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Abstract

This paper proposes a model for incomplete games where the knowledge of the

players is represented by a Dempster-Shafer belief function. Beyond an exten-

sion of the classical definitions, it shows such a game can be transformed into

an equivalent hypergraphical complete game (without uncertainty), thus gen-

eralizing Howson and Rosenthal’s theorem to the framework of belief functions

and to any number of players. The complexity of this transformation is finally

studied and shown to be polynomial in the degree of k-additivity of the mass

function.

Keywords: Game theory, Incomplete games, Belief functions, Choquet

integrals

1. Introduction

Game theory [1, 2] proposes a powerful framework to capture decision prob-

lems involving several agents. In non-cooperative games of complete informa-

tion, the players do not coordinate their actions but each of them knows every-

thing about the game: the players, their available actions and all their utilities.5

This assumption of complete knowledge cannot always be satisfied. In the real

world indeed, players are not so well informed and have only limited knowledge
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about the game. This is why Bayesian games of incomplete information have

been proposed [3]. Nevertheless, the Bayesian hypothesis is strong, and requires

a good knowledge of the environment. For instance, in case of ignorance, the10

Bayesian way amounts to assuming equiprobability, but this can lead to a model

that does not fit with the agents’ behavior (e.g. see Ellsberg’s paradox [4]).

In the present paper, we propose a new kind of game of incomplete infor-

mation, which we call Bel game. Agents have a partial knowledge, represented

by a Dempster-Shafer belief function [5, 6], and cardinal utilities, but do not15

necessarily make the equiprobability assumption. The underlying decision rule

is generally the Choquet integral based on the Bel measure [7], which amounts

to the maximization of the worst expected utility [8, 9]. Bel games as defined

here are also compatible with the transferable belief model [10], which amounts

to extracting the pignisitic probability when the decision is to be made, and20

with Jaffray’s linear utility [11].

We then follow the line defined by Howson and Rosenthal [12] who have

shown that any 2-player Bayesian game can be transformed into a complete

knowledge polymatrix game [13]. In this paper, we show that such a transfor-

mation is possible for Bel games, and for any number of agents, producing a25

hypergraphical game [14]. A notable consequence of this result is that the al-

gorithmics developed for hypergraphical games [15, 16] can be reused for the

search of Nash equilibria in Bel games.

2. Background and motivations

To illustrate and motivate our work, we will use the following example in-30

spired by the murder of Mr. Jones [10], where the suspects are Peter, Paul and

Mary.

Example 1 (Peter, Quentin and Rose). Two agents, named Agent 1 and

Agent 2, are independently looking for a business association, with either Peter

(P ), Quentin (Q), or Rose (R). The point is that a crime has been committed,35

for which these three people are suspected. Several testimonies, not very reliable,
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allow to estimate that there is 50% of chance that the culprit is a man (P or

Q), and 50% of chance that it is a woman (R).

As to the interest of the associations, making the deal with an innocent leads to a

payoff of $6k (to be shared between the people making the deal), while associating40

with a guilty person produces no payoff ($0k). Moreover, Agent 1 is investigating

about P and will eventually knows whether he is guilty or not. Similarly, Agent 2

will knows whether R is guilty before making the decision.

The Bayesian approach is not relevant here. Indeed, if Agent 1 learns that

P is innocent the probability of guilt should become 1/2 for Q and 1/2 for45

R. However, in a purely Bayesian view equiprobability would be applied and

the prior probability of guilt would be 1/4 to P and 1/4 to Q. Then, after

conditioning, Agent 1 would get a probability of 1/3 to Q and 2/3 to R.

2.1. Dempster-Shafer’s theory of evidence

Let us first look at the epistemic aspect of the problem. The prior knowl-50

edge is simply that P ({P,Q}) = P ({M}) = 1
2 , and nothing more. The kind

of knowledge at work here is well captured in Dempster-Shafer’s theory of ev-

idence, that does not restrict probability assignments to elements of the frame

of discernment:

Definition 1 (Mass function). A mass function for a frame of discernment55

Ω (or “bpa” for basic probability assignment) is a function m : 2Ω → [0, 1] such

that m(∅) = 0 and
∑

A⊆Ω m(A) = 1.

A set with a nonzero mass is called a focal element and the set of focal

elements is denoted Sm. Two dual measures on 2Ω derive from m:

Bel(A) =
∑

B∈Sm,B⊆A

m(B) and Pl(A) =
∑

B∈Sm,B∩A̸=∅

m(B).

Bel(A) (resp. Pl(A)) estimates to what extent A is implied by (resp. is com-

patible with) the knowledge captured by m.
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Probabilities are the special case of belief functions where mass functions60

(called distributions) are 1-additive: the focal elements are then singletons. k-

additivity is more generally defined as follows:

Definition 2 (k-additivity). A mass function is k-additive if all its focal el-

ements are at most of size k, i.e., ∀B ∈ Sm, |B| ≤ k.

Probability theory is recovered as a special case when the available informa-65

tion is uncertain, but precise. When there is on the contrary only one focal set

B, i.e., when the belief function describes a piece of evidence that tell us that

ω is in B for sure , and nothing more, the information is certain but imprecise.

Following this interpretation, the mass function is seen as a generalized set [17].

Belief function can alternatively be understood as a particular case of im-70

precise probability theory. A belief function Bel and its dual Pl indeed delimit

the lower and upper bounds of a probability family F = {Pr | ∀A,Bel(A) ≤

Pr(A) ≤ Pl(A)} - F is called the credal set of m. It is clear that this set is

convex, i.e., that any element of F can be obtained by distributing each mass

m(B) among the elements of B. Of course, not any lower probability measure75

is a belief functions [18].

Now, the two views of belief functions belong to different theoretical frame-

works [19, 20]. In particular, the two theories have different rules of conditioning.

In a pure DS theory, in the conditioning of m by C, the mass assigned to a focal

set B is transferred to their non-empty intersection. The conditioning at work80

here is Dempster’s rule [5] (see [21] for more details):

Definition 3 (Dempster conditioning). For any nonempty A,C ⊆ Ω, with

Pl(C) > 0 (at least one focal element intersects C),

mDem
|C (A) := KC ·

∑
B∈Sm
C∩B=A

m(B),

where KC = 1/Pl(C) is a normalization factor, constant for a given subset

C ⊆ Ω.
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Masses of mDem
|C can be computed using a simple algorithm. The mass m(B)

of any focal element B ∈ Sm is transferred to the subset B∩C if it is nonempty,85

and discarded otherwise. Thus all masses of mDem
|C can be computed through a

single loop over Sm, followed by a normalization, in time linear w.r.t. the size

of m.

Demspter conditioning preserves the size and the k-additivity of m:

|Sm| ≥ |SmDem
|C

| and m is k-additive =⇒ mDem
|C is k-additive

The Fagin-Halpern conditioning [22] on the contrary derives from the inter-

pretation of belief functions in the theory of imprecise probabilities.90

Definition 4 (Fagin-Halpern conditioning). For any non-empty C with

Bel(C) > 0 (i.e. at least one focal element is included in C),

Bel(A|C) = inf
Pr∈Fm

Pr(A|C) =
Bel(A ∩ C)

Bel(A ∩ C) + Pl(Ā ∩ C)

[22] have shown that the above-defined measure is a Bel measure. An algo-

rithm is proposed in [20] which allows the computation of the bpa mFH
|C corre-

sponding to Bel(.|C). This algorithm, which relies on the Moebius transform,95

is not polynomial w.r.t. the size of m: it requires O(k · s3 · 2s · s!) operations

where s is the number of focal elements of m and k its degree of additivity.

