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Abstract 36 

Peripheral neurons (including sensory neurons) are ubiquitously distributed in all tissues, 37 

particularly at the interface with the environment. The primary function of sensory neurons is 38 

the transmission of sensations of temperature, pain and itch to elicit appropriate behavioral 39 

responses. More recently, sensory neurons have emerged as potent regulators of type 2 40 

immune responses and allergic inflammation. There is increasing evidence showing that 41 

neurons can express receptors previously thought to be restricted to the immune compartment. 42 

In addition, certain subtypes of immune cells (e.g., mast cells, ILC2s or macrophages) also 43 

express specific neuroreceptors that provide them with the capacity to integrate neuron-44 

derived signals and modulate their activation status during the development of allergic 45 

inflammation. 46 

 47 

  48 
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Introduction 49 

Nociception is the sensing of noxious chemical, mechanical, or thermal stimuli. First 50 

introduced by Sherrington in 1900 in the context of pain perception [1], nociception allows 51 

animals to rapidly sense and avoid environmental hazards including piercing objects, burning 52 

heat, and freezing temperatures [2]. The immune system provides an additional layer of 53 

protection in the event that prevention of invasion by pathogens is breached even with optimal 54 

sensing and behavioral avoidance of environmental threats. Allergy (i.e., hypersensitivity) is a 55 

pathologic inflammatory and, subsequent neurosensory, process that is triggered by 56 

exaggerated responses to otherwise harmless environmental substances.  57 

 58 

The skin and mucous membranes of the respiratory and gastrointestinal tracts are highly 59 

innervated by primary sensory neurons, referred to broadly as nociceptors. These barrier 60 

surfaces are the first line of defense against environmental stimuli and also the most 61 

commonly affected by allergic diseases like eczema, asthma, and food allergy. Sensory and 62 

physiologic symptoms include itching, sneezing, coughing, and bowel dysmotility, which are 63 

closely linked to nociception. Emerging studies have unveiled how allergic inflammation and 64 

sensory neurons intersect at barrier surfaces to shape the host response. On the one hand, 65 

inflammatory molecules like cytokines derived from immune cells during allergy, or allergens 66 

themselves, may act on sensory neurons; on the other hand, nociceptors in turn release 67 

neuropeptides and shape barrier immunity [3–5]. Herein, we highlight recent advances in our 68 

understanding of such bidirectional neuro-immune cross talk. 69 

  70 

Unraveling the identity of sensory neurons 71 

The cell bodies of nociceptors, or sensory neurons, are located in either the trigeminal 72 

ganglia, which innervate the head and neck, or the dorsal root ganglia (DRG) which receive 73 

signals from the rest of the body. These afferent neurons receive signals from the tissue and 74 

transmit impulses to the spinal cord, where information is relayed by projection neurons 75 

towards the brain and sensation is perceived [6]. Sensory neurons that are specialized to sense 76 

itch are referred to as pruriceptors. It is now well established that in addition to nociception, 77 

pruriception is yet another distinct sensory process at the molecular and cellular level [7,8]. 78 

 79 

Most nociceptors and pruriceptors are small diameter unmyelinated C fibers [9]. In 80 

development, C fiber neurons initially appear as one population characterized by expression 81 

of the nerve growth factor receptor TrkA. However, later in development they diverge into 82 
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two subpopulations, one that maintains TrkA expression, and the other that downregulates 83 

expression of TrkA [10] while upregulating the common glial-derived neurotrophic factor 84 

family ligand receptor Ret that is selectively labeled by isolectin B4 (IB4) [11]. TrkA-85 

expressing nerve fibers also express neuropeptides like substance P (SP) and calcitonin-gene 86 

related peptide (CGRP), and are thus referred to as peptidergic (PEP) neurons. In contrast, 87 

IB4-positive nerve fibers generally do not express SP or CGRP during development period 88 

and are thus considered nonpeptidergic (NP) [9,12–14]. However, emerging studies using 89 

unbiased single-cell RNA sequencing (scRNA-seq) of murine DRG neurons have revealed 90 

that some NP neuron clusters also contain markers for PEP neurons (i.e., CGRP gene Calca) 91 

