop. Roughly

speaking, we allow the following transformation:

(C, P, acc) ⇝ ♯
{
n ∈ N

��� Init ;Body ⟨n ⟩ ;^Miss
}
⇝ U (2)

where:

• C is a cache model, P is a program with no nested loops and

acc designates one memory access within a loop body;

• (Init ;Body ⟨n ⟩ ;^Miss) is a predicate denoting the exis-

tence of an execution of program P on an architecture equiped
with a cache of model C that successively: reaches the loop

head, performs n complete iterations of the loop, and even-

tually may2 trigger a cache miss at access acc;
• U is an upper-bound on the number of misses represented

by a count function parametrised by the initial program state

(e.g. initial value of a variable, address of an array).

Note that we do not consider the computation of Init and Body ⟨n ⟩

in this article.

Contributions. We claim that:

• The upper bounds computed by our analysis reflects well

the cache hits due to the spatial and temporal locality of the

accesses inside the loop. We illustrate our analysis and its

results on Program 1 (Section 3).

• The soundness of our analysis is ensured by its formal deriva-

tion from a concrete semantics that exposes the event to

count (Sections 2 and 4).

• The predicate ^Miss can be computed using a Weakest Pre-

condition Calculus according to the nature of the cache and

the instructions preceding the memory access (Section 5).

• The predicate characterising a possible miss at iteration n is

not shaped like a polytope but it can be turned into a suitable

input for Barvinok, soundly and mechanically (Section 6).

• Our analysis can be adapted to handle several sources of

cache misses (Section 7.1) and nested loops (Section 7.2).

Our analysis is not fully automated but the calculus of Section 5

and the tranformation of Section 6 have been developed.We present

these implementations and some performance indications in Sec-

tion 8. We discuss scalability in Section 9 and present our position-

ing with respect to existing proposals for data cache analysis in

Section 10. We conclude in Section 11.

2 TERMINOLOGY AND MATHEMATICAL
NOTATION

In this section, we introduce the concepts, terms and notations used

throughout the article.

Programs and Events. A program is a text in a given programming

language. A semantics characterises formally the executions of a

program. An event designates a relevant instant in the execution

of a program, or a family thereof (e.g. a cache miss). We rely on a

program semantics related to a given event, represented by a set

of traces (detailed in Section 4). A trace is a non-empty sequence

of program states. A program state reflects the logical state of the

2
The ^ symbol is borrowed from modal/temporal logic. Read it: “possible that. . . ”.

machine that executes the program (e.g. values of the variables,

content of the cache). Let Σ be the set of all program states.

Sets and Relations. Wewrite ℘ (S) for the set of subsets of S (pow-

erset) ; A × B for the cartesian product of A and B ; {x ∈ S | ϕ(x)}
for the subset of elements of S satisfying the formula ϕ ; and ♯A for

the number of elements of A (cardinality).

We represent sets of states, in ℘ (Σ), using logical formulas. For

example i = 0 denotes the set of states

{
σ ∈ Σ

�� JiKσ = 0
}
where

JiKσ is the evaluation of the program variable i within program

state σ . Throughout the article, we use typewriter font as a hint

indicating program expressions.

We use relations on states, in ℘ (Σ × Σ), to denote the effect of pro-
gram statements. We also represent relations using logical formulas.

For example i′ = i + 1 denotes the relation:{
⟨σ ,σ ′⟩ ∈ Σ × Σ

�� JiKσ ′ = JiKσ + 1
}

The relation links the value of the program variables before (un-

primed) and after (primed). Relations R1 and R2 can be composed

in a relation R1 ;R2 defined by:

⟨σ ,σ ′′⟩ ∈ (R1 ;R2) ⇐⇒ ∃σ ′, ⟨σ ,σ ′⟩ ∈ R1 ∧ ⟨σ
′,σ ′′⟩ ∈ R2

A relation R and a state S can be composed in a state R ; S defined

by:

σ ∈ (R ; S) ⇐⇒ ∃σ ′, ⟨σ ,σ ′⟩ ∈ R ∧ σ ′ ∈ S

We call sound approximation of a setA any set B such thatA ⊆ B.
This also applies if A and B are relations. These approximations of

sets and relations coincide with the ordering of powersets used in

Abstract Interpretation [2].

Counting. The property we look for is defined by counting the

number of elements of a given set. We have the properties:

A ∩ B = ∅ ⇒ ♯ (A ∪ B) = ♯A + ♯B (3)

A ⊆ B ⇒ ♯A ≤ ♯B (4)

Necessary and Sufficient Conditions. In the formula ϕA ⇒ ϕB ,
the formula ϕA is called a sufficient condition and ϕB a necessary

condition. This formula is equivalent to ¬ϕB ⇒ ¬ϕA.
Throughout the article, in order to be sound, we often look for

formulas entailed by the program behaviour (necessary conditions,

over-approximation) or, playing with negations, formulas entailing

the absence of some program behaviours (sufficient conditions,

under-approximation).

3 ANALYSIS PRINCIPLE
In this section, we illustrate the principle of our analysis by applying

it to Program 1. We wish to bound the number of cache misses

triggered by the read accesses to the cells of the array t.
We assume that the compiler decides to put the variables sum

and i in registers and to align t on an integer boundary. We assume

that an integer occupies 4 bytes. We assume that the cache:

• contains blocks of 32 bytes, hence 8 integers,

• ensures that the latest block fetched remains in the cache

(very weak assumption).

In Section 5, we will show how our analysis takes into account

more complex assumptions on the cache.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Data Cache Analysis by Counting Integer Points RTNS’2021, April 7–9, 2021, NANTES, France

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1

24

0

3

sum = 0;
i
=
0;

sum += t[i];

¬(i < N)

i

<

N

i++;

Figure 1: Control flow graph of the loop of Program 1.

3.1 Analysis stages
We perform the analysis on a Control Flow Graph (CFG) of Pro-

gram 1, shown on Figure 1. Contrarily to CFG used in compilers

and disassemblers, the instructions are carried by the edges, not

by the nodes. The symbol marks the loop head. The instructions

followed by a semi-column are assignments; the others are guards.

The test of the for loop gives birth to two guards.