The number of focal elements of mFH
|C may be much greater than the number

of focal elements of the original Bel and the FH conditioning doesn’t preserves

nor the size, neither the k-additivity of the mass function2.100

2.2. Decision making with belief functions

Let us now consider belief functions in a (mono-agent) decision making con-

text. Following Savage’s modelling of decision making under uncertainty [23],

2Consider for instance a frame of discernment Ω = {ω1, . . . , ωm} and a 2-additive mass

function m such as m({ωi}) > 0 for all i and m({ωi, ωj}) > 0 for all i ̸= j. Then, for any

nonempty C ⊂ Ω, each subset of B ⊆ C is a focal element of Bel(· | C) – thus |SmFH
|C

| = 2|C|

and Bel(· | C) is |C|-additive.
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a decision (or “action”) is a function a : Ω → X where Ω is the set of possible

states, as previously, and X is the set of possible outcomes. The preferences of105

an agent are represented by an utility function u : X → R.

The multi prior model and the discrete Choquet integral

A belief function Bel and its dual Pl delimit the lower and upper bounds of a

probability family F = {Pr | ∀A,Bel(A) ≤ Pr(A) ≤ Pl(A)}, and thus, for each

decision, a full range of values for its expected utility. Gilboa and Schmeidler110

[9, 8] consider a pessimistic agent and propose to evaluate each decision by the

minimum of the possible expected utilities.

Definition 5 (MPEU). MPEU(a) = minPr∈F (
∑

ω Pr(ω).u(a(ω)))

Another line of thought is to consider that belief functions are particular

capacity measures, and to compute the global merit of an act on the basis of115

its Choquet value (for a theoretical justification of the use of Choquet integral

in decision making under (non-probabilitistic) uncertainty, see [24, 25]). When

the capacity is a belief function, the Choquet expectation writes:

Definition 6 (Choquet expected utility (CEU)). Let Λ(a) = {λ1 ≤ · · · ≤

λ|Λ(a)|} be the set of utility values reached by an action a, labelled by increasing

order, and Eλi
(a) = {ω | u(a(ω)) ≥ λi} denote the set of worlds for which the

utility of action a is at least λi. The Choquet Expected Utility of a is :

CEU(a) = λ1 +

|Λ(a)|∑
i=2

(λi − λi−1)× Bel(Eλi
(a)).

The CEU has a simple expression in terms of the mass function:

CEU(a) =
∑

B∈Sm

m(B)×min
ω∈B

u(a(ω)).

[26] have shown that the MPEU value of a decision is equal to its CEU value

with respect to the belief functions.120

We recover here the double interpretation of belief functions, in terms of

generalized set or in terms of imprecise probability. It should nevertheless be
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recalled that they do differ, especially in a dynamic context, where a condition-

ing must be applied.

Jaffray’s expected utility (JEU)125

Jaffray’s [11] expected utility (JEU) is defined directly in terms of the mass

function, and generalizes the CEU by allowing one to modulate the agent’s

pessimism locally, using a series of Hurwicz coefficients.

JEU(a) =
∑

B∈Sm

m(B)×
(
αB∗(a),B∗(a) ×B∗(a) + (1− αB∗(a),B∗(a))×B∗(a)

)
where B∗(a) = minω∈B u(a(ω)) and B∗(a) = maxω∈B u(a(ω)).

The αxi,xj coefficients represent the agent’s pessimism and must be elicited130

for any pair (xi, xj) with i < j; there is a quadratic number of such pairs (w.r.t.

the possible utility values). Note that CEU = JEU if all coefficients αxi,xj
are

equal to 1.

The transferable belief model (TBEU)

Smets and Kennes’ model [10] proceeds in two steps: at the credal level,135

knowledge is represented by a belief function and revised by Dempster’s rule of

conditioning; at the pignistic level (when a decision takes place), a probability

law p is constructed: p(ω) =
∑

ω∈B∈Sm
m(B)/|B|. The agent then maximizes

his expected utility with regards to p.

2.3. Game theory140

A simultaneous game of complete information models a situation where each

agent makes a decision (the term “action” is rather used in game theory) without

coordination with the other ones – the final utility of each agent depending on

the actions chosen by all agents.

Definition 7 (Complete game). A simultaneous game of complete informa-145

tion (also called complete game) is a tuple G =
(
N, (Ai)i∈N , (ui)i∈N

)
where:
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• N = {1, . . . , n} is a finite set of agents (or “players”),

• Ai is the set of actions of Agent i; the set A :=
∏

i∈N Ai contains all the

possible combinations of actions a.k.a. “profiles”,150

• ui : A → R is the utility function of Agent i.

A mixed strategy for player i is a probability distribution on Ai. The strategy

is said to be pure when only one action receives a non-zero probability.

A pure (resp. mixed) strategy profile is a vector p = (p1, . . . , pn) which specifies

a pure (resp. mixed) strategy for each player.155

In the following, we will use the following notations: for any vector v =

(v1, . . . , vn) in some product domain V =
∏

i∈N Vi and for any e ⊆ N , ve is the

restriction of v to e and Ve =
∏

i∈e Vi. By abuse of notation, we write vi for v{i}.

For any i, −i denotes the set N \ {i}, i.e. v−i = (v1, . . . , vi−1, vi+1, . . . , vn) ∈

V−i =
∏

j ̸=i Vj . Thus, v−i is the restriction of v to all players but i. Finally, “.”160

denotes the concatenation, e.g., v′i.v−i = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). Hence

a = ai.a−i belongs to A and given two profiles a, a′ ∈ A, a′i.a−i denotes the

profile a where ai is replaced with a′i.

Because the strategies can be randomized, the global utility for a player of a

mixed strategy profile p is defined as the expected utility (EU) of ui according165

to the probability distribution it induces over A (obviously, when the strategy

is pure, EUi is equal to the utility value given by ui):

Definition 8 (Utility of a strategy). Given a strategy profile p in a com-

plete game
(
N, (Ai)i∈N , (ui)i∈N

)
, the expected utility of player i is defined by:

EUi(p) =
∑
a∈A

∏
j∈N

pj(aj)

× ui(a).

Nash equilibria are the profiles in which no player can unilaterally increase

his/her utility by changing his/her own strategy.

Definition 9 (Nash equilibrium [2]). A strategy profile p is a Nash equilib-170

rium iff for any i ∈ N , there exists no p′i such that EUi(p
′
i.p−i) > EUi(p).
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When the utility functions are described explicitly, G is said to be in stan-

dard normal form (SNF). SNF representations become spatially costly when the

number of players increases (O(nαn) for a game with n players and α actions

per player). More succinct forms have been proposed, that suit cases where util-175

ity functions can be decomposed as a sum of smaller utility functions, namely

hypergraphical games [14] and their particular cases, polymatrix games [13] and

graphical games [27].

