Games of Incomplete Information: a Framework Based on Belief Functions

Pierre Pomeret-Coquot, Hélène Fargier, Érik Martin-Dorel

To cite this version:

Pierre Pomeret-Coquot, Hélène Fargier, Érik Martin-Dorel. Games of Incomplete Information: a Framework Based on Belief Functions. 2022. hal-03658700v1

HAL Id: hal-03658700

https://ut3-toulouseinp.hal.science/hal-03658700v1
Preprint submitted on 4 May 2022 (v1), last revised 21 Sep 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Games of Incomplete Information: a Framework Based on Belief Functions*

Helene Fargier ${ }^{\text {a,b }}$, Pierre Pomeret ${ }^{\text {a,b,* }}$, Erik Martin-Dorel ${ }^{\text {b }}$
${ }^{a}$ ANITI, B612, 3, rue Tarfaya, 31400 Toulouse
${ }^{b}$ IRIT, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex

Abstract

This paper proposes a model for incomplete games where the knowledge of the players is represented by a Dempster-Shafer belief function. Beyond an extension of the classical definitions, it shows such a game can be transformed into an equivalent hypergraphical complete game (without uncertainty), thus generalizing Howson and Rosenthal's theorem to the framework of belief functions and to any number of players. The complexity of this transformation is finally studied and shown to be polynomial in the degree of k-additivity of the mass function.

Keywords: Game theory, Incomplete games, Belief functions, Choquet integrals

1. Introduction

Game theory [1, 2] proposes a powerful framework to capture decision problems involving several agents. In non-cooperative games of complete information, the players do not coordinate their actions but each of them knows every5 thing about the game: the players, their available actions and all their utilities. This assumption of complete knowledge cannot always be satisfied. In the real world indeed, players are not so well informed and have only limited knowledge

[^0]about the game. This is why Bayesian games of incomplete information have been proposed [3]. Nevertheless, the Bayesian hypothesis is strong, and requires Bayesian way amounts to assuming equiprobability, but this can lead to a model that does not fit with the agents' behavior (e.g. see Ellsberg's paradox [4]).

In the present paper, we propose a new kind of game of incomplete information, which we call Bel game. Agents have a partial knowledge, represented by a Dempster-Shafer belief function [5, 6, and cardinal utilities, but do not necessarily make the equiprobability assumption. The underlying decision rule is generally the Choquet integral based on the Bel measure [7, which amounts to the maximization of the worst expected utility [8, 9. Bel games as defined here are also compatible with the transferable belief model [10], which amounts 20 to extracting the pignisitic probability when the decision is to be made, and with Jaffray's linear utility [11.

We then follow the line defined by Howson and Rosenthal [12] who have shown that any 2-player Bayesian game can be transformed into a complete knowledge polymatrix game [13]. In this paper, we show that such a transformation is possible for Bel games, and for any number of agents, producing a hypergraphical game [14. A notable consequence of this result is that the algorithmics developed for hypergraphical games [15, 16] can be reused for the search of Nash equilibria in Bel games.

2. Background and motivations

To illustrate and motivate our work, we will use the following example inspired by the murder of Mr. Jones [10], where the suspects are Peter, Paul and Mary.

Example 1 (Peter, Quentin and Rose). Two agents, named Agent 1 and Agent 2, are independently looking for a business association, with either Peter ${ }_{35}(P)$, Quentin (Q), or Rose (R). The point is that a crime has been committed, for which these three people are suspected. Several testimonies, not very reliable,
allow to estimate that there is 50% of chance that the culprit is a man (P or Q), and 50% of chance that it is a woman (R).

As to the interest of the associations, making the deal with an innocent leads to a
40 payoff of $\$ 6 k$ (to be shared between the people making the deal), while associating with a guilty person produces no payoff (\$0k). Moreover, Agent 1 is investigating about P and will eventually knows whether he is guilty or not. Similarly, Agent 2 will knows whether R is guilty before making the decision.

The Bayesian approach is not relevant here. Indeed, if Agent 1 learns that
${ }_{45} \quad P$ is innocent the probability of guilt should become $1 / 2$ for Q and $1 / 2$ for R. However, in a purely Bayesian view equiprobability would be applied and the prior probability of guilt would be $1 / 4$ to P and $1 / 4$ to Q. Then, after conditioning, Agent 1 would get a probability of $1 / 3$ to Q and $2 / 3$ to R.