Loop Analysis. The relation B denotes the effect of a loop iter-

ation, from the loop head, back to the loop head
3
. The relation

B ⟨n ⟩ denotes an over-approximation of Bn , the effect of n ∈ N loop

iterations. In this article, we do not consider how such a relation

can be derived. For the loop of Program 1, we have:

B ⟨n ⟩ ⇐⇒ i′ = i + n ∧ N′ = N ∧ &t′ = &t (5)

Equation (5) state that the execution of n loop iterations increases

the initial value of variable i by n but does not alter the value of N
nor the address of the array t (written &t). It says nothing about
sum, the content of t or the cache state. As mentioned in Section 2,

Equation (5) is a lightweight notation for:

∀σ ,σ ′ ∈ Σ, ⟨σ ,σ ′⟩ ∈ B ⟨n ⟩ ⇐⇒
©«

JiKσ ′ = JiKσ + n
∧ JNKσ ′ = JNKσ
∧ J&tKσ ′ = J&tKσ

ª®¬ (6)

Miss Condition Analysis. Based on the hypotheses on the cache,

we construct a formula denoting a necessary condition for triggering
the cache miss in the current iteration. In our example:

^Miss ⇒ ^
(
loc = 2 ∧ âge(bk(t, i)) , 0

)
(7)

where:

• the symbol ^ denotes the possibility of what follows;

• loc is the current control point (a node of Figure 1);
• bk(t, i) is thememory block identifier containing the integer

t [i], defined as

⌊
&t+4i

32

⌋
;

• and âge is a function representing the current cache, binding

a maximal age to every memory block. By convention, the

most recently accessed block has age 0.

We perform a backward computation to transform the condition

into a predicate suitable and useful for composition after B ⟨n ⟩ . This
computation creates a family M̄ of conditions sufficient for avoiding
the considered cache miss. The conditions computed for Program 1

are shown in Table 1. The functionwp (stmt,Q) returns a sufficient

condition for establishing Q after stmt.

3
Hence ⟨σ , σ ′⟩ ∈ B means that if the current program state is σ , then entering the

loop and returning to the head through a back-edge can end up in program state σ ′.

Condition Definition Value

M̄2,0 ¬(âge(bk(t, i)) , 0) âge(bk(t, i)) = 0

M̄1,0
wp

(
i < N, M̄2,0

)
∧ wp (¬(i < N), true)

âge(bk(t, i)) = 0
∨ i ≥ N

M̄3,+1 wp
(
i++, M̄1,0

) âge(bk(t, i + 1)) = 0
∨ i + 1 ≥ N

M̄2,+1 wp
(
access t[i], M̄3,+1

) bk(t, i + 1) = bk(t, i)
∨ i + 1 ≥ N

M̄1,+1
wp

(
i < N, M̄2,+1

)
∧ wp (¬(i < N), true)

bk(t, i + 1) = bk(t, i)
∨ i + 1 ≥ N

Table 1: Sufficient conditions for avoiding the miss.

The formula M̄1,+1 states that when the execution is at the loop

head (i.e. 1) we can ensure that no miss will occur in the iteration

after this one (i.e. +1) when either:

• the current iteration will access the same memory block than

the following one i.e. bk(t, i + 1) = bk(t, i),
• we exit the loop beforehand i.e. i + 1 ≥ N.

Note that the formula M̄1,0 is meaningful but its dependence on

âge would give a disappointing composition with B ⟨n ⟩ given that

B ⟨n ⟩ carries no information on the cache.

Miss Count. The number of cache misses is upper bounded by

the expression:

Umiss = 1 + ♯
{
n ∈ N

��� n ≥ 1 ∧
(
Init ;B ⟨n−1⟩ ;¬M̄1,+1

)}
(8)

This expression is a sum because we separated the first access
4

from the subsequent ones. After expansion, Expression (8) gives:

Umiss = 1

+ ♯

n ∈ N
��������
n ≥ 1 ∧ ∃i, i′, N′, t′

&tmod4 = 0 ∧ i = 0
∧ i + n − 1 = i′ ∧ N = N′ ∧&t = &t′

∧ i′ + 1 < N′ ∧ bk(t′, i′ + 1) , bk(t′, i′)

(9)

After elimination of the existential quantifiers we get:

Umiss = 1 + ♯

n ∈ N
������ 1 ≤ n < N ∧ &tmod4 = 0

∧

⌊
&t + 4n

32

⌋
,

⌊
&t + 4(n − 1)

32

⌋ (10)

Using a process described in Section 6, we turn Expression (10)

into the following expression, that is (almost) suitable for processing

by the Barvinok tool:

Umiss = 1 + ♯

n ∈ Z

������������

∃qa,qb ,qc ∈ Z
1 ≤ n < N
&t = 4qa
0 ≤ &t + 4n − 32qb < 32
0 ≤ &t + 4n − 4 − 32qc < 32
qb , qc

(11)

4
In order to keep the presentation simple, we treat the first access as a possible miss,

regardless of the history, but the framework allows a more precise treatment using

♯
{
n ∈ N

��� n = 0 ∧
(
Init ; B ⟨0⟩ ;¬M̄1,0

)}
as first term of the sum.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

RTNS’2021, April 7–9, 2021, NANTES, France Pascal Sotin, Quentin Vermande, and Hugues Cassé

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Our transformation added three existentially quantified integer

variables representing the quotient of some divisions. The variable

qa is used to encode the modulo expressing the alignment con-

straint for the array t. The variables qb and qc were introduced to

cope with the floored divisions. Note that all the transformations

presented on that example are exact.

Fed with Equation (11), Barvinok gives us in return the bound:

Umiss =

⌊
7

8
+
&t
32
+
N
8

⌋
−

⌊
&t
32

⌋
if N ≥ 2

1 otherwise

(12)

3.2 Analysis Results
Comments on Equation (12). The bound computed by Barvinok

is parametric both in the size of the array, N, and the address of

the array, &t. Table 2 shows the evaluation of Umiss for some

variations on &t and N.

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3

1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3

1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3

1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

4

8

12

16

20

24

28

32

N

&t

Table 2: Some evaluations ofUmiss

Unsurprisingly, the number of cache misses grows slowly as N
grows, i.e. as the number of accesses grows, due to spatial locality.

The ratio is approximately one miss for eight accesses. The address

of the array t has a marginal influence on the number of misses.

The best case occur when the array is aligned on a cache block

boundary. Note that when N = 9, the alignment has no influence.

Note that as soon as N ≥ 1, our bound is the most precise bound
one can have under the expressed hypotheses. Note also that it is

still an over-approximation because the number of misses could be

zero if the array is entirely in cache when the loop begins.

Variations. If we give additional invariants to Barvinok, we can

get simpler formula, or even just numbers. Table 3 shows the for-

mula we get using a variety of additional constraints.

4 SEMANTIC DERIVATION
In this section, we present a framework for counting occurrences of

an event during the execution of a program. This framework makes

explicit the hypotheses under which expressions like Expression (8)

truly reflect what needs to be counted. This section can be skipped

at first read.

4.1 Trace Semantics
Let T (Σ, L) be the set of traces of states in Σ labelled by labels in L.
A labelled trace u ∈ T (Σ, L) is of the form:

σ0
l0
−−→ σ1

l1
−−→ σ2 · · · σn

where the σi are in Σ and the li are in L. We write:

• ui for the state at index i (hence σi);
• ui� for the label following the state at index i (hence li).