Definition 10 (Hypergraphical game).

A hypergraphical game is a tuple G =
(
N,E, (Ai)i∈N , (ue

i )e∈E,i∈e

)
where:180

• N is a set of players,

• E = {e1, . . . em} is a multiset of subsets of N ((N,E) is an hypergraph)

• For each e ∈ E,
(
e, (Ai)i∈e, (u

e
i )i∈e

)
is a complete game.

The global utility of each Agent i sums the local utilities: ui(a) =
∑

e∈E ue
i (ae).

Polymatrix games are hypergraphical games with 2-players local games:185

∀e ∈ E, |e| = 2.

This framework assumes that each player knows everything about the game:

the players, the actions available to each player, all their utilities for each com-

bination of actions, etc. The assumption of complete knowledge cannot always

be satisfied. In the real world indeed, players have only a limited knowledge190

about the outcomes of their strategies – the final outcomes may depend on an

ill-known event (in our example 1 , the payoff for making the deal with one of

P , Q, or R depends on whether they are guilty or innocent).

Harsanyi [3] proposed games of incomplete information as a way to capture

such situations (see also [28], for more details). A game of incomplete infor-195

mation can be first understood as a set of possible classical games (of complete

information) – one for each possible world ω ∈ Ω. Players don’t know exactly

which world is the real one, but may have some knowledge about it. Just be-

fore playing, each player i will receive some information τi(ω
∗) about the real
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world ω∗. τi maps any world to an element θi of a set Θi called the set of200

“types” of Agent i. After having observed τi(ω
∗), Agent i knows more about

the real game, but several games may still be plausible. The player then con-

ditions his/her knowledge on τi(ω
∗) and decides which action to play. Notice

that the different agents may receive different pieces of information and thus

have a different posterior knowledge. The question is then, for each player, to205

determine a strategy (either an action, or a probabilistic strategy) for each of

his/her possible types.

Harsanyi has shown that such games can be described on the space of types

Θ = Θ1 × · · · × Θn (the underlying worlds are omitted). The idea of Harsanyi

when defining types is that this concept can encapsulate every piece of informa-210

tion agents may have access to. It includes the agent-observable world status,

but also their beliefs on other agents and their introspective mental states.

3. Bel games

Bayesian games are games of incomplete information where prior knowledge

is captured by a probability measure. To capture problems where the Bayesian215

assumption is not obeyed (as in our motivating example), we propose the more

general framework of Bel games:

3.1. Definitions

Definition 11 (Bel game). A Bel game G is defined as a tuple(
N, (Ai)i∈N , (Θi)i∈N , (ui)i∈N ,m

)
where:220

• N = {1, . . . , n} is a finite set of players,

• Ai is the set of actions of player i; A =
∏

i∈N Ai denotes the set of all

action profiles,

• Θi is the set of types of player i; Θ =
∏

i∈N Θi denotes the set of all type

configurations,225
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• m : 2Θ → [0, 1] is the mass function describing the common prior knowl-

edge,

• ui : A×Θ → R is the utility function of Agent i.

G is said to be in standard normal form iff the utility functions ui and the

mass function m are given in extenso.230

Bel games generalize Bayesian games, which are recovered when m is a proba-

bility distribution.

Example 2. Our running example (see Example 1) is captured by the Bel game

G =
(
N, (Ai)i∈N (Θi)i∈N , (ui)i∈N ,m

)
where:

• N = {1, 2};235

• A1 = {P1, Q1, R1}, A2 = {P2, Q2, R2} (each agent chooses an associate).

• Θ1 = {P, P̄}, Θ2 = {R, R̄} (Agent 1 investigates on Peter, Agent 2 investi-

gates on Rose).

• m : 2Θ → [0, 1] has two focal elements: m
(
{(P̄, R)}

)
= 1/2 (the murdered

is a woman, thus necessarily Rose – in this case Agent 1 will learn P̄ and240

Agent 2 will learn R) and m
(
{(P, R̄), (P̄, R̄)}

)
= 1/2 (the murderer is a

man: Agent 2 necessarily learns R̄ but Agent 1 can learn either P̄ – which

happens when Quentin is the murdered – or P – Peter is the murderer).

• Making a deal with a murderer has a utility value of 0, making a deal with

an innocent leads to a utility of 6
2 = 3, unless the other agent approaches245

the same associate, in which case each agent receives 6
3 = 2. The utility

functions are summarized below (Table 1). Null values (in gray) are given

for the case where θ = (P, R) (both R and P are guilty) which is not a

possible world.

Following Harsyani’s approach of incomplete games, we consider the “ex250

interim” setting where each player plans a strategy for each of the types he/she
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θ2 = R̄ θ2 = R

P2 Q2 R2 P2 Q2 R2

θ1 = P

P1 (0, 0) (0, 3) (0, 3) P1 (0, 0) (0, 0) (0, 0)

Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 0) (0, 0) (0, 0)

R1 (3, 0) (3, 3) (2, 2) R1 (0, 0) (0, 0) (0, 0)

P2 Q2 R2 P2 Q2 R2

θ1 = P̄

P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)

Q1 (0, 3) (0, 0) (0, 3) Q1 (3, 3) (2, 2) (3, 0)

R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 1: Example 1: Utility matrices for each configuration of the types

can receive, ideally a strategy which is a best response to that of the other

players. We thus adopt the definition of strategy proposed by Harsyani’s in the

general context of incomplete games:

Definition 12 (Pure and mixed strategies [3]). A pure (resp. mixed) strat-255

egy for player i in a Bel game is a function ρi which maps each “type” θi ∈ Θi

to an action of (resp. a probability over) Ai.

A pure (resp. mixed) strategy profile is a vector p = (p1, . . . , pn) which

specifies a pure (resp. mixed) strategy for each player.

ρ(θ) =
(
ρ1(θ1), . . . , ρn(θn)

)
denotes the profile which will be played if the260

configuration of types is θ.

The set of all pure strategy profiles is denoted Σ =
∏

i∈N (Θi → Ai).

In the ex interim approach of incomplete games, when receiving her type

θi, Agent i revises her knowledge – in a Bel game, her posterior knowledge over

the joint type configuration is m|θi .265

Let us first consider the case where the agents maximize their Choquet

utility (this approach being compatible with both the evidential and the credal

interpretation of belief functions). In this case the utility of a pure strategy
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profile for Agent i of type θi, shall thus be defined as:

Definition 13 (Choquet Expected Utility of a pure strategy profile).270

The utility of a pure strategy profile ρ = (ρ1, . . . , ρn), for Agent i of type θi, is:

CEU(i,θi)(ρ) =
∑

B∈Sm|θi
m|θi(B)×minθ′∈B,θ′

i=θi ui(ρ(θ
′), θ′).

where m|θi denotes the conditioning compatible with the interpretation of the

belief function (e.g. Demspter’s conditioning or Fagin Halpern’s)

Let us now consider mixed strategies. A mixed strategy profile ρ defines275

a probability distribution Prρ(σ) =
∏

i∈N

∏
θi∈Θi

ρi(θi)(σi(θi)) over the set Σ

of pure strategy profiles. If we now merge Prρ with m, we get a bpa mρ over

A×Θ: to any element X = {(a, θ), (a′, θ′), . . . } ⊆ A×Θ correspond both a set

of type configurations BX := {θ | (a, θ) ∈ X} ⊆ Θ and a set of compatible pure

strategy profiles SX := {σ | ∀(a, θ) ∈ X, σ(θ) = a} ⊆ Σ. The mass of X is280

mρ(X) = m(BX) ×
∑

σ∈SX
Prρ(σ), that is, X is focal if BX is focal and some

compatible pure strategy profiles are possible. Finally, Agent i receiving type

θi conditions her knowledge which becomes mρ
|θi . Hence the following definition

of the utility of a mixed strategy profile:

Definition 14 (Choquet Expected Utility of a mixed strategy profile).