2.1. Dempster-Shafer's theory of evidence

${ }_{50}$ Let us first look at the epistemic aspect of the problem. The prior knowledge is simply that $P(\{P, Q\})=P(\{M\})=\frac{1}{2}$, and nothing more. The kind of knowledge at work here is well captured in Dempster-Shafer's theory of evidence, that does not restrict probability assignments to elements of the frame of discernment:
${ }_{55}$ Definition 1 (Mass function). A mass function for a frame of discernment Ω (or "bpa" for basic probability assignment) is a function $m: 2^{\Omega} \rightarrow[0,1]$ such that $m(\emptyset)=0$ and $\sum_{A \subseteq \Omega} m(A)=1$.

A set with a nonzero mass is called a focal element and the set of focal elements is denoted \mathcal{S}_{m}. Two dual measures on 2^{Ω} derive from m :

$$
\operatorname{Bel}(A)=\sum_{B \in \mathcal{S}_{m}, B \subseteq A} m(B) \quad \text { and } \quad \operatorname{Pl}(A)=\sum_{B \in \mathcal{S}_{m}, B \cap A \neq \emptyset} m(B) .
$$

$\operatorname{Bel}(A)$ (resp. $\mathrm{Pl}(A))$ estimates to what extent A is implied by (resp. is compatible with) the knowledge captured by m. precise probability theory. A belief function Bel and its dual Pl indeed delimit the lower and upper bounds of a probability family $\mathcal{F}=\{\operatorname{Pr} \mid \forall A, \operatorname{Bel}(A) \leq$ $\operatorname{Pr}(A) \leq \operatorname{Pl}(A)\}-\mathcal{F}$ is called the credal set of m. It is clear that this set is convex, i.e., that any element of \mathcal{F} can be obtained by distributing each mass ${ }_{75} m(B)$ among the elements of B. Of course, not any lower probability measure is a belief functions [18.

Now, the two views of belief functions belong to different theoretical frameworks [19, 20. In particular, the two theories have different rules of conditioning. In a pure DS theory, in the conditioning of m by C, the mass assigned to a focal set B is transferred to their non-empty intersection. The conditioning at work here is Dempster's rule [5] (see [21 for more details):

Definition 3 (Dempster conditioning). For any nonempty $A, C \subseteq \Omega$, with $\mathrm{Pl}(C)>0$ (at least one focal element intersects C),

$$
m_{\mid C}^{D e m}(A):=K_{C} \cdot \sum_{\substack{B \in \mathcal{S}_{m} \\ C \cap B=A}} m(B),
$$

where $K_{C}=1 / \operatorname{Pl}(C)$ is a normalization factor, constant for a given subset $C \subseteq \Omega$.

Masses of $m_{\mid C}^{\text {Dem }}$ can be computed using a simple algorithm. The mass $m(B)$ and discarded otherwise. Thus all masses of $m_{\mid C}^{\text {Dem }}$ can be computed through a single loop over \mathcal{S}_{m}, followed by a normalization, in time linear w.r.t. the size of m.

Demspter conditioning preserves the size and the k-additivity of m :

$$
\left|\mathcal{S}_{m}\right| \geq\left|\mathcal{S}_{m \text { Dem }}\right| \quad \text { and } \quad m \text { is } k \text {-additive } \Longrightarrow m_{\mid C}^{\text {Dem }} \text { is } k \text {-additive }
$$

The Fagin-Halpern conditioning [22] on the contrary derives from the inter- of any focal element $B \in \mathcal{S}_{m}$ is transferred to the subset $B \cap C$ if it is nonempty, pretation of belief functions in the theory of imprecise probabilities.

Definition 4 (Fagin-Halpern conditioning). For any non-empty C with $\operatorname{Bel}(C)>0$ (i.e. at least one focal element is included in C),

$$
\operatorname{Bel}(A \mid C)=\inf _{\operatorname{Pr} \in \mathcal{F}_{m}} \operatorname{Pr}(A \mid C)=\frac{\operatorname{Bel}(A \cap C)}{\operatorname{Bel}(A \cap C)+\operatorname{Pl}(\bar{A} \cap C)}
$$

[22] have shown that the above-defined measure is a Bel measure. An algorithm is proposed in [20] which allows the computation of the bpa $m_{\mid C}^{F H}$ corresponding to $\operatorname{Bel}(. \mid C)$. This algorithm, which relies on the Moebius transform, is not polynomial w.r.t. the size of m : it requires $O\left(k \cdot s^{3} \cdot 2^{s} \cdot s!\right)$ operations where s is the number of focal elements of m and k its degree of additivity. The number of focal elements of $m_{\mid C}^{F H}$ may be much greater than the number of focal elements of the original Bel and the FH conditioning doesn't preserves nor the size, neither the k-additivity of the mass function ${ }^{2}$.