Let P denote a program and e denote a kind of event. The trace

semantics of P with respect to e is written T JP, eK and is a subset

of T (Σ,N) where Σ denotes the possible states of Program P. This
setting is very general and we immediately restrain it with the two

following hypotheses.

Hypothesis 1 (One Occurrence Per Transition). We make
the hypothesis that T JP, eK is such that each program transition
triggers at most one occurrence of the event. Formally, we have:

T JP, eK ⊆ T (Σ, {0, 1}) (13)

In the following we interpret 0 and 1 respectively as false (i.e.

the event did not occur) and true (i.e. the event occurred). We write

B instead of {0, 1}.

Hypothesis 2 (Marking Function). We make the hypothe-
sis that we have a marking function that can instrument traces in
T JP, eK with markers such that in each trace the markers identify
the events. Formally, we have:

instr : T JP, eK→ T (M × Σ,N)
st : M × Σ→ Σ
mark : M × Σ→ M

such that v = instr (u) implies:
∀i, st(vi) = ui
∀i, vi� = ui�
∀i, j, i , j ∧mark(vi) = mark(vj) ⇒ vi� = 0 ∨ vj� = 0

This hypothesis will allow us to reason on the set of marks for

which the event occur. In Section 5.1, wewill use an instrumentation

based on a loop counter.

Additional constraints Miss bound

N ≥ 1 ∧&t ≡ 0 (mod32)

⌊
7

8
+
N
8

⌋
N ≥ 1 ∧&t ≡ 4 (mod32) 1 +

⌊
N
8

⌋
N ≥ 1 ∧&t ≡ 28 (mod32) 1 +

⌊
3

4
+
N
8

⌋
N = 32 4 +

⌊
7

8
+
&t
32

⌋
−

⌊
&t
32

⌋
N = 33 5

N = 100 ∧&t = 512 13

Table 3: Variations on the miss bound

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Data Cache Analysis by Counting Integer Points RTNS’2021, April 7–9, 2021, NANTES, France

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.2 Maximal Number of Event Occurrence
Property of Interest. The property that we look for is themaximal

number of occurrences of the event e during any execution of the

program P, given by bound(T JP, eK), with:

bound(T) = sup
u ∈T

(∑
i
ui�

)
(14)

where sup is the supremum operator, delivering the maximal value

if it exits or +∞ otherwise. We consider an analysis to be sound if

it delivers an over-approximation of this number.

Property Transformation. Under Hypothesis 1 we have:

bound(T JP, eK) = sup
u ∈TJP,eK

♯ {i | ui�} (15)

Equation (15) states that under Hypothesis 1, counting in each trace

the states triggering the event is equivalent to counting the events

themselves.

Under Hypotheses 1 and 2 we have:

bound(T JP, eK)

= sup
v ∈ Ûinstr (TJP,eK)

♯ {m | ∃i,mark(vi) =m ∧ vi�} (16)

where Ûinstr is the instrumentation function lifted to sets of traces.

Equation (16) states that under Hypotheses 1 and 2, counting in

each instrumented trace the marks of the states triggering the event

is equivalent to counting the events themselves.

Mark Set Approximation. We use the properties of sup and ♯ to

turn Equation (16) into the following inequation:

bound(T JP, eK) ≤ ♯
{
m

���� ∃v ∈ Ûinstr (T JP, eK),
∃i,mark(vi) =m ∧ vi�

}
(17)

Note that the tranformation giving Equation (17) can induce an

over-approximation since it does not compute the supremum of

the number of marks triggering the event in each trace but count
the number of marks triggering the event in some trace.

4.3 Relational Semantics
We define an approximation of the instrumented trace semantics

using the following Galois connection:

T (Σ,B) −−−−−→←−−−−−
αrel

γrel
I :℘ (Σ) ×R:℘ (Σ × Σ) × E :℘ (Σ)

αrel(T) = ⟨ I :{u0 | u ∈ T },
R:{⟨ui ,ui+1⟩ | u ∈ T },
E :{ui | u ∈ T ∧ ui�} ⟩

(18)

For clarity, we tagged our sets with I for initial, R for relation and

E for event. As usual, the lattices are ordred by inclusion.

Using this abstraction, we can define a new approximation for

our property:

bound(T JP, eK) ≤ ♯

m
��������
∃v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
∃i, vi ∈ E ∧mark(vi) =m

 (19)

with ⟨I ,R, E⟩ = αrel(T JP, eK). Note that the marks on the traces are

no longer considered since E carries that information. It is likely

that we can derive precise values for I , R and E from the considered

program P and event e.

Precondition Calculus. We can show that performing backward

computation using a precondition calculus is sound.

Lemma 4.1. For all predicates P and Q such that:

∀⟨σ ,σ ′⟩ ∈ R, P(σ) ⇒ Q(σ ′) (20)

we have:©«
∀v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
⇒ Q(v0) ∧ ∀i, P(vi)

ª®®®¬⇒
©«
∀v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
⇒ ∀i,Q(vi)

ª®®®¬ (21)

Note that the formulas used on each side of Equation 21 are the

negated form of the condition found in Equation (19).

Lemma 4.1 allows us to compute sound approximations of our

bound by:

• Starting the analysis with a formula denoting:

mark(vi) =m ⇒ vi < E

• Computing new formula that is a sufficient precondition for

the current formula by the relation R,
• Keeping the formula as it is for the states in I ,
• Using the negation of the result formula as ^Miss .

5 HANDLING COMPETITION FOR THE
CACHE

In this section, we present how the non-miss condition is built,

according to the nature of the cache and to the history of memory

accesses.

5.1 Loop and Instrumentation
The program we consider in this section is restrained to a loop and

the event we track is the triggering of a cache miss related to a

specific memory access that:

• can occur at a given control point acc within the loop body;

• is not nested within an inner loop.

The array accesses in Programs 1 and 2 satisfy these conditions. It

is also the case in Programs 3 and 4 (page 8) but not in Program 5

because of the nested loops.

We instrument the loop with a counter n that is:

• initialized to zero;

• incremented when a back-edge of the loop is taken.

This instrumentation and the fact that the considered access occurs

at most once per loop iteration enforces Hypothesis 2: in an exe-

cution, every occurrence of the considered miss is identified by a

distinct value of n.