[15,16]. Therefore, it is likely that neurons traditionally considered NP have the capability of 92 

releasing neuropeptides as well. Thus, a major area of future inquiry will be in understanding 93 

the precise identity of individual neurons that are specialized to encode specific sensations, 94 

release distinct neuropeptides, or perform both functions to shape tissue immunity and 95 

inflammation. 96 

 97 

Sensory neurons rely on specific sensors to detect different noxious stimuli such as the 98 

transient receptor potential (TRP) V1 and TRPA1 ion channels. TRPV1 is the receptor for 99 

capsaicin (the spicy ingredient of chili peppers) and also has the capacity to detect noxious 100 

heat [17,18]. TRPA1 (30% co-expressed with TRPV1 on somatosensory neurons) can be 101 

activated by different chemical compounds such as garlic (allicin) and mustard oils (allyl 102 

isothiocyanate) to cause pain [19]. Thus, in addition to specific receptors on sensory neurons 103 

mediating various sensations, the quality and intensity of such processes are modified by 104 

additional ion channels.  105 

 106 

Neurons as sensors of immune stimuli 107 

There is increasing recognition that nociception is modulated by the immune system. A 108 

variety of tissue-resident cells like mast cells (MCs) and macrophages/microglia have been 109 

implicated in nociception via their production of cytokines and granule-associated mediators 110 

[20,21]. Meningeal mast cell and sensory neuron bi-directional interactions for instance, play 111 

fundamental roles in migraine pathophysiology, resulting in the sensitization of trigeminal 112 

nociceptors [22]. IL-1β and TNF-α are two of the first cytokines shown to act directly on the 113 

nervous system in the context of pain [23–27]. Both IL-1β and TNF-α-induced neuronal 114 

excitability is dependent on p38-MAPK downstream signaling and the activation of ion 115 

channels like TRPV1 [25,28,29]. Other cytokines such as IL-6 and IL-17A have also been 116 
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identified to promote pain in joint inflammation models [30,31]. In contrast, the anti-117 

inflammatory cytokine IL-10 has been shown to attenuate pain responses recently [32]. Taken 118 

together, it appears that the sensory nervous system can both sense stimuli that promote 119 

noxious signals or even be modulated to suppress nociception. However, how such 120 

neuroimmune biology translates across the variety of sensory neurons innervating different 121 

organs remains a vibrant area of exploration [33,34].  122 

 123 

In addition, a number of cytokines that are upregulated in allergy have the capability to act on 124 

pruriceptors. In 2013, Wilson et al. found that, the epithelial cell-derived cytokine thymic 125 

stromal lymphopoietin (TSLP) promotes itch by stimulating itch-sensory neurons [35]. Later 126 

in 2014, IL-31 was shown to activate pruriceptors and thus, is the first type 2 immunity-127 

associated cytokine to function as a pruritogen [36]. In 2017, Oetjen et al. identified that IL-128 

4Rα, the receptor for the canonical type 2 effector cytokines IL-4 and IL-13, is expressed by 129 

itch-sensory neurons and depend on downstream Janus kinase (JAK) signaling to promote 130 

neural hypersensitivity [37]. Indeed, blockade of TSLP, IL-31, IL-4Rα, IL-13, and JAK are 131 

either approved or currently in clinical trials for the treatment of atopic dermatitis (AD) and/or 132 

other chronic itch disorders (Table 1) [38–50]. Collectively, these basic and translational 133 

advances illustrate how, in addition to external environmental stimuli, sensory neurons can 134 

respond to endogenous cytokine signals to elicit, enhance, and even suppress pain and itch in 135 

tissues.  136 

 137 

 138 

Role of sensory neurons in the regulation of allergic skin diseases  139 

AD is a frequent chronic inflammatory skin disease with strong impact on health-related 140 

quality of life, especially due to itch burden [51]. It was generally thought that pruriceptors 141 

were involved in manifestations of type 2 (allergic) skin diseases, such as AD, mainly by 142 

promoting itch-induced scratching behavior. Recently, a new role was uncovered by Serhan, 143 

Basso et al. for SP-producing sensory neurons in regulating Mrgprb2+ MC activation and 144 

subsequent development of type 2 skin inflammation [52] (Figure 1A). The authors 145 

demonstrated that, compared with wild type (WT) mice, mice depleted in TRPV1+ sensory 146 

neurons, Tac1–/– mice (that lack SP), MC-deficient mice and Mrgprb2–/– mice, were protected 147 

from the development of pathogenic type 2 inflammation and associated skin lesions. They 148 

then showed that common domestic allergens with cysteine protease activity, e.g. house dust 149 

mites (HDMs), could directly activate TRPV1+ neurons to release SP. Using a new intravital 150 
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imaging method, they showed that a large proportion of projections from activated TRPV1+ 151 

nociceptors formed physical contacts with MCs, and that penetration into the dermis of 152 