2.2. Decision making with belief functions

Let us now consider belief functions in a (mono-agent) decision making context. Following Savage's modelling of decision making under uncertainty [23],

[^1]a decision (or "action") is a function $a: \Omega \rightarrow X$ where Ω is the set of possible an agent are represented by an utility function $u: X \rightarrow \mathbb{R}$.

The multi prior model and the discrete Choquet integral
A belief function Bel and its dual Pl delimit the lower and upper bounds of a probability family $\mathcal{F}=\{\operatorname{Pr} \mid \forall A, \operatorname{Bel}(A) \leq \operatorname{Pr}(A) \leq \operatorname{Pl}(A)\}$, and thus, for each decision, a full range of values for its expected utility. Gilboa and Schmeidler [9, 8) consider a pessimistic agent and propose to evaluate each decision by the minimum of the possible expected utilities.

Definition 5 (MPEU). $\operatorname{MPEU}(a)=\min _{\operatorname{Pr} \in \mathcal{F}}\left(\sum_{\omega} \operatorname{Pr}(\omega) \cdot u(a(\omega))\right)$
Another line of thought is to consider that belief functions are particular capacity measures, and to compute the global merit of an act on the basis of its Choquet value (for a theoretical justification of the use of Choquet integral in decision making under (non-probabilitistic) uncertainty, see [24, 25]). When the capacity is a belief function, the Choquet expectation writes:

Definition 6 (Choquet expected utility (CEU)). Let $\Lambda(a)=\left\{\lambda_{1} \leq \cdots \leq\right.$ $\left.\lambda_{|\Lambda(a)|}\right\}$ be the set of utility values reached by an action a, labelled by increasing order, and $E_{\lambda_{i}}(a)=\left\{\omega \mid u(a(\omega)) \geq \lambda_{i}\right\}$ denote the set of worlds for which the utility of action a is at least λ_{i}. The Choquet Expected Utility of a is :

$$
\operatorname{CEU}(a)=\lambda_{1}+\sum_{i=2}^{|\Lambda(a)|}\left(\lambda_{i}-\lambda_{i-1}\right) \times \operatorname{Bel}\left(E_{\lambda_{i}}(a)\right)
$$

The CEU has a simple expression in terms of the mass function:

$$
\operatorname{CEU}(a)=\sum_{B \in \mathcal{S}_{m}} m(B) \times \min _{\omega \in B} u(a(\omega)) .
$$

[26] have shown that the MPEU value of a decision is equal to its CEU value with respect to the belief functions.

We recover here the double interpretation of belief functions, in terms of generalized set or in terms of imprecise probability. It should nevertheless be
recalled that they do differ, especially in a dynamic context, where a conditioning must be applied.

Jaffray's expected utility (JEU)
Jaffray's [11] expected utility (JEU) is defined directly in terms of the mass function, and generalizes the CEU by allowing one to modulate the agent's pessimism locally, using a series of Hurwicz coefficients.

$$
\operatorname{JEU}(a)=\sum_{B \in \mathcal{S}_{m}} m(B) \times\left(\alpha_{B_{*}(a), B^{*}(a)} \times B_{*}(a)+\left(1-\alpha_{B_{*}(a), B^{*}(a)}\right) \times B^{*}(a)\right)
$$

where $B_{*}(a)=\min _{\omega \in B} u(a(\omega))$ and $B^{*}(a)=\max _{\omega \in B} u(a(\omega))$.
The $\alpha_{x_{i}, x_{j}}$ coefficients represent the agent's pessimism and must be elicited for any pair (x_{i}, x_{j}) with $i<j$; there is a quadratic number of such pairs (w.r.t. the possible utility values). Note that $\mathrm{CEU}=\mathrm{JEU}$ if all coefficients $\alpha_{x_{i}, x_{j}}$ are equal to 1 .

The transferable belief model (TBEU)

Smets and Kennes' model 10 proceeds in two steps: at the credal level, knowledge is represented by a belief function and revised by Dempster's rule of conditioning; at the pignistic level (when a decision takes place), a probability law p is constructed: $p(\omega)=\sum_{\omega \in B \in \mathcal{S}_{m}} m(B) /|B|$. The agent then maximizes his expected utility with regards to p.