5.2 Cache Modeling
We model the cache with a function âge : N→ N that maps each

block identifier to an upper bound of the age of that block. This

information coincides with themust analysis of Ferdinand et al. [7].
A block having a maximal age greater than the cache associativity

might be absent from the cache.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

RTNS’2021, April 7–9, 2021, NANTES, France Pascal Sotin, Quentin Vermande, and Hugues Cassé

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Trivial Cache. The formula M̄1,+1 derived in Section 3 holds for

any type of cache, since the only hypothesis we made was that the

last memory location accessed remained in the cache. The functions

determining respectively if an access to a block may be a miss and

how evolve the maximal ages
5
after an access were:

may_miss(âge, bacc) ⇐⇒ âge(bacc) , 0

update(âge, bacc) = λbup.

{
0 if bup = bacc
∞ otherwise

This approximation was sufficient to prove that the read access in

the summation loop only triggers a cache miss every 8 iterations.

However, in the presence of other accesses, like in the loop of

Program 2, that will not be sufficient to prove that the write access

does not evict the cache block loaded by the read access.

1 for (in t i = 0 ; i < N ; i ++) {

2 t [i] = u [i] ; / / r e a d s u [i] t h en w r i t e s t [i]
3 }

Program 2: Copy loop.

LRU Cache. We now consider a Least Recently Used (LRU) cache

made of blocks of B bytes spread among S cache sets, each having

an associativity of A. The cache size is thus B × S ×A bytes. Using

an over-approximation of the age, the most precise miss and update

functions are:

may_miss(âge, bacc) ⇐⇒ âge(bacc) ≥ A

update(âge, bacc) = λbup.
0 if bup = bacc
âge(bup) if bup , bacc ∧(

bup . bacc (modS)
∨ âge(bacc) = 0

)
âge(bup) + 1 otherwise

where b1 . b2 (mod S) means that the blocks b1 and b2 belong to

distinct cache sets.

5.3 Sufficient Precondition Analysis
Condition of Interest. We use the may_miss function to express

a necessary condition ^Missn for a miss at iteration n:

^Missn (σ) ⇒(
mark(σ) = n ∧ loc(σ) = acc ∧may_miss(âge, bacc)

) (22)

Note that ^Missn is not a sufficient condition due to the fact that

the function âge reflect a maximal age: an access can still be a hit

even ifmay_miss is true. The negation of ^Missn condition is a

sufficient condition for the absence of miss at iteration n:(
mark(σ) = n ∧ loc(σ) = acc ⇒ ¬may_miss(âge, bacc)

)
⇒ ¬^Missn (σ)

(23)

We compute sufficient preconditions of the form:

mark(σ) = n + k ∧ loc(σ) = l ⇒ M̄l ,+k (σ) (24)

5
The result of the update function is a function binding block identifiers to ages. We

describe it using a lambda expression (λx .f (x)).

We seek for a sufficient precondition such that both:

• The control point is the loop head;

• The mark is n and the condition no longer depend on the

âge function, or the mark is n − 1.

These halting conditions make that we need to move backward for

one partial iteration, and potentially one more complete iteration.

Computation. The computation is done following the principles

of Dijkstra’s Weakest Precondition Calculus [4]. We expect that if

P = wp (stmt,Q) then {P}stmt{Q} is a Hoare triple. Guards and
assignments are treated as expected in such calculus:

wp (C is true,ϕ) = C⇒ ϕ

wp (x := E,ϕ) = ϕ[x/E]

However, the treatment of memory accesses is not straightforward

because it involves updating a function. This can be done using

parallel assignments:

wp (access x,ϕ)

= wp (âge := update(âge, bk(x)),ϕ) (25)

= wp (∥b âge(b) := update(âge, bk(x))(b),ϕ) (26)

Equation (26) might look like an intractable computation.

• On the one hand, this impression is false given that the only

assignments having an effect on the result are the ones where

âge(b) appears in ϕ.
• On the other hand, this computation potentially leads to a

disjunction with (D + 1).UD
cases where D is the number

of blocks to update and U the number of cases generated by

each update. However, the good news are:

– Some cases boil down to false . In the tool presented in

Section 8.1, we rely on SMT-solving for disproving these

spurious cases.

– These cases give birth to formulas of the form¬A∧¬B∧. . .
where A and B are conjunctions. Since we look for a suffi-

cient condition, we can replace ¬A ∧ ¬B by ¬C provided

that A ∨ B ⇒ C . Conjunctions are well represented in

usual static analysis abstract domains and the computa-

tion of C is provided by the join operation of the domain.

We did not explore this possibility so far, but the presence

of disequation in our conjunctions could be an issue.

– In each case of the form ¬(A1 ∧A2 ∧ . . .) we can soundly

drop any conjunct Ai . We did not explore the potential of

this possibility.

The treatment of the âge function update leads us to a ad-hoc the-

oretical development that we present in the following subsection.

5.4 Sufficient Precondition Calculus on
Functions

Our representation of the âge function as a logical formula is in-

spired by the shape analyses based on separation logic, in particular

by the work of Rival et al. [11]. Shape analyses target the represen-

tation of the memory i.e. a mapping from addresses to values. We

adapt their approach to our âge function i.e. a mapping from block

identifiers to ages. Note that the shape analysis problem is more

complex due to the fact that values may be themselves addresses.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Data Cache Analysis by Counting Integer Points RTNS’2021, April 7–9, 2021, NANTES, France

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Function Representation. We represent the constraints on a func-

tion f by a pair ⟨®E,ϕ⟩ interpreted as:

∃®x, alias(®x, ®E) ∧ ϕ(f , ®x) (27)

where the formula ϕ constrains the ®xi and the f (®xi) and where

alias is defined by:

alias(®x, ®E) ⇐⇒ ∀i, j, i , j ⇒ ®xi , ®x j

∧ ∀i,
∧
e∈®Ei

®xi = JeK (28)

The first conjunct of Equation (28) state that all ®xi are distinct

values. The dictionary ®E stores for each ®xi a set of alias expressions.

Operations. We list here a set of operations sufficient to perform

the precondition calculus of Section 5.3. We do not provide here

their algorithms but an implementation has been developed (see

Section 8.1). The operations are:

• Yielding a pair ⟨®E,ϕ⟩ equivalent to true .
• Exposing an element a of the function domain. This opera-

tion can produce from 1 to length(®x) + 1 cases depending

on whether a can be aliased/unaliased with an existing di-

mension of ®x .
• Simplifying the formula by eliminating the quantified x such

that f (x) is not in ϕ.
• Adding a conjunct to ϕ (for treating guards).

• Performing a substitution (for treating scalar assignment).

• Compution a sufficient precondition for a backward update

of the function. This operation explores the combination of

possible updates for each of the quantified variables.

5.5 Results for the Analysis of Program 2
We look for bounds for the number of miss triggered by the read

accesses to the array u in Program 2. A similar analysis, with similar

results, could be performed for the write accesses to t.