The utility of a mixed strategy profile ρ = (ρ1, . . . , ρn), for player i of type θi,

is: CEU(i,θi)(ρ)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈S

mDem
|θi

mDem
|θi (B)× min

θ′∈B
ui

(
σ(θ′), θ′

)
It can be checked that Definition 14 amounts to Definition 13 when ρ is a pure285

strategy profile.

Now, recall that a strategy is a Nash equilibrium if no player can improve uni-

laterally his/her utility. This concept straightforwardly extends to Bel games:

Definition 15 (Nash equilibrium). A mixed (resp. pure) strategy profile ρ

is a Nash equilibrium for CEU iff, whatever (i, θi), there exists no mixed (resp.290

pure) strategy ρ′i such that CEU(i,θi)(ρ
′
i.ρ−i) > CEU(i,θi)(ρ).
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Example 3. Let ρ be the pure strategy where Agent 1 makes the deal with R

when learning that P is guilty and with P otherwise, and Agent 2 joins Q when

learning that R is guilty and R otherwise:

ρ1(P) = R1, ρ1(P̄) = P1, ρ2(R) = Q2 and ρ2(R̄) = R2.295

As usual with this “Peter Paul and Mary” example, the Demspter rule of con-

ditionning is used.

• Consider Agent 1 receiving type P: the conditioned bpa, mDem
|P , has only

one focal element {(P, R̄)}, KP = 1/ 1
2 and mDem

|P ({(P, R̄)}) = 1. In short,

Agent 1 knows that P is guilty and R is not. In the only possible config-300

uration (P, R̄), ρ prescribes ρ1(P) = R1 for Agent 1 and ρ2(R̄) = R2 for

Agent 2. Then,

CEU(1,P)(ρ) = mDem
|P

(
{(P, R̄)}

)
× u1

(
(R1, R2), (P, R̄)

)
= 1× 2 = 2.

• Consider now Agent 1 receiving P̄: his/her revised knowledge, mDem
|P̄ , has

two focal elements, {(P̄, R)} and {(P̄, R̄)} (each with probability 1
2 , thus305

KP̄ = 1). The strategy prescribes ρ(P̄) = P1 for Agent 1, who doesn’t

know whether Agent 2 learns R (and plays ρ(R) = Q2) or R̄ (and plays

ρ(R̄) = R2). Hence

CEU(1,P̄)(ρ) =
1
2 × u1

(
(P1, R2), (P̄, R̄)

)
+ 1

2 × u1

(
(P1, Q2), (P̄, R)

)
= 3

• Similarly, the bpa of Agent 2 receiving R, mDem
|R , has only one focal ele-310

ment, {(P̄, R)} (thus KP = 1/ 1
2) in which ρ prescribes P1 for Agent 1 and

Q2 for Agent 2. Then

CEU(2,R)(ρ) = 1× u2

(
(P1, R2), (P̄, R)

)
= 1× 3 = 3.

• Finally, the bpa of Agent 2 receiving R, mDem
|R̄ , has one focal element,

{(P̄.R̄), (P.R̄)} and KR̄ = 1/ 1
2 . Agent 2 does not know whether Agent 1315

receives P̄ or P. Since ρ prescribes Agent 1 to play P1 in the first case, R1

in the second one and prescribes Agent 2 to play R2 in both cases,

CEU(2,R̄)(ρ) = 1×min
[
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(R1, R2), (P, R̄)

)]
= 1×min(3, 2) = 2.

14



In this strategy, Agent 1 does not give the best possible response to Agent 2’s320

strategy: when learning that P is guilty, he/she plays R1 while knowing that

in this case Agent 2 learns R̄ and thus plays R2. Let Agent 1 modify his/her

strategy and play Q1 when learning P – hence the strategy ρ′:

ρ′1(P) = Q1, ρ
′
1(P̄) = P1, ρ

′
2(R) = Q2, ρ

′
2(R̄) = R2.

• CEU(1,P)(ρ
′) = KP × u1

(
(Q1, R2), (P, R̄)

)
= 1× 3 = 3,325

• CEU(1,P̄)(ρ
′) = KP̄ × u1

(
(P1, R2), (P̄, R̄)

)
+KP̄ × u1

(
(P1, Q2), (P̄, R)

)
= 3,

• CEU(2,R)(ρ
′) = KR × u2

(
(P1, Q2), (P̄, R)

)
= 1× 3 = 3,

• CEU(2,R̄)(ρ
′) = KR̄ ×min

(
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(Q1, R2), (P, R̄)

))
= 3.

It can be checked that with ρ′, each player gets his/her maximal possible

utility ($3k) – no player has incentive to deviate: ρ′ is a pure Nash equilibrium.330

3.2. Credal Games and Evidential games

Bel games as defined above can be understood under the DS theory or un-

der the theory of imprecise probabilities. Because Choquet expected utility is

compatible with both theories, we have first considered the pessimistic Choquet

integral as a way to evaluate the utility of the agents. Let us briefly investigate335

the model in each of the two interpretations, with respect to the different ways

of conditioning and to the different decision rules.

3.2.1. CEU, JEU and Pignistic Games in the DS theory of evidence

Let us first consider problems having an interpretation in the DS theory and

are thus based on the Dempster rule of conditionning - we call these games340

“Evidential games”. Several decision rules can be used in this context, namely

the Choquet integral (CEU) used in the previous section, Jaffray’s linear utility

(JEU) and the transferable belief model (TBEU). Let us capture all of them as

particular cases of a generalized expected utility:

XEU(a) =
∑

B∈Sm

m(B)× fXEU
u◦a (B)

15



If m is a probability distribution, then EU(a) = XEU(a) in all three cases.345

We find back the CEU, JEU and TBEU with:

• fCEU
u◦a (B) = minω∈B u(a(ω))

• fJEU
u◦a (B) = αB minω∈B u(a(ω)) + (1− αB)maxω∈B u(a(ω))

• fTBEU
u◦a (B) =

∑
ω∈B

u(a(ω))
|B|

As to CEU (resp. JEU), the proof is trivial: one has just to rewrite fCEU
u◦a350

(resp. fJEU
u◦a ) in the equation to get back the on-focal-set expression.