2.3. Game theory

A simultaneous game of complete information models a situation where each agent makes a decision (the term "action" is rather used in game theory) without coordination with the other ones - the final utility of each agent depending on the actions chosen by all agents.

Definition 7 (Complete game). A simultaneous game of complete information (also called complete game) is a tuple $G=\left(N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ where:

- $N=\{1, \ldots, n\}$ is a finite set of agents (or "players"),
- A_{i} is the set of actions of Agent i; the set $A:=\prod_{i \in N} A_{i}$ contains all the possible combinations of actions a.k.a. "profiles",
- $u_{i}: A \rightarrow \mathbb{R}$ is the utility function of Agent i.

A mixed strategy for player i is a probability distribution on A_{i}. The strategy is said to be pure when only one action receives a non-zero probability.

A pure (resp. mixed) strategy profile is a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ which specifies a pure (resp. mixed) strategy for each player.

In the following, we will use the following notations: for any vector $v=$ $\left(v_{1}, \ldots, v_{n}\right)$ in some product domain $V=\prod_{i \in N} V_{i}$ and for any $e \subseteq N, v_{e}$ is the restriction of v to e and $V_{e}=\prod_{i \in e} V_{i}$. By abuse of notation, we write v_{i} for $v_{\{i\}}$. For any $i,-i$ denotes the set $N \backslash\{i\}$, i.e. $v_{-i}=\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right) \in$ ${ }_{160} \quad V_{-i}=\prod_{j \neq i} V_{j}$. Thus, v_{-i} is the restriction of v to all players but i. Finally, "." denotes the concatenation, e.g., $v_{i}^{\prime} . v_{-i}=\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{n}\right)$. Hence $a=a_{i} \cdot a_{-i}$ belongs to A and given two profiles $a, a^{\prime} \in A, a_{i}^{\prime} \cdot a_{-i}$ denotes the profile a where a_{i} is replaced with a_{i}^{\prime}.

Because the strategies can be randomized, the global utility for a player of a mixed strategy profile p is defined as the expected utility (EU) of u_{i} according to the probability distribution it induces over A (obviously, when the strategy is pure, EU_{i} is equal to the utility value given by u_{i}):

Definition 8 (Utility of a strategy). Given a strategy profile p in a complete game $\left(N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$, the expected utility of player i is defined by:

$$
\mathrm{EU}_{i}(p)=\sum_{a \in A}\left(\prod_{j \in N} p_{j}\left(a_{j}\right)\right) \times u_{i}(a)
$$

Nash equilibria are the profiles in which no player can unilaterally increase his/her utility by changing his/her own strategy.
${ }^{170}$ Definition 9 (Nash equilibrium [2]). A strategy profile p is a Nash equilibrium iff for any $i \in N$, there exists no p_{i}^{\prime} such that $\mathrm{EU}_{i}\left(p_{i}^{\prime} \cdot p_{-i}\right)>\mathrm{EU}_{i}(p)$.

When the utility functions are described explicitly, G is said to be in standard normal form (SNF). SNF representations become spatially costly when the number of players increases $\left(O\left(n \alpha^{n}\right)\right.$ for a game with n players and α actions
ity functions can be decomposed as a sum of smaller utility functions, namely hypergraphical games 14 and their particular cases, polymatrix games 13 and graphical games [27].

Definition 10 (Hypergraphical game).

A hypergraphical game is a tuple $G=\left(N, E,\left(A_{i}\right)_{i \in N},\left(u_{i}^{e}\right)_{e \in E, i \in e}\right)$ where:

- N is a set of players,
- $E=\left\{e_{1}, \ldots e_{m}\right\}$ is a multiset of subsets of $N((N, E)$ is an hypergraph $)$
- For each $e \in E,\left(e,\left(A_{i}\right)_{i \in e},\left(u_{i}^{e}\right)_{i \in e}\right)$ is a complete game.

The global utility of each Agent i sums the local utilities: $u_{i}(a)=\sum_{e \in E} u_{i}^{e}\left(a_{e}\right)$. Polymatrix games are hypergraphical games with 2-players local games:
$\forall e \in E,|e|=2$.