HDMs led to the sequential activation of nociceptors and adjacent MCs (Figure 1A). This 153 

study strongly suggests that TRPV1+ Tac1+ nociceptors and Mrgprb2+ MCs form “sensory 154 

clusters” capable of detecting the presence of allergenic alarms and initiating the development 155 

of pathogenic type 2 immune responses in the skin [52]. Based on these results, it would be 156 

interesting to consider an updated version of the etiology of AD by focusing on neuro-157 

immune crosstalk prior to the development of pathogenic type 2 immunity.  158 

 159 

The communication between sensory neurons and MCs is in fact bidirectional. In a recent 160 

article [53], Meixiong et al. used intravital calcium imaging to examine sensory neurons 161 

activation in the context of non-histaminergic itch. While canonical IgE/FcεRI-mediated MC 162 

activation in the skin mainly triggered the activation of histamine (and capsaicin)-sensitive 163 

H1,4R
+ sensory neurons, Mrgprb2-mediated MC activation resulted in the broad excitation of 164 

Mrgprd+, Mrgpra3+, and 5ht1f+ sensory neurons, three subpopulations of well-defined NP 165 

pruriceptors [15]. Such difference in the activation of neuronal subsets resulted, at least in 166 

part, from a differential release of MC granule-associated pruritogens: high proportion of 167 

histamine and serotonin via FcεRI, and of tryptase (and maybe other proteases) via Mrgprb2 168 

(Figure 1A). It is generally thought that skin MCs would be primarily involved in 169 

histaminergic itch. However, many chronic itch conditions are refractory to histamine 170 

antagonists, including AD and allergic contact dermatitis (ACD). Interestingly, the PAMP1-171 

20 neuropeptide is upregulated in skin lesion of patients with ACD and is a well-known 172 

agonist of Mrgprb2/X2. In line with these data, using three separate models of allergic skin 173 

inflammation, Meixiong et al. reported that Mrgprb2-/- animals exhibited significantly less 174 

itch compared with WT mice [53].  Consequently, it is very tempting to speculate that 175 

PAMP1-20-mediated MRGPRX2 activation is a major mechanism of MC-dependent non-176 

histaminergic itch in patients with ACD.  177 

In addition to differential pathways by which MCs trigger histaminergic and non-178 

histaminergic itch, respectively, Wang et al. recently identified that AD-associated 179 

inflammation activates basophils in the blood. Upon sensitization to allergen, in this context, 180 

basophils are prone to enhance their ability to respond to IgE, resulting in a distinct basophil-181 

sensory neuronal itch axis that is linked by the production of leukotriene C4 from basophils 182 

[54]. Thus, basophils are capable of overriding the histaminergic processes triggered by MCs 183 

to elicit other distinct itch pathways.  184 



Manuscript  

Tauber, Wang et al. 

 185 

Emerging role of sensory neurons in allergic lung inflammation 186 

Wallrapp A et al. reported an interaction between type 2 innate lymphoid cells (ILC2s)  and 187 

neuromedin U (NMU)+ neurons, in models of allergic lungs inflammation [55]. The authors 188 

profiled mouse lung-resident ILCs using scRNAseq and found that the neuropeptide receptor 189 

Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. 190 

NMU, the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU 191 

with IL-25 strongly amplified allergic inflammation (Figure 1B). Loss of NMU-NMUR1 192 

signaling reduced ILC2 frequency and effector function, and altered transcriptional programs 193 

following HDM challenge in vivo.  194 

The Vasoactive Intestinal Peptide (VIP) commonly induces smooth muscle cell relaxation, 195 

regulates blood flow and can trigger the secretion of water and electrolytes in the 196 

gastrointestinal tract [56]. A study by Talbot S et al. reported that Nav1.8+ sensory neurons 197 

(part of which are TRPV1+ nociceptors) favored the recruitment of ILC2s in models of 198 

allergic asthma [57]. They reported that production of IL-5 activated sensory neurons to 199 

secrete VIP that further activated ILC2s and effector CD4+ T cells via the VIP-VIP receptor 2 200 