LRU Cache. We assume a LRU cache of associativity A, contain-
ing S sets, with 32 bytes in each block. We use an update function

pessimistic with respect to sets. The backward analysis gives us the

following necessary condition for a miss at iteration n:

^Missn ⇒
©«
n = mark + 1 ∧ loc = h ∧ n < N
∧ bk(u,n) , bk(t,n − 1)

∧

(
(bk(u,n) = bk(u,n − 1) ∧A ≤ 1)
∨ bk(u,n) , bk(u,n − 1)

) ª®®®¬ (29)

The novelties with respect to Program 1 are the fact that the cache

associative enough will surely avoid the miss and that the miss can

also be avoided if the access to t loads the next block.

In order to show a readable formula we add the constraint N =
100 and A ≥ 2, then Barvinok finds the following bound:

Umiss =

1 if 0 ≤ &u −&t ≤ 36

13 +

⌊
3

8
+
&u
32

⌋
−

⌊
&u
32

⌋
(30)

Direct Mapped Cache. We assume a cache with no associativity

(A = 1) but 16 sets and still 32 bytes by cache block. The backward

analysis gives us a necessary condition for a miss at iteration n:

^Missn ⇒

©«
n = mark + 1 ∧ loc = h ∧ n < N
∧ bk(u,n) , bk(t,n − 1)

∧
©«
(
bk(u,n) = bk(u,n − 1)
∧bk(u,n) . bk(t,n − 1) (mod16)

)
∨ bk(u,n) ≡ bk(t,n − 1) (mod16)

ª®¬
ª®®®®®¬

(31)

The novelty here is the congruence inspection that could allow a

hit if the arrays t and u are aligned correctly.

Without placing t and u, the tool Barvinok produces a huge

formula (∼90 kB). By placing t and u, it gives numbers. Some

configurations are shown below:

13 13 25
..

74 85 100 100 88
..

76 26 13 13

480 484 488 504 508 512 516 520 524 540 544 548

1024

&t
&u

6 COUNTING USING BARVINOK
DECOMPOSITION

In this section, we present the transformation of our formulas

encoding the loop summary composed with miss conditions into

problems that can be processed by the tool Barvinok.

Back-End Capacities. The tool Barvinok [17] can turn, in poly-

nomial time, expressions of the form:

λ®x ∈ Zp . ♯
{
®n ∈ Zk

��� ∃®e ∈ Zq ,ϕ(®x, ®n, ®e)} (32)

where ϕ is a conjunction of linear inequalities into expressions of

the form:

λ®x ∈ Zp .
∑
c
Idc (®x) × fc (®x) (33)

where each term of the sum denotes a chamber, each dc is a predi-
cate denoting a domain of validity and each fc is a count function
represented by a Ehrart polynomial. We refer to ®x as the parameters,

to ®n as the variables and to ®e as the quantified variables.

6.1 Transformations
We present a serie of formula transformation that can be used to

reduce the formula characterising a possible miss into a formula

supported by Barvinok. These transformations are expressed as

term substitutions, with ϕ[s/t] being the formula ϕ where all occur-

rences of the term s have been replaced by the term t . In this article,

we do not present how this transformations are chained but wemen-

tion that we developed a tool that does the whole transformation

(see Section 8.2).

6.1.1 Modulo Elimination. The modulo operation appears when

the address of some program data is not fixed but its alignment

is constrained. E.g. the array t is aligned on an integer boundary,

the array u is aligned on a cache boundary. Congruence operations

are also produced by the backward analysis when it considers the

cache sets.

Lemma 6.1. For all formula ϕ, for all terms s and t and for all fresh
quantified variable q we have:

ϕ ⇐⇒ ∃q ∈ Z,
∧������ ϕ[smod t/(s − q ∗ t)]∨ ���� 0 ≤ (s − q ∗ t) < t

t < (s − q ∗ t) ≤ 0
(34)

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

RTNS’2021, April 7–9, 2021, NANTES, France Pascal Sotin, Quentin Vermande, and Hugues Cassé

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

The elimination of a modulo introduces a new quantified variable

in the formula and would also create a disjunction if the sign of

the divisor t is not known. The latter will not occur in the usages

mentioned above. Note that the result of the operator is always of

the sign of the divisor
6
. This ensures a continuity in the treatment

of the memory even if addresses can go below zero.

6.1.2 Floored Division Elimination. The floored division operation

appears in each block identifier computation. This operation is

linked with the modulo used above in the sense that:

y

⌊
x

y

⌋
+ (x mody) = x (35)

Lemma 6.2. For all formula ϕ, for all terms s and t and for all fresh
quantified variable q we have:

ϕ ⇐⇒ ∃q ∈ Z,
∧�������

ϕ[
⌊ s
t

⌋
/q]∨ ���� 0 ≤ (s − q ∗ t) < t

t < (s − q ∗ t) ≤ 0

(36)

Here also, the transformation introduce a quantified variable and

could create a disjunction if the sign of the divisor is not known.

6.1.3 Non-Linear Term Extraction.

Non-Linear Terms on Parameters. Due to some loop entering

condition of the program, the formula might contain conditions

like:n ≤ M×N. This inequality contain the non-linear terms M×N but
since it contains only parameters, its value does not depend on the

number n of iterations. This product, or any non-linear expression

can be seen as a parameter.

Lemma 6.3. For all formula ϕ, for all term t containing only pa-
rameters, for all term s , for all relation ≾ ∈ {=, <, ≤} and for all fresh
parameter p we have:

ϕ ⇐⇒ ϕ[s ≾ t/s ≾ p] ∧ p = ⌊t⌋ (37)

This transformation introduces new parameters and set aside

their definitions. Once Barvinok returns a count function, these

artificial parameters are replaced by their original definition.

Non-Linear Terms Containing a Variable. In the case of loop up-

date based on integer shifts, the formula might contain relations

like: 2n ≤ N. The transformation presented above cannot be ap-

plied because n is not a parameter. However, we can see 2n as a

function f (n) and since this function is invertible we can rewrite

the equation into n ≤ log2(N). Eventually, log2(N) can be extracted

as seen previously.

Lemma 6.4. For all formula ϕ, for all functions f and f 91 such
that f 91 ◦ f is the identity function, for all variable x and term t , we
have:

ϕ ⇐⇒ ϕ[f (x) = t/x = f 91(t)] (38)

Moreover, if ϕ ⇒ t ∈ dom f 91 and f 91 is monotone, resp. antitone,
then for all ≾ ∈ {<, ≤} Equation (39), resp. Equation (40), holds:

ϕ ⇒ ϕ[f (x) ≾ t/x ≾ f 91(t)] (39)

ϕ ⇒ ϕ[f (x) ≾ t/x ≿ f 91(t)] (40)

Note that this transformation is useless if the term t contains a
variable, since it would only transfer the non-linearity.