As to TBEU, we need to go back to the expected utility model using the

distribution: BetPm(ω) =
∑

B⊆Sm
ω∈B

m(B)
|B| as defined in [10], that is:

∑
ω∈Ω

BetPm(ω)× u(a(ω)) =
∑
ω∈Ω

 ∑
B⊆Sm
ω∈B

m(B)

|B|

× u(a(ω))

=
∑

B∈Sm

∑
ω∈B

m(B)

|B|
× u(a(ω))

=
∑

B∈Sm

m(B)×
∑
ω∈B

u(a(ω))

|B|

=
∑

B∈Sm

m(B)× fTBEU
u◦a (B)

Definition 16. The utility of a mixed strategy profile ρ = (ρ1, . . . , ρn), for

player i of type θi, is:

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈S

mDem
|θi

mDem
|θi (B)× fXEU

vσ
i

(B)

where the Dempster conditioning is used and vσi (θ) = ui(σ(θ), θ)

Using XEU = CEU, we find back Definition 14.

The definitions of pure and mixed Nash equilibria remain unchanged, i.e. ρ is355

a pure (resp. mixed) Nash equilibrium for XEU iff, whatever (i, θi), there exists

no pure (resp. mixed) strategy ρ′i such that XEU(i,θi)(ρ
′
i.ρ−i) > XEU(i,θi)(ρ).

16



3.2.2. Bel games in the credal interpretation

In the credal interpretation, the mass distribution actually defines a family of

probability over the combinations of types, hence the use of the Fagin-Halpern360

conditioning. This interpretation is compatible with the Choquet-based decision

rule (when the capacity used is a Bel measure, the Choquet value of a decision

is equal to the minimum value of the expected utilities provided by the different

probabilities of the family). [29] shows that it is also compatible with Jaffray’s

linear utility (JEU).365

Notice that alternative rules of conditioning exist in this interpretation, the

Strong conditioning[6, 17, 30], also called “geometrical conditioning”, which

amounts to applying Jeffrey’s rule when learning the categorical mass function

m′ such as m′(C) = 1 and the weak conditioning [31], seldom used because

leading to strange results (for example BelWeak(C | C) = Bel(C)/Pl(C) ≤ 1).370

mStrong
|C (B) =

m(B)/Bel(C) if B ⊆ C

0 otherwise

mWeak
|C (B) =

m(B)/Pl(C) if B ∩ C ̸= ∅

0 otherwise

Notice that Dempster’s rule also receives an interpretation in the credal

context: it leads to a family consisting of the conditionals of those probabilities

in the family which are the most likely (assessing a maximal probability to the

event C we now know for sure) – hence the name “Max likelihood conditioning”.

So, in a credal game:375

Definition 17. The utility of a mixed strategy profile ρ = (ρ1, . . . , ρn), for

player i of type θi, is:

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

where XEU ∈ {JEU,CEU} and m|C ∈ {mFH
|C ,mStrong

|C ,mWeak
|C ,mDem

|C }
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This modelling leaves the definitions of pure and mixed Nash equilibria un-

changed, i.e. ρ is a pure (resp. mixed) Nash equilibrium for XEU iff, whatever

(i, θi), there exists no pure (resp. mixed) strategy ρ′i with a greater XEU.380

4. From Bel games to complete games

One of the most prominent results about Bayesian games is Howson’s and

Rosenthal’s theorem [12]: any 2-player Bayesian game can be transformed into a

(complete information) polymatrix game equivalent to the original one. This re-

sult is important from the computational point of view since it provides 2-player385

Bayesian games with practical resolution tools: to solve a 2-player Bayesian

games, it is enough to use this theorem and to solve the resulting polymatrix

game by using one of the algorithms proposed for such games [15, 16]. In the

sequel, we generalize this theorem to Bel games and extend it to any number of

players.390

4.1. The direct transform

A first idea is to define from a Bel game G, an hypergraphical game G̃, the

vertices (players) of which are pairs (i, θi) with action set Ai – to each pure

strategy σ of G corresponds a unique pure strategy σ̃ of G̃ and conversely – we

call σ̃ the Selten3 transform of σ:4395

Definition 18 (Selten transform of a pure strategy). For any pure strat-

egy σ of G, the Selten transform of σ is the vector σ̃ defined by σ̃(i,θi) = σ(θi).

The local games of the hypergraphical game correspond to the focal elements

of m. Roughly, (i, θi) plays in the local game corresponding to the focal element

B if the type θi is plausible for B – technically, if there exists θ′ ∈ B such400

3Named after Selten, who proposed this definition for Bayesian games [3].
4We could use the notation ρ for both, but the pure strategies of the Bel game are vectors

of functions ρi : Θi 7→ Ai while the pure strategies of G̃ are vectors in
∏

i∈N

∏
θi∈Θi

Ai. So,

we keep the two notations σ̃ and σ.
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that θ′i = θi. In this local game, (i, θi) obtains a local utility K|θi · m(B) ·

minθ′∈B,θ′
i=θi ui(σ(θ

′), θ′).

Given a profile of actions σ̃, and a player (i, θi), the hypergraphical game

sums (i, θi)’s local utilities over all the focal elements for which θi is plausible:

the global utility for (i, θi) is equal to the XEU of the joint σ.405

One may note that two pairs (i, θi) and (i, θ′i) may play in the same local

game – this happens when θ and θ′ belong to the same focal element. In this

case, the utility of (i, θ′i) does not depend on the action played by (i, θi) and

conversely.

For any focal element B of m, let Players(B) = {(i, θi) | θ ∈ B, i ∈ N} –410

Players(B) denotes the future players involved in the local game corresponding

to B. Let Ẽ be the multiset Ẽ := [Players(B) | B ∈ Sm]. The elements e

of Ẽ and the focal elements in Sm are in one-to-one correspondence and we

denote Be the focal element of m which leads to e. These notations allow us to

propose a first, direct generalization of Howson’s and Rosenthal’s transform to415

Bel games:

Definition 19 (Direct transform of a Bel game). The direct transform of

a Bel game G =
(
N, (Ai,Θi, ui)i∈N ,m

)
is the hypergraphical game

G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

• Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},420

• Ã(i,θi) = Ai,

• Ẽ = [Players(B) | B ∈ Sm],

• For each e ∈ Ẽ, (i, θi) ∈ e and σ̃ ∈ Ã,

ũe
(i,θi)

(σ̃e) = K|θi ·m(Be) ·fXEU
ṽσ̃
i

(B∩{θ′ | θ′i = θi}), using ṽσ̃i (θ) = ui(σ̃θ, θ)

It is easy to show that the XEU value of a pure strategy ρ in G and the425

global utility of ρ̃ in G̃ are equal, whatever is the couple (i, θi) considered.
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Proposition 1. Let G be a Bel game based on the Dempster rule of condition-

ing and let G̃ be its direct transform. For any pure strategy σ of G, it holds that

XEU(i,θi)(σ) = ũ(i,θ)(σ̃).

Let us extend the Selten transform to mixed strategies ρ of G: each ρ̃(i,θi) =430

ρi(θi) is then a probability distribution over Ai, and ρ̃ is then a vector of such

distributions.