This framework assumes that each player knows everything about the game: the players, the actions available to each player, all their utilities for each combination of actions, etc. The assumption of complete knowledge cannot always be satisfied. In the real world indeed, players have only a limited knowledge about the outcomes of their strategies - the final outcomes may depend on an ill-known event (in our example 1 , the payoff for making the deal with one of P, Q, or R depends on whether they are guilty or innocent).

Harsanyi [3] proposed games of incomplete information as a way to capture such situations (see also [28], for more details). A game of incomplete infor- mation can be first understood as a set of possible classical games (of complete information) - one for each possible world $\omega \in \Omega$. Players don't know exactly which world is the real one, but may have some knowledge about it. Just before playing, each player i will receive some information $\tau_{i}\left(\omega^{*}\right)$ about the real
world $\omega^{*} . \tau_{i}$ maps any world to an element θ_{i} of a set Θ_{i} called the set of "types" of Agent i. After having observed $\tau_{i}\left(\omega^{*}\right)$, Agent i knows more about the real game, but several games may still be plausible. The player then conditions his/her knowledge on $\tau_{i}\left(\omega^{*}\right)$ and decides which action to play. Notice that the different agents may receive different pieces of information and thus have a different posterior knowledge. The question is then, for each player, to determine a strategy (either an action, or a probabilistic strategy) for each of his/her possible types.

Harsanyi has shown that such games can be described on the space of types $\Theta=\Theta_{1} \times \cdots \times \Theta_{n}$ (the underlying worlds are omitted). The idea of Harsanyi when defining types is that this concept can encapsulate every piece of information agents may have access to. It includes the agent-observable world status, but also their beliefs on other agents and their introspective mental states.

3. Bel games

Bayesian games are games of incomplete information where prior knowledge is captured by a probability measure. To capture problems where the Bayesian assumption is not obeyed (as in our motivating example), we propose the more general framework of Bel games:

3.1. Definitions

Definition 11 (Bel game). A Bel game G is defined as a tuple
$\left(N,\left(A_{i}\right)_{i \in N},\left(\Theta_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}, m\right)$ where:

- $N=\{1, \ldots, n\}$ is a finite set of players,
- A_{i} is the set of actions of player $i ; A=\prod_{i \in N} A_{i}$ denotes the set of all action profiles,
- Θ_{i} is the set of types of player $i ; \Theta=\prod_{i \in N} \Theta_{i}$ denotes the set of all type configurations,
- $m: 2^{\Theta} \rightarrow[0,1]$ is the mass function describing the common prior knowledge,
- $u_{i}: A \times \Theta \rightarrow \mathbb{R}$ is the utility function of Agent i.
G is said to be in standard normal form iff the utility functions u_{i} and the mass function m are given in extenso.

Bel games generalize Bayesian games, which are recovered when m is a probability distribution.

Example 2. Our running example (see Example 1) is captured by the Bel game $G=\left(N,\left(A_{i}\right)_{i \in N}\left(\Theta_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}, m\right)$ where:

- $N=\{1,2\}$;
- $A_{1}=\left\{P_{1}, Q_{1}, R_{1}\right\}, A_{2}=\left\{P_{2}, Q_{2}, R_{2}\right\}$ (each agent chooses an associate).
- $\Theta_{1}=\{\mathrm{P}, \overline{\mathrm{P}}\}, \Theta_{2}=\{\mathrm{R}, \overline{\mathrm{R}}\}$ (Agent 1 investigates on Peter, Agent 2 investigates on Rose).
- $m: 2^{\Theta} \rightarrow[0,1]$ has two focal elements: $m(\{(\overline{\mathrm{P}}, \mathrm{R})\})=1 / 2$ (the murdered is a woman, thus necessarily Rose - in this case Agent 1 will learn $\overline{\mathrm{P}}$ and Agent 2 will learn R) and $m(\{(\mathrm{P}, \overline{\mathrm{R}}),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\})=1 / 2$ (the murderer is a man: Agent 2 necessarily learns $\overline{\mathrm{R}}$ but Agent 1 can learn either $\overline{\mathrm{P}}-$ which happens when Quentin is the murdered - or P - Peter is the murderer).
- Making a deal with a murderer has a utility value of 0, making a deal with an innocent leads to a utility of $\frac{6}{2}=3$, unless the other agent approaches the same associate, in which case each agent receives $\frac{6}{3}=2$. The utility functions are summarized below (Table 1). Null values (in gray) are given for the case where $\theta=(\mathrm{P}, \mathrm{R})$ (both R and P are guilty) which is not a possible world.