6
Like in Python, but unlike Java.

6.1.4 Disjunction Management. We eventually put the formula in

Disjunctive Normal Form. Each of the disjunct forms a sub-problem

that is submitted to Barvinok. The tool answers are then summed

to give the final formula.

It is important that the disjuncts are exclusive from one to the

other, otherwise, the sum of their results could be greater than the

potential number of misses.

7 ANALYSIS EXTENSIONS
As stated in Section 1, the analysis presented in this article targets

one memory access that should appear in the body of non-nested
loop. In this section, we discuss informally how to go beyond this

two limitations, using examples.

7.1 Handling Multiple Accesses
Simplest Approach. The naive approach to count the misses gen-

erated by several accesses is to perform the analysis several time.

For example, in Program 3 that reverses order of the elements of

an array t, we have potentially four sources of cache misses.

1 in t low = 0 , h igh = N − 1 ;

2 while (low < high) {

3 in t tmp = t [low] ;

4 t [low] = t [h igh] ;

5 t [h igh] = tmp ;

6 low ++; high −−;

7 }

Program 3: Array reversal

Applying the cache analysis several times will give good results.

For a 2-way associative cache, 32 bytes per cache block, t aligned

on a cache boundary and N = 100 we have:

Line Access Miss bound

3 read t[low] 7

4 read t[high] 7

4 write t[low] 0

5 write t[high] 0

Table 4: Miss bounds for the accesses of Program 3

This gives only 14 cache misses to be compared to the 200 poten-

tial cache misses. This is an important achievement for the WCET

computation.

However, because the four analyses are independent, they might

count a missmultiple times. It probably happens here because when
low reaches high the accesses to t[low] and t[high] fall in the

same cache block.

Program 4 shows a situation where summing two analyses will

give disappointing results. We assume that condition (i) returns a

boolean value that we cannot predict and that its execution has a

bounded impact on the cache.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Data Cache Analysis by Counting Integer Points RTNS’2021, April 7–9, 2021, NANTES, France

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1 for (in t i = 0 ; i < N ; i ++) {

2 i f (c o n d i t i o n (i)) {

3 t [i] = u [i] ;

4 } e l se {

5 t [i] = v [i] ;

6 }

7 }

Program 4: Merging arrays

Incorporating Maximums. Given that the accesses occur on dif-

ferent paths within the loop body, it is sound to take the maximum
of the misses triggered at line 3 and 5. Soundness is ensured by

the fact that the backward analysis finds sufficient conditions for

avoiding the miss. Thus the miss needs to be avoided whatever

decision we make at line 2. For the accesses to t, things are alright
because both paths ensures that its blocks will be found quite often

in the cache. However, for u and v, things are disappointing: both
can occur up to N times, while it is clear for the reader that some

hits must happen.

Playing with Marks. We have a solution for the specific problem

mentionned above. We did not explored how such solution can be

generalized but we mention it anyhow. Since the accesses to u and

v belong to distinct path of the body, we can consider them as a

single event without breaking Hypothesis 2. We get the necessary

condition below for a miss reading u or v at iteration n. We sim-

plified this condition using the hypothesis that the arrays do not

overlap.

^Missn ⇒
©«
n = mark + 1 ∧ loc = h ∧ n < N

∧

(
(bk(u,n) = bk(u,n − 1))
∨ (bk(v,n) = bk(v,n − 1))

) ª®¬ (41)

If we add the constraint N = 100 and place u and v in memory, then

Barvinok finds a bound of 25 misses which is the best we could

hope.

7.2 Handling Nested Accesses
Let consider now the case of nested loops. Program 5 shows a two

nested loops operating on a matrix m. The issue is how to enforce

Hypothesis 2: since the inner loop is executed several times by the

outer loop, its iteration numbers cannot be considered as unique

miss identifiers.

1 in t m[N] [N] ;

2 . . .

3 double sum = 0 ;

4 for (in t row = 0 ; row < N ; row++) {

5 for (in t c o l = row ; c o l < N ; c o l ++) {

6 sum += m[row] [c o l] ;

7 }

8 }

Program 5: Upper triangle sum

Our framework offers two solutions for this problem.

Inner Loop Scaling. The first solution is to perform the analysis

on the inner loop in order to get a general bound. The bound we

find depends on the parameters row and N. The presence of N is fine
since it is constant for the whole program but the presence of row
is an issue because it varies from one iteration of the outer loop to

another.

• We can get rid of the parameter row by putting it in the

existentially quantified variables of the problem together

with the constraint that row ≥ 0 and run again Barvinok.

It will deliver a miss bound depending only on N that we

can multiply by the outer loop bound to get a general miss

bound. This is sound but imprecise, since Program 5 does

not sum the whole matrix.

• Or we can sum the miss bound parametrized by row for

the successive values of row. This would be more precise

but why not delegate this task to Barvinok and stay in the

framework?

Nested Identifiers. The second solution is to adapt our instrumen-

tation to the loop structure and identify a miss by a pair ⟨nout,nin⟩
and consider a problem of the following shape.

♯
{
⟨nout,nin⟩ ∈ N

2
��� Iout ;B ⟨nout ⟩

out
; Iin ;B

⟨nin ⟩

in
;^Miss

}
(42)

The tool Barvinok is tailored for this kind of problems and solves

them easily when we can turn the condition into a suitable input.

However:

• We do not know how to perform this transformation when

N is not a constant. This is due to the presence of some non-

linearity that does not fall in the transformations presented

in Section 6.

• The presence of the inner loop would also cause troubles to

the backward analysis of Section 5 if the access was outside

of the inner loop (which is not the case of Program 5). We

would need to compute the precondition before the inner

loop, which is non-trivial. This limitation make sense in

a framework that pretends to exploit temporal and spatial

locality.

Deriving by hand the miss formula and submitting it to Barvinok

with &m = 512 and N = 100 we get a bound of 700 which is only

7% of the accesses.

8 IMPLEMENTATION
In this section, we present a partial implementation of our approach.

All themiss conditions^Miss andmiss boundsUmiss in this article

have been computed using the two implementations presented here.

8.1 Backward Analysis
We developed the primitives of the Weakest Precondition Calculus

presented in Section 5, in Python. This primitives are then used to

write programs that compute preconditions for different control

points of the program and distance to the miss, e.g. the formulas of

Table 1. We do not parse from C nor from binary so far.

Module Lines of code

Basic logic formulas ∼500

Cache formulas & WPC ∼500

Cache models ∼100

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

RTNS’2021, April 7–9, 2021, NANTES, France Pascal Sotin, Quentin Vermande, and Hugues Cassé

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Our code makes an intensive use of the SAT Modulo Theory solver

Z3 [3] to simplify our formulas and to cut the exploration of con-

figurations that cannot occur during the processing of memory

accesses. Note that we only exploit the cases where Z3 ensures

that a formula is unsatisfiable and do not use the model when the

formula is satisfiable. The intuition behind this usage is that the

existence of a model is necessary for the existence of a point in the

polytope submitted to Barvinok.