Proposition 2. Let G be a Bel game and G̃ its direct transform. For any mixed

strategy ρ of G, it holds that XEU(i,θi)(ρ) = ũ(i,θ)(ρ̃).

It can be checked that when m is a probability distribution, and G is a 2-435

player game, we get at most |Θ| local games, each involving two players (i, θi)

and (j, θj): G̃ is a polymatrix game, and Howson’s and Rosenthal’s Theorem is

recovered. More generally, we prove:

Theorem 1 (Generalized Howson-Rosenthal Theorem). For any Bel game

G based on a XEU utility and the Dempster rule of conditioning, there exists440

an hypergraphical game G̃ such that ρ is a pure (resp. mixed) Nash equilibrium

of G iff ρ̃ is a pure (resp. mixed) Nash equilibrium of G̃.

Example 4. Let us define the direct transform of the Bel game G corresponding

to our running example (again, with Dempster conditioning and the Choquet

expected utility). The set of players is: Ñ = {(1, P), (1, P̄), (2, R), (2, R̄)}. The set445

of actions are Ã(i,θi) = {Pi, Qi, Ri}.

Because m has two focal elements B1 = {(P̄, R)} and B2 = {(P̄, R̄), (P, R̄)}

each with a mass of 1
2 , G̃ involves two local games. The set of players involved

are respectively e1 = {(1, P̄), (2, R)} and e2 = {(1, P̄), (1, P), (2, R̄)}. G̃’s hyper-

graph is drawn on Figure 1.450

Player (2, R̄) plays only in e2, we have for instance:

ũe2
(2,R̄)(R1, P1, R2) = KR̄ ·m(B2)×min

[
u2

(
(R1, R2), (P, R̄)

)
, u2

(
(P1, R2), (P̄, R̄)

)]
= 1×min(2, 3) = 2.
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Figure 1: G’s direct transform. Gray circles denote vertices (players; one shade per agent),

white boxes denote hyperedges (local games; linked to the players involved).

For player (1, P̄), which plays in both local games, we have for instance:

ũe1
(1,P̄)(P1, P2) = KP̄ ·m(B1)× u1

(
(P1, P2), (P̄, R)

)
= 0.5× 2 = 1

ũe2
(1,P̄)( , P1, Q2) = KP̄ ·m(B2)× u1

(
(P1, Q2), (P̄, R̄)

)
= 0.5× 3 = 1.5

The Selten transform of the Nash equilibrium ρ′ described in the example 3 is:

ρ̃′((1, P̄)) = P1, ρ̃′((1, P)) = Q1, ρ̃′((2, R̄)) = R1, ρ̃′((2, R)) = Q2.

It is easy to check that:

ũ(1,P̄)(ρ̃′) = ũe1
(1,P̄)

(
(P1, Q2)

)
+ ũe2

(1,P̄)

(
(Q1, P1, R2)

)
= CEU(1,P̄)(ρ

′).

Notice that in the sum, one part of the utility of (1, P̄) comes from subgame e1455

(i.e., from B1) and the other part from local game e2 (i.e., from B2).

As to the complexity of the transform, let α (resp. β) be the maximum

number of actions (resp. types) per player in G and k the degree of additivity

of m. It holds that G contains n utility tables of size (α ·β)n and the size of the

description of m is bounded by k · n · |Sm|. So, Size(G) is in O
(
n · (α · β)n + k ·460

n · |Sm|
)
.

G̃ contains |Sm| local games. Each of them involves at most k · n players

(i, θi) – the size of their SNF representation is thus at most k ·n ·αkn – hence a

spatial cost for the representation of G̃ in O(|Sm| · k · n · αkn). Notice now that

since m is k-additive, |Sm| < βk·n. So, Size(G̃) is bounded by k ·n · (α ·β)k·n ≤465

nk · (α · β)k·n. In short, we get:

Proposition 3 (Complexity of the direct transform). The direct transform

of a Bel game G has a temporal complexity in O
(
|Sm| · k2 · n · αk·n · β

)
⊆

O
(
k ·β ·Size(G)k

)
and a spatial complexity in O

(
|Sm|·k ·nαk·n) ⊆ O

(
Size(G)k

)
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So, the degree of additivity of the bpa is the main factor of complexity. Hope-470

fully, low degrees of additivity can be assumed – it has indeed been shown

[32, 33] that such low values (typically, k ≤ 3) allow the description of many

cases of interest. In such situations, the transform is quadratic or, at worst,

cubic.

The direct transform, as defined above, holds for Demspter rule of condi-475

tioning. A variant can be used for each conditioning rule in which the focal

elements of conditionned bpa are obtained by directly conditioning the original

focal elements (each focal element B containing θi leads to a focal element B|θi).

During strong or weak conditioning, masses aren’t transferred but stay on the

prior focal elements – i.e. B|θi = B. Modifying the local utility definition,480

switching the term fXEU
ṽσ̃
i

(B ∩ {θ′ | θ′i = θi}) to fXEU
ṽσ̃
i

(B), captures both strong

conditioning (with K|θi = 1/Pl({θ′ | θ′i = θi})) and weak conditioning (with

K|θi = 1/Bel({θ′ | θ′i = θi})).

Unless in very particular cases, this kind of transform cannot be used with

Fagin-Halpern’s rule of conditioning, in which the conditioned focal elements485

cannot be assumed to be subsets of the prior ones.

The following transform enables both kind of conditioning.

4.2. The Conditioned transform

In the previously defined transform, we compute the CEU over the prior

focal set, which is not possible in general. On the contrary, for the following490

transform, we first compute the set of conditioned focal elements, which will all

lead to a local game, even if they are not (subsets of) prior focal elements.

Let S∪ =
⋃

i∈N,θi∈Θi
Sm|θi

be the set of all m|θi ’s focal elements, that is, the

union of focal sets obtained after all possible conditioning “given θi”. The local

games of the hypergraphical game G̃ correspond to the elements B ∈ S∪. Again,495

(i, θi) plays in the local game corresponding to B if the type θi is plausible for

B and obtains a local utility m|θi(B)× fXEU(B), equal to the amount of XEU

which is computed over B.
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Definition 20 (Conditioned transform).

500

The conditioned transform of a Bel game G =
(
N, (Ai,Θi, ui)i∈N ,m

)
is the

hypergraphical game G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

• Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},

• Ã(i,θi) = Ai,

• Ẽ =
[
Players(B) | B ∈

⋃
(i,θi)∈Ñ Sm|θi

]
,505

• For each e ∈ Ẽ, (i, θi) ∈ e and ρ̃ ∈ Ã, ũe
(i,θi)

(ρ̃e) = m|θi(Be)× fXEU
ṽσ̃
i

(Be),

where ṽσ̃i (θ) = ui(σ̃θ, θ).

It is easy to show that the XEU value of a pure strategy ρ in G and the global

utility of ρ̃ in G̃ are equal, whatever is the couple (i, θi) considered. We also

prove that:510

Proposition 4. Let G be a Bel game and G̃ its conditioned transform. For any

pure or mixed strategy ρ of G, it holds that:

(i) CEU(i,θi)(ρ) = ũ(i,θ)(ρ̃)

(ii) ρ is a Nash equilibrium of G iff ρ̃ is a Nash equilibrium of G̃.