Following Harsyani's approach of incomplete games, we consider the "ex interim" setting where each player plans a strategy for each of the types he/she

	$\theta_{2}=\overline{\mathrm{R}}$				$\theta_{2}=\mathrm{R}$			
		P_{2}	Q_{2}	R_{2}		P_{2}	Q_{2}	R_{2}
$\theta_{1}=\mathrm{P}$	P_{1}	$(0,0)$	$(0,3)$	$(0,3)$	P_{1}	$(0,0)$	$(0,0)$	$(0,0)$
	Q_{1}	$(3,0)$	$(2,2)$	$(3,3)$	Q_{1}	$(0,0)$	$(0,0)$	$(0,0)$
	R_{1}	$(3,0)$	$(3,3)$	$(2,2)$	R_{1}	$(0,0)$	$(0,0)$	$(0,0)$
$\theta_{1}=\overline{\mathrm{P}}$		P_{2}	Q_{2}	R_{2}		P_{2}	Q_{2}	R_{2}
	P_{1}	$(2,2)$	$(3,0)$	$(3,3)$	P_{1}	$(2,2)$	$(3,3)$	$(3,0)$
	R_{1}	$(0,3)$	$(0,0)$	$(0,3)$	Q_{1}	$(3,3)$	$(2,2)$	$(3,0)$
		$(3,3)$	$(3,0)$	$(2,2)$	R_{1}	$(0,3)$	$(0,3)$	$(0,0)$

Table 1: Example 1 Utility matrices for each configuration of the types
can receive, ideally a strategy which is a best response to that of the other players. We thus adopt the definition of strategy proposed by Harsyani's in the general context of incomplete games:

Definition 12 (Pure and mixed strategies [3]). A pure (resp. mixed) strategy for player i in a Bel game is a function ρ_{i} which maps each"type" $\theta_{i} \in \Theta_{i}$ to an action of (resp. a probability over) A_{i}.

A pure (resp. mixed) strategy profile is a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ which specifies a pure (resp. mixed) strategy for each player.
$\rho(\theta)=\left(\rho_{1}\left(\theta_{1}\right), \ldots, \rho_{n}\left(\theta_{n}\right)\right)$ denotes the profile which will be played if the configuration of types is θ.

The set of all pure strategy profiles is denoted $\Sigma=\prod_{i \in N}\left(\Theta_{i} \rightarrow A_{i}\right)$.

In the ex interim approach of incomplete games, when receiving her type θ_{i}, Agent i revises her knowledge - in a Bel game, her posterior knowledge over the joint type configuration is $m_{\mid \theta_{i}}$.

Let us first consider the case where the agents maximize their Choquet utility (this approach being compatible with both the evidential and the credal interpretation of belief functions). In this case the utility of a pure strategy
profile for Agent i of type θ_{i}, shall thus be defined as: $m^{\rho}(X)=m\left(B_{X}\right) \times \sum_{\sigma \in S_{X}} \operatorname{Pr}^{\rho}(\sigma)$, that is, X is focal if B_{X} is focal and some compatible pure strategy profiles are possible. Finally, Agent i receiving type θ_{i} conditions her knowledge which becomes $m_{\mid \theta_{i}}^{\rho}$. Hence the following definition of the utility of a mixed strategy profile:

Definition 14 (Choquet Expected Utility of a mixed strategy profile). The utility of a mixed strategy profile $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$, for player i of type θ_{i},
is: $\operatorname{CEU}_{\left(i, \theta_{i}\right)}(\rho)$

35 It can be checked that Definition 14 amounts to Definition 13 when ρ is a pure strategy profile.

Now, recall that a strategy is a Nash equilibrium if no player can improve unilaterally his/her utility. This concept straightforwardly extends to Bel games:

Definition 15 (Nash equilibrium). A mixed (resp. pure) strategy profile ρ is a Nash equilibrium for CEU iff, whatever $\left(i, \theta_{i}\right)$, there exists no mixed (resp. pure) strategy ρ_{i}^{\prime} such that $\operatorname{CEU}_{\left(i, \theta_{i}\right)}\left(\rho_{i}^{\prime} . \rho_{-i}\right)>\operatorname{CEU}_{\left(i, \theta_{i}\right)}(\rho)$.