8.2 Barvinok Custom Front-End
We developed the primitive for deriving an upper bound on the

number of misses from the possible miss formula, using Barvinok

and including the tranformations presented in Section 6 (among

others). Our tool was developed in OCaml.

Module Lines of code

Interface with Barvinok ∼ 250

Formula representation ∼ 450

Transformations ∼ 350

User interface ∼ 400

8.3 Preliminary Timing Performances
Even if our two implementations are far from being optimized, we

give in Table 5 the measurements for the conditions and bounds

shown or mentioned in this article.

Program Cache Condition (Sec. 8.1) Bound (Sec. 8.2)

ϕ Time (s) U Time (s)

Prog. 1 trivial Table 1 0.28 Eq. (11) 0.03

Table 3

each line 0.01

Prog. 2 LRU Eq. (29) 0.40 Eq. (30) 0.03

Direct Eq. (31) 0.41 huge, p. 7 0.76

Prog. 3 LRU
7 read t[low] 0.33

read t[high] 0.34 Table 4

write t[low] 0.26 each line 0.01

write t[high] 0.28

Prog. 4 LRU Eq. (41) 0.85 =25, p. 9 0.02

Prog. 5 LRU read m[r][c] by hand =700, p. 9 0.01

Table 5: Preliminary performances evaluation

The measurements were conducted on computer equiped with

an Intel Core i7-7600U CPU at 2.80GHz × 2, four cores and 32 GB

of RAM, running a Debian 10 operating system. The time measure-

ments are expressed in seconds. The times of the column Condition
are gathered using the cPython profiler. The conditions marked

read or write are not shown in the article.

9 ADDRESSING SCALABILITY
The timing measurements shown in Section 8.3 prove that the

approach is feasible for small programs but let open the question of

its scalability to larger programs. In this short section, we emphasize

several elements concerning scalability.

7
In the preliminary experiments, the analysis was performed with a symbolic number

of bytes per blocks (instead of using the 32 bytes hypothesis) that lead Z3 into long

computations (up to 4 minutes for read t[high]). From these counter-performances,

we should retain that: (a) the cost of genericity can be high and (b) the unpredictability

of the SMT solvers behaviour can be a limitation for our approach.

Local Application. First of all, there is little need to target much

larger programs because most of the gain we can get comes from

the spatial behaviour of the innermost loops. Our typical local gain

is decreasing themiss bound fromN to
N
k . This kind of gain persists

even if the loop is activated several times.

Genericity Tradeoff. Our approach allows a high level of gener-

icity in its results. A miss bound can depend on unknown charac-

teristics of the cache (e.g. associativity) and on the value of some

program variables. Providing detailled information on the cache or

on the program values, especially on possible aliases, will specialise

the bound and thus limit the possibilities explored by the backward

analysis, as mentioned in Section 5.3.

10 RELATEDWORK
There is a vast litterature about data cache analysis but no generic

solutions has arised for now. Our proposal is quite different from

what have been proposed so far:

(1) We have a formal foundation up to the trace semantics; some

of the related work uses the framework of Abstract Interpre-

tation but only at the state level.

(2) Our analysis goes backward; their analyses go forward.

(3) Our analysis can exploit the dynamic of the loop; the abstrac-

tion performed in the related work tends to reduce sequences

of accesses to sets of accesses.

(4) Our analysis can find information for arbitrary size arrays;

the analyses below will face either complexity issue or pre-

cision issue in such case.

Li et al. [13] propose a two-step strategy: first they determine

the set of accessed addresses for each memory instruction (the way

it is obtained is not clearly described), then they use Cache Conflict

Graphs [12] to cope with memory blocks competing for the same

line in the cache. Unfortunately, the complexity of the approach

is exponential in the number of accessed memory blocks and in

the cache associativity degree. In addition, considering the set of

accessed blocks instead of their sequence creates artificial pressure

on the cache lines and, as a consequence, overestimates the number

of misses.

Ferdinand et al. [8] extend their (Abstract-Interpretation-based)

analysis designed for instruction caches to data caches. For that

purpose, they identify the set of memory blocks that can possibly

be addressed by a memory instruction (a single block for scalar vari-

ables or a set of blocks for arrays) and consider that any execution

of the memory instruction can target any of these blocks. The paper

does not report any experimental results but we implemented it

ourselves within our WCET toolset (OTAWA) and found out that it

was very pessimistic and imprecise for programs that process large

arrays.

White et al. [19] introduce a new category, Calculated (n), to
express the behaviour of accesses to arrays, where n stands for the

number of expected cache misses. The algorithm to compute n is

not clearly described but is based on information provided by the

compiler in which their tool is embedded. This approach is limited

to direct-mapped caches and to a particular compiler.

Rathijit and Srikant [14] use Circular Linear Progression analysis

(CLP) [1, 15]. Accesses to the data cache are abstracted as sets which

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Data Cache Analysis by Counting Integer Points RTNS’2021, April 7–9, 2021, NANTES, France

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

fails to fully capture the dynamic behaviour of accesses to arrays.

To get valuable results, the authors need to unroll each loop several

times which drastically increases the computation time for both

the cache analysis and theWCET computation.

Huynh et al. [10] propose a completely different approach, the

Scope-Aware Persistent analysis. Their analysis is split into three

steps: (a) the address analysis, (b) the cache abstract state analysis

and (c) the computation of the number cache misses. The address

analysis is an adaptation of [20] to obtain memory addresses as

symbolic expressions. These addresses are used to get the set of the

accessed memory blocks and to refine the persistence analysis by

considering temporal scopes (loop iterations). The main challenge

here was to determine precisely which memory blocks compete

for the same cache set at the same execution time. Experimental

results are promising but this approach faces several issues: (1) the

complexity depends on the size of the arrays and on the structure

of the program (building temporal scopes requires enumerating all

accesses); (2) the approach only supports only linear and regular

accesses to arrays.

In [9], Hahn et al. use a congruence relation to identify the ref-

erences that map to the same cache set or memory block. Their

analysis, may be applied to symbolic addresses (providing more

flexibility) and also to set of addresses (intervals, octagons, etc.),

which cannot cope well with the dynamic behaviour of array ac-

cesses. In addition, the experimental needs to be extended to ensure

the method applies to real applications.

Wegener [18] also uses a congruence relation to detect whether

two references point to the same memory block and to infer a hit in

the data cache. This approach is successful on scalar variables but

requires loop unrolling to precisely support accesses to arrays, that,

in turn, increases the computation time of the upcoming analyses.