(VPAC2) axis to produce inflammatory cytokines, and amplified the pathological features 201 

associated with mouse models of type 2 airway inflammation [57] (Figure 1B). Using 202 

optogenetics, the same group recently showed that vagal sensory neuron mediated mucus 203 

secretion in the mouse trachea during airway inflammation and that this phenomenon was 204 

dependent on SP secretion [58]. These findings add more evidence to the pro-inflammatory 205 

role played by TRPV1+ neurons in enhancing bronchial hyperreponsiveness. Data from 206 

patients with asthma also show significant levels of neuropeptides in bronchoalveolar lavage 207 

fluids [59] and lungs are densely innervated by sensory neurons [60,61] expressing TRPV1 208 

and TRPA1. Importantly, the fact that pharmacological silencing of pain fibers using 209 

treatment either with QX-314 (quaternary derivative of lidocaine [58,62]), a cationic 210 

derivative of an N-type calcium channel-inhibitor [63] or GDC-0334, a highly potent, 211 

selective, and orally bioavailable TRPA1 antagonist [64], could reduce pathological features 212 

in a model of lung allergic inflammation might potentially open new perspectives in the 213 

treatment and/or prevention of human asthma. 214 

 215 

Future perspectives 216 

Various reports have now demonstrated that bidirectional dialogues between sensory neurons 217 

and immune cells can impact on the development of frequent allergic skin and lungs 218 
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disorders. In addition, three studies have suggested that intrinsic primary afferent neurons [65] 219 

and neuroimmune interactions [66,67] in the intestine could also contribute to the 220 

pathophysiology of food allergy. Production of the neuritin protein, that targets B cells, by 221 

follicular regulatory T cells has also recently emerged as a potential mechanism to suppress 222 

IgE-mediated allergies by limiting IgE class switch recombination [68]. Finally, three recent 223 

reports also opened new very promising areas of investigation by showing that lymph nodes 224 

were innervated by a unique subset of sensory neurons that might regulate local gene 225 

expression [69], that the innate immune regulator STING, a sensor of self- and pathogen-226 

derived DNA could control nociception via type I interferon signaling [70] and finally that 227 

nociceptors could directly influence the mobilization of haematopoietic stem cells in the bone 228 

marrow [71]. While much remain to be done to understand how nociception and sensory 229 

neurons regulate human allergic disorders, the development of next-generation therapeutics 230 

specifically targeting neuroimmune crosstalk is an exciting area of exploration for the future.  231 

 232 

 233 

  234 
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Figures and table 235 

 236 

 237 

Figure 1. Neuroimmune interactions play a crucial role in models of allergic skin and 238 

lungs disorders. (A) Widely distributed domestic allergens can directly activate 239 

TRPV1+Tac1+ nociceptor-MrgprB2+ MC sensory clusters to drive the development of type 2 240 

skin inflammation [52]. MC activation through the receptor MrgprB2 also contributes to non-241 

histaminergic itch [53]. As compared to IgE-FcεRI signaling, MrgprB2-activated mast cells 242 

released more tryptase (but less histamine and serotonin) and excited distinct itch-sensory 243 

neuron populations expressing Mrgprd, Mrgpra3, or HTR1F. (B) The secretion of IL-5 in 244 

response to the penetration of allergens in the lungs activates IL-5 receptor on nociceptors that 245 

in turn release the neuropeptide vasoactive intestinal peptide (VIP) [57]. Allergens also 246 

stimulate sensory neurons to release neuromedin U (NMU). Such neuropeptides activate 247 

innate lymphoid cell 2 (ILC2) through VIP receptor 2 (VPAC-2) and NMU receptor 1 248 

(NMUR1), and favor the development type 2 lung inflammation [55]. 249 

  250 
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 251 

Target Medication Mode Reference/NCT number 

IL-31RA Nemolizumab mAb [48–50] 

TSLP Tezepelumab mAb [46]; NCT02525094; NCT03809663 

IL-4Rα Dupilumab mAb [47,72–74] 

IL-13 Tralokinumab  

Lebrikizumab 

mAb [41,42,45] 

JAK1, 2, 3 Baricitinib Abrocitinib 

Upadacitinib 

Ruxolitinib Cream 

Delgocitinib Ointment 

 

Inhibitors  [38–40,43,44] 

Table 1. Innovated Therapeutic Approaches for Atopic Dermatitis. Abbreviations: JAK, 252 

Janus kinase; NCT, National Clinical Trial; mAb, monoclonal antibody; TSLP, thymic 253 

stromal lymphopoietin. 254 

 255 
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