Example 3. Let ρ be the pure strategy where Agent 1 makes the deal with R when learning that P is guilty and with P otherwise, and Agent 2 joins Q when learning that R is guilty and R otherwise:
$\rho_{1}(\mathrm{P})=R_{1}, \rho_{1}(\overline{\mathrm{P}})=P_{1}, \rho_{2}(\mathrm{R})=Q_{2}$ and $\rho_{2}(\overline{\mathrm{R}})=R_{2}$.
As usual with this "Peter Paul and Mary" example, the Demspter rule of conditionning is used.

- Consider Agent 1 receiving type P: the conditioned bpa, mem, has only one focal element $\{(\mathrm{P}, \overline{\mathrm{R}})\}, K_{P}=1 / \frac{1}{2}$ and $m_{\mid \mathrm{P}}^{\text {Dem }}(\{(\mathrm{P}, \overline{\mathrm{R}})\})=1$. In short, Agent 1 knows that P is guilty and R is not. In the only possible configuration $(\mathrm{P}, \overline{\mathrm{R}})$, ρ prescribes $\rho_{1}(\mathrm{P})=R_{1}$ for Agent 1 and $\rho_{2}(\overline{\mathrm{R}})=R_{2}$ for Agent 2. Then,
$\operatorname{CEU}_{(1, \mathrm{P})}(\rho)=m_{\mid \mathrm{P}}^{\text {Dem }}(\{(\mathrm{P}, \overline{\mathrm{R}})\}) \times u_{1}\left(\left(R_{1}, R_{2}\right),(\mathrm{P}, \overline{\mathrm{R}})\right)=1 \times 2=2$.
- Consider now Agent 1 receiving $\overline{\mathrm{P}}$: his/her revised knowledge, $m_{\mid \overline{\mathrm{P}}}^{D e m}$, has two focal elements, $\{(\overline{\mathrm{P}}, \mathrm{R})\}$ and $\{(\overline{\mathrm{P}}, \overline{\mathrm{R}})\}$ (each with probability $\frac{1}{2}$, thus $K_{\overline{\mathrm{P}}}=1$). The strategy prescribes $\rho(\overline{\mathrm{P}})=P_{1}$ for Agent 1, who doesn't know whether Agent 2 learns R (and plays $\rho(\mathrm{R})=Q_{2}$) or $\overline{\mathrm{R}}$ (and plays $\left.\rho(\overline{\mathrm{R}})=R_{2}\right)$. Hence
$\operatorname{CEU}_{(1, \overline{\mathrm{P}})}(\rho)=\frac{1}{2} \times u_{1}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right)+\frac{1}{2} \times u_{1}\left(\left(P_{1}, Q_{2}\right),(\overline{\mathrm{P}}, \mathrm{R})\right)=3$
- Similarly, the bpa of Agent 2 receiving $\mathrm{R}, m_{\mid \mathrm{R}}^{D e m}$, has only one focal element, $\{(\overline{\mathrm{P}}, \mathrm{R})\}$ (thus $K_{\mathrm{P}}=1 / \frac{1}{2}$) in which ρ prescribes P_{1} for Agent 1 and Q_{2} for Agent 2. Then
$\operatorname{CEU}_{(2, \mathrm{R})}(\rho)=1 \times u_{2}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \mathrm{R})\right)=1 \times 3=3$.
- Finally, the bpa of Agent 2 receiving R , $m_{\mid \overline{\mathrm{R}}}^{\text {Dem }}$, has one focal element, $\{(\overline{\mathrm{P}} \cdot \overline{\mathrm{R}}),(\mathrm{P} \cdot \overline{\mathrm{R}})\}$ and $K_{\overline{\mathrm{R}}}=1 / \frac{1}{2}$. Agent 2 does not know whether Agent 1 receives $\overline{\mathrm{P}}$ or P . Since ρ prescribes Agent 1 to play P_{1} in the first case, R_{1} in the second one and prescribes Agent 2 to play R_{2} in both cases,
$\operatorname{CEU}_{(2, \overline{\mathrm{R}})}(\rho)=1 \times \min \left[u_{2}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right), u_{2}\left(\left(R_{1}, R_{2}\right),(\mathrm{P}, \overline{\mathrm{R}})\right)\right]$ $=1 \times \min (3,2)=2$.