Example 5. The hypergraph of the conditioned transform our running example515

is drawn on Figure 2.

Figure 2: G’s conditioned transform. Gray circles are vertices (players; one color per agent),

white boxes are hyperedges (local games; linked to the involved players).

This transform can be applied with any rule of conditioning. Notice that

the hypergraphical game it leads to can be different from the one obtained with
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the direct transform (assuming the same conditioning in both, e.g. Dempster’s

rule). In particular, it may produce more local games (with fewer players) than520

the direct transform.

Proposition 5 (Complexity of the conditioned transform).

The conditioned transform of a Bel game G has a temporal complexity in O
(
n ·

β·Tcond + |S∪|·k′2·n·αk′·n) and a spatial complexity in O
(
|S∪|·k′·n·αk′·n), where

S∪ =
⋃

(i,θi)∈Ñ Sm|θi
, k′ = maxB∈S∪ |B| and Tcond is the temporal complexity525

of a conditioning of m “given θi”.

Using Dempster, Strong or Weak conditioning, it leads to a temporal complexity

in O
(
k · Size(G)k

)
and a spatial complexity of O

(
Size(G)k

)
.

So, the conditioned transform leads to a different hypergraphical game that

the direct one, but has the same worst case spatial complexity. In practice, the530

size of the transformed game depends on the structure of the belief function.

Typically, if a focal element B involves only one type θi for a given agent i,

both transforms will lead to the same local game Players(B) (as B = B|θi),

but the conditioned transform may produce (many) more local games and be

less concise. If on the contrary, many types are compatible with a focal ele-535

ment B for any agent, the local game produced by the direct transform may

have a bigger size. Consider for example a 2-player Bel game where m verify

m({(θ1, θ2), (θ′1, θ′2)}) = m({(θ1, θ′2), (θ′1, θ2)}) = 1/2. With the direct trans-

form, we get two 4-player local games, while the conditioned transform leads to

four 2-player local games.540

5. Conclusion

This article provides two main contributions. On the one hand, we define a

model for simultaneous games of incomplete information based on belief func-

tions. On the other hand, we introduce two transformations which make it

possible to build an hypergraphical game (of complete information) equivalent545

to the initial Bel game, thus generalizing Howson and Rosenthal’s theorem. The
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transformation preserves utilities, so the study of a Bel game can be reduced to

that of a complete game. In particular, Nash equilibria are in correspondence:

any equilibrium in one game is an equilibrium in the other. Furthermore, under

some conditions (a low degree of additivity of the mass function), the trans-550

formation is polynomial in time and space; as a result, the algorithmic tools

developed for hypergraphical games [16, 15] can be used to solve Bel games.

This work opens several research directions. First, we aim at extending this

model to Choquet integrals based on any kind of capacity measure. It will allow

for the definition of games based on other decision rules, for instance the rank-555

dependent utility rule [34]. Then, a finer complexity analysis can be conducted,

based on the characterization of the conditioned mass functions. Finally, we like

to formalize those results with the Coq proof assistant [35] in order to build,

with other in-progress results, a modular formal library on incomplete games

and decision theory.560

Appendix A. Proofs

Appendix A.1. Proofs of correctness

Proof 1 (Relevancy of definitions 14, 16 and 17 – Utility of a mixed strategy profile).

On the one hand, any mixed strategy profile ρ ∈
∏

i∈N (Θi → π(Ai)) defines a

probability Prρ over the possible pure strategy profiles σ ∈ Σ =
∏

i∈N (Θi → Ai)

by:5

Prρ(σ) =
∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

On the other hand, merging ρ and m|θi leads to a bpa mρ over A × Θ, from

which any element X = {(a, θ), (a′, θ′), . . . } is focal iff B = {θ, θ′, . . . } is focal

for m and (at least) one pure strategy profile σ is compatible with X and possible565

according to Prρ; i.e. σ(θ) = a, σ(θ′) = (a′), . . . and Prρ(σ) > 0.

5π(X) denotes the set of probabilities over X
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Let g.B := {(g(θ), θ) | θ ∈ B} denote such focal element. By definition:

mρ
|θi(g.B) = m(B)×

∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

Prρ(σ)

Thus, the XEU of a mixed strategy profile rewrites:

XEU(i,θi)(ρ) =
∑

g.B∈Sm
ρ
|θi

mρ
|θi(g.B)× fXEU

vσ
i

(B)

=
∑

B∈Sm|θi

∑
g:B→A

m|θi(B)×

 ∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

Prρ(σ)

× fXEU
vσ
i

(B)

=
∑

B∈Sm|θi

∑
g:B→A

∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

m|θi(B)× Prρ(σ)× fXEU
vσ
i

(B)

Given any B ⊆ Θ, the set of functions g : B → A defines a partition of Σ, so:

XEU(i,θi)(ρ) =
∑

B∈Sm|θi

∑
σ∈Σ

m|θi(B)× Prρ(σ)× fXEU
vσ
i

(B)

=
∑
σ∈Σ

Prρ(σ)×
∑

B∈Sm|θi

×m|θi(B)× fXEU
vσ
i

(B)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

Proof 2 (Propositions 1 and 2 – Direct transform). Let G be a Bel Game,

G̃ be its conditioned transform and Eθi = {θ′ | θ′i = θi} be the conditioning event

“given θi”.

Recall that for any mixed strategy profile ρ of G, ρ̃ is its Selten transform570

and ρ̃(i,θi) = ρi(θi) is a probability distribution over Ai = Ã(i,θi). Similarly, for

any pure strategy profile σ, σ̃ is its Selten transform and σ̃(i,θi) = σi(θi) ∈ Ai =

Ã(i,θi). Finally, since Selten transform is bijective, we have:
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XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈S

mDem
|θi

mDem
|θi (B)× fXEU

vσ
i

(B)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm

B∩Eθi
̸=∅

K|θi ×m(B)× fXEU
vσ
i

(B ∩ Eθi)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
e∈Ẽ

(i,θi)∈e

K|θi ×m(Be)× fXEU
vσ
i

(Be ∩ Eθi)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

× ũ(i,θi)(σ̃)

= EU(i,θi)(ρ̃)

Proof 3 (Proposition 4 – Conditioned transform). Same remarks as for

proof 2. It leads to:575

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

×
∑

B∈Sm|θi

m|θi(B)× fXEU
ṽσ̃
i

(B)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

×
∑
e∈Ẽ
θi∈e

m|θi(Be)× fXEU
ṽσ̃
i

(Be)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

× ũ(i,θi)(σ̃)

= EU(i,θi)(ρ̃)

Proof 4 (Theorem 1 – Extended Howson-Rosenthal’s theorem). Direct

corollary of proof 2 (also a corollary of proof 3).

Appendix A.2. Proofs of complexity – mass function operations

In this section we consider a k-additive mass function m. We denote s =

|Sm|. Set operations on focal elements (such as union, intersection and mem-580
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bership) involve O(k) operations. The focal set and the corresponding masses

involve a space of O(ks).