11 CONCLUSION
In the article, we presented a framework for inferring an upper

bound on the number of cache misses triggered by a given memory

access during the execution of a loop. The frameworkwas illustrated

in Section 3 and a formal foundation can be found in Section 4. The

framework uses the tool Barvinok as a backend for computing the

bound, which can be numeric or symbolic.

The framework relies on finding a predicate that is a necessary

condition for the considered miss or, conversely, finding a predi-

cate that is a sufficient condition to avoid the considered miss. In

Section 5 we show how such predicate can be computed using a

precondition calculus, a model of the cache and formulas contain-

ing an function symbol denoting the maximal age of a block. This

analysis produces formulas that characterise how the accesses obey

to the temporal and spatial locality in the recent history (i.e. the

current iteration or the previous one).

In Section 6, we present several transformations that help us to

turn the formula resulting from this analysis into a suitable input

for Barvinok. The latter produces upper bounds that range from

the absence of miss to as many misses as loop iterations, passing

by expressing a fraction of the number of loop iterations.

The key parts of the framework have been implemented into

tools presented in Section 8 and all the formulas and bounds shown

in this article have been computed using these tools.

We left several points as future work, including:

• a static analysis engine that mechanize the inference of

bounds for the memory accesses of a given program,

• the treatment of the possible correlations between several

cache miss bounds (sketched in Section 7.1),

• the treatment of the loop nesting (sketched in Section 7.2),

• the use of abstract domains to represent may-miss conditions

(mentioned in Section 5.3).

REFERENCES
[1] G. Balakrishnan and T. Reps. 2004. Analyzing Memory Accesses in x86 Executa-

bles. In Compiler Construction. Lecture Notes in Computer Science, Vol. 2985.

Springer Berlin, 2732–2733.

[2] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M.

Graham, Michael A. Harrison, and Ravi Sethi (Eds.). ACM, 238–252.

[3] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963),
C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340.

[4] Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program
Semantics. Springer. https://doi.org/10.1007/978-1-4612-3228-5

[5] C. Ferdinand. 2005. A Fast and Efficient Cache Persistence Analysis. Technical Re-
port. Saarländische Universitäts- und Landesbibliothek / Naturwissenschaftlich-

Technische Fakultät I, http://www.scientificcommons.org/2150484.

[6] C. Ferdinand, F. Martin, and R. Wilhelm. 1997. Applying Compiler Techniques to

Cache Behavior Prediction. In ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Embedded Systems.

[7] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. 1999.

Cache Behavior Prediction by Abstract Interpretation. Sci. Comput. Program. 35,
2 (1999), 163–189. https://doi.org/10.1016/S0167-6423(99)00010-6

[8] C. Ferdinand and R. Wilhelm. 1998. On predicting data cache behavior for real-

time systems. InACM SIGPLANWorkshop on Language, Compiler and Tool Support
for Embedded Systems.

[9] S. Hahn and D. Grund. 2012. Relational Cache Analysis for Static Timing Analysis.

In 2012 24th Euromicro Conference on Real-Time Systems.
[10] B. K. Huynh, L. Ju, and A. Roychoudhury. 2011. Scope-Aware Data Cache Analysis

for WCET Estimation. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). 203–212.

[11] Vincent Laviron, Bor-Yuh Evan Chang, and Xavier Rival. 2010. Separating

Shape Graphs. In Programming Languages and Systems, 19th European Symposium
on Programming, ESOP 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings (Lecture Notes in Computer Science, Vol. 6012), Andrew D. Gordon

(Ed.). Springer, 387–406. https://doi.org/10.1007/978-3-642-11957-6_21

[12] Y.-T. S. Li, S. Malik, and A. Wolfe. 1995. Efficient microarchitecture modelling

and path analysis for real-time software. In IEEE Real-Time Systems Symposium.

[13] Y.-T. S. Li, S. Malik, and A. Wolfe. 1997. Cache Modeling for Real-Time Soft-

ware: Beyond Direct Mapped Instruction Caches. In ACM SIGPLAN Workshop on
Language, Compiler and Tool Support for Embedded Systems.

[14] Rathijit S. and Srikant Y. N. 2007. WCET estimation for executables in the presence

of data caches. In ACM & IEEE International Conf. on Embedded Software.
[15] R. Sen and Y. N. Srikant. 2007. Executable Analysis with Circular Linear Progres-

sions. Technical Report IISc-CSA-TR-2007-3. Computer Science and Automation

Indian Institute of Science.

[16] Gregory Stock, Sebastian Hahn, and Jan Reineke. 2019. Cache Persistence Anal-

ysis: Finally Exact. In IEEE Real-Time Systems Symposium, RTSS 2019, Hong
Kong, SAR, China, December 3-6, 2019. IEEE, 481–494. https://doi.org/10.1109/

RTSS46320.2019.00049

[17] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice

Bruynooghe. 2007. Counting Integer Points in Parametric Polytopes Using

Barvinok’s Rational Functions. Algorithmica 48, 1 (2007), 37–66. https://doi.org/

10.1007/s00453-006-1231-0

[18] S. Wegener. 2012. Computing Same Block Relations for Relational Cache Analysis.

In WCET’12, Vol. 23.
[19] R. T. White, C. A. Healy, D. B. Whalley, F. Mueller, and M. G. Harmon. 1997.

Timing Analysis for Data Caches and Set-Associative Caches. In IEEE Real-Time
and Embedded Technology and Applications Symposium.

[20] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon. 1999. Timing

Analysis for Data and Wrap-Around Fill Caches. Real-Time Systems 17 (1999).

11

https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1016/S0167-6423(99)00010-6
https://doi.org/10.1007/978-3-642-11957-6_21
https://doi.org/10.1109/RTSS46320.2019.00049
https://doi.org/10.1109/RTSS46320.2019.00049
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1007/s00453-006-1231-0

	Abstract
	1 Introduction
	2 Terminology and Mathematical Notation
	3 Analysis Principle
	3.1 Analysis stages
	3.2 Analysis Results

	4 Semantic Derivation
	4.1 Trace Semantics
	4.2 Maximal Number of Event Occurrence
	4.3 Relational Semantics

	5 Handling Competition for the Cache
	5.1 Loop and Instrumentation
	5.2 Cache Modeling
	5.3 Sufficient Precondition Analysis
	5.4 Sufficient Precondition Calculus on Functions
	5.5 Results for the Analysis of Program 2

	6 Counting using Barvinok Decomposition
	6.1 Transformations

	7 Analysis Extensions
	7.1 Handling Multiple Accesses
	7.2 Handling Nested Accesses

	8 Implementation
	8.1 Backward Analysis
	8.2 Barvinok Custom Front-End
	8.3 Preliminary Timing Performances

	9 Addressing Scalability
	10 Related Work
	11 Conclusion
	References