We denote it by Time(∩) ∈ O(k) and Size(m) ∈ O(ks) for example.

Proof 5 (Complexity of the Dempster, Strong and Weak conditioning “given C”).

First, note that every focal element of mDem
|C is a subset of one of m, so mDem

|C585

is k-additive and |SmDem
|C

| ≤ s. Thus we have Size(mDem
|C ) ≤ Size(m) ∈ O(ks).

To compute all the values of mDem
|C , two loops over Sm suffice. Initialize

mDem
|C as a function which defaults to 0, and also a single variable Pl(C) := 0.

• First, compute both mDem
|C ’s unnormalized values and the normalization

factor Pl(C): for each B ∈ Sm, if B ∩C ̸= ∅, add m(B) to mDem
|C (B ∩C)590

and to Pl(C).

• Second, normalize those values: for each B ∈ SmDem
|C

, mDem
|C (B) becomes

mDem
|C (B)/Pl(C).

The first loop involves s tests thus is in O(ks). The second one doesn’t involve

any test and is thus in O(s). Finally, Time(mDem
|C ) ∈ O(ks).595

For the weak conditioning, the proof is similar since the algorithm is almost

identical: the only difference is that masses stays on B (they are not added to

B ∩C). For the strong conditioning, the test condition changes to B ⊆ C (thus

the normalisation factor is Bel(C)), but stays in O(k).

Finally, Time(mStrong
|C ), Time(mWeak

|C ), Size(mStrong
|C ) and Size(mWeak

|C )600

also are in O(ks).

Proof 6 (Complexity of the Fagin-Halpern conditioning “given C”).

Following the algorithm of [20], it appears to be combinatorial to compute all

values of mFH
|C . Initialize mFH

|C by a function which defaults to 0 and also a

single variable and Pl(C) := 0.605

• First construct two subsets of Sm, B′ and B′′, which contains respectively

the focal elements which are included in C and that intersect both C and

Cc. It involves two tests in a single loop over Sm, thus in O(ks). One

may also compute Pl(C) during this loop, as for proof 5.
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• Then, for each B0 ∈ B′, consider all combinations B1, . . . , Bm of elements610

of B′′ (there are 2|B
′′|) and let B∗ = C ∩

⋃m
i=0 Bi. B∗’s computation

involves r ≤ s set operations, thus in O(ks). If B∗ ̸= ∅, then for all

the r! permutations p of 1..r, add the value
∏m

i=0
m(Bi)

Pl(C)−
∑i

j=1 m(Bp(j))
to

mFH
|C (B∗), which involves O(r(r − 1)/2) = O(r2) operations.

The second loop is the longest one: since r ≤ s, it involves O(s2s(ks + ks!s2)615

Finally, Time(mFH
|C ) ∈ O(ks32ss!).

Appendix A.3. Proofs of complexity – Games

In this section we consider a Bel game G with n ≥ 2 players, each of those

having at most α ≥ 2 actions and β ≥ 2 types, among with a k-additive mass

function with s focal elements, each of them is a set of n-tuples of types – so620

s ≤ βkn.

Proof 7 (Spatial complexity of a Bel game). It holds that:

• G contains n utility tables of size (αβ)n (one for each agent, assigning

his/her utility to a strategy profile and a type configuration)

• The size of m is bounded by kns (each of the s focal elements contains at625

most k n-tuples of types)

Thus, Size(G) ∈ O(n(αβ)n + kns).

Proof 8 (Proposition 3 – Complexity of the direct transform). The di-

rect transform G̃ of G has exactly s local games (one for each focal element

B), in which players are possible pairs (i, θi) such as ∃θ′ ∈ B, θ′i = θi. They630

may be kn such pairs, so the corresponding local game is described by at most

kn matrices of αkn cells, hence a spatial cost for the representation of G̃ in

O(sknαkn). Recall that s ≤ βkn and kn ≤ nk, it holds that Size(G̃) is bounded

by kn(αβ)kn ≤ nk(αβ)kn, i.e, Size(G̃) ∈ O(Size(G)k)

To instantiate those matrices, one has to compute each of the utility values635

as from the definition 19:
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• First, for each of the nβ pairs (i, θi), compute Pl(Eθi) by a single loop

over m’s focal set in which nβ tests are made, so it involves O(sknβ)

operations.

• Then, for each of the s focal elements B (i.e. a local game e), for each of640

the kn possible corresponding pairs (i, θi) and for each of the αkn possible

local strategy profiles σ̃e, set ũ
e
(i,θi)

(σ̃e) := m(B)×fXEU
ṽσ̃
i

(B∩Eθi)/Pl(Eθi),

where fXEU(b) involves k operations.

Thus we have Time(G̃) ∈ O(sknβ + sk2nαkn) = O(skn(β + kαkn)). Since m

is k-additive, Time(G̃) is bounded by knβkn(β + kαkn) ∈ O(k2nβ(αβ)kn) ⊆645

O(βknk(αβ)kn); i.e. Time(G̃) ∈ O(βk × Size(G)k).

Note that since the normalization doesn’t change the equilibria of G̃, usually

the first loop is not necessary and the complexity becomes Time(G̃) ∈ O(k ×

Size(G)k).

Proof 9 (Proposition 5 – Complexity of the conditioned transform).650

Let s′ = |S∪| be the total number of focal elements, after all conditioning, and

k′ = maxB∈S∪ |B| their maximal size. The conditioned transform G̃ of F has

exactly s′ local games, which involve at most k′n players each, thus they are

described by at most k′n matrices of αk′n cells, hence a spatial cost for the

representation of G̃ in O
(
k′ns′αk′n

)
.655

If the conditioning is one of the Dempster, Strong or Weak ones, it holds

that k′ ≤ k and s′ ≤ βkn, so the bound becomes kn(αβ)kn; i.e. Size(G̃) ∈

O
(
Size(G)k

)
.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound

k′ ∈ O(nβ) and s′ ∈ O(2nβ), and thus get a spatial complexity Size(G̃) ∈660

O
(
n2β2nβαn2β

)
.

To construct those local utility matrices, one has to compute each of the

utility values:

• First, for each of the nβ pairs (i, θi), compute m|θi , according to the chosen

conditioning, say it costs Tcond.665
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• Then, for each of the s′ local games, for each of its k′n players and for each

of the αk′n possible local strategy profiles σ̃e, set ũ
e
(i,θi)

(σ̃e) := m|θi(Be)×

fXEU
ṽσ̃
i

(Be), where fXEU
ṽσ̃
i

(Be) involves at most k′ operations.

The first loop costs nβTcond operations, the second one costs s′k′2nαk′n opera-

tions.670

If the conditioning is one of the Dempster, Strong or Weak ones, it holds

that k′ ≤ k, s′ ≤ βkn and Tcond ∈ O(kn), so the bound becomes k2n(αβ)kn; i.e.

Time(G̃) ∈ O
(
k · Size(G)k

)
.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound

k′ ∈ O(nβ), s′ ∈ O(2nβ) and Tcond ∈ O(ks32ss!), and thus get a temporal675

complexity Time(G̃) ∈ O
(
nβks32ss! + n3β22nβαn2β

)
.
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