In this strategy, Agent 1 does not give the best possible response to Agent 2's strategy: when learning that P is guilty, he/she plays R_{1} while knowing that in this case Agent 2 learns $\overline{\mathrm{R}}$ and thus plays R_{2}. Let Agent 1 modify his/her strategy and play Q_{1} when learning P - hence the strategy ρ^{\prime} :
$\rho_{1}^{\prime}(\mathrm{P})=Q_{1}, \rho_{1}^{\prime}(\overline{\mathrm{P}})=P_{1}, \rho_{2}^{\prime}(\mathrm{R})=Q_{2}, \rho_{2}^{\prime}(\overline{\mathrm{R}})=R_{2}$.

- $\operatorname{CEU}_{(1, \mathrm{P})}\left(\rho^{\prime}\right)=K_{\mathrm{P}} \times u_{1}\left(\left(Q_{1}, R_{2}\right),(\mathrm{P}, \overline{\mathrm{R}})\right)=1 \times 3=3$,
- $\operatorname{CEU}_{(1, \overline{\mathrm{P}})}\left(\rho^{\prime}\right)=K_{\overline{\mathrm{P}}} \times u_{1}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right)+K_{\overline{\mathrm{P}}} \times u_{1}\left(\left(P_{1}, Q_{2}\right),(\overline{\mathrm{P}}, \mathrm{R})\right)=3$,
- $\operatorname{CEU}_{(2, \mathrm{R})}\left(\rho^{\prime}\right)=K_{\mathrm{R}} \times u_{2}\left(\left(P_{1}, Q_{2}\right),(\overline{\mathrm{P}}, \mathrm{R})\right)=1 \times 3=3$,
- $\operatorname{CEU}_{(2, \overline{\mathrm{R}})}\left(\rho^{\prime}\right)=K_{\overline{\mathrm{R}}} \times \min \left(u_{2}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right), u_{2}\left(\left(Q_{1}, R_{2}\right),(\mathrm{P}, \overline{\mathrm{R}})\right)\right)=3$.

It can be checked that with ρ^{\prime}, each player gets his/her maximal possible utility (\$3k) - no player has incentive to deviate: ρ^{\prime} is a pure Nash equilibrium.

3.2. Credal Games and Evidential games

Bel games as defined above can be understood under the DS theory or under the theory of imprecise probabilities. Because Choquet expected utility is compatible with both theories, we have first considered the pessimistic Choquet integral as a way to evaluate the utility of the agents. Let us briefly investigate the model in each of the two interpretations, with respect to the different ways of conditioning and to the different decision rules.

3.2.1. CEU, JEU and Pignistic Games in the DS theory of evidence

Let us first consider problems having an interpretation in the DS theory and are thus based on the Dempster rule of conditionning - we call these games "Evidential games". Several decision rules can be used in this context, namely the Choquet integral (CEU) used in the previous section, Jaffray's linear utility (JEU) and the transferable belief model (TBEU). Let us capture all of them as particular cases of a generalized expected utility:

$$
\mathrm{XEU}(a)=\sum_{B \in \mathcal{S}_{m}} m(B) \times f_{u \circ a}^{\mathrm{XEU}}(B)
$$

We find back the CEU, JEU and TBEU with:

- $f_{u \circ a}^{\mathrm{CEU}}(B)=\min _{\omega \in B} u(a(\omega))$
- $f_{u \circ a}^{\mathrm{JEU}}(B)=\alpha_{B} \min _{\omega \in B} u(a(\omega))+\left(1-\alpha_{B}\right) \max _{\omega \in B} u(a(\omega))$
- $f_{u \circ a}^{\mathrm{TBEU}}(B)=\sum_{\omega \in B} \frac{u(a(\omega))}{|B|}$ (resp. $f_{u \circ a}^{\mathrm{JEU}}$) in the equation to get back the on-focal-set expression.

As to TBEU, we need to go back to the expected utility model using the distribution: $\operatorname{BetP}_{m}(\omega)=\sum_{\substack{B \subseteq \mathcal{S}_{m} \\ \omega \in B}} \frac{m(B)}{|B|}$ as defined in [10], that is:

$$
\begin{aligned}
\sum_{\omega \in \Omega} \operatorname{BetP}_{m}(\omega) \times u(a(\omega)) & =\sum_{\omega \in \Omega}\left(\sum_{\substack{B \subseteq \mathcal{S}_{m} \\
\omega \in B}} \frac{m(B)}{|B|}\right) \times u(a(\omega)) \\
& =\sum_{B \in \mathcal{S}_{m}} \sum_{\omega \in B} \frac{m(B)}{|B|} \times u(a(\omega)) \\
& =\sum_{B \in \mathcal{S}_{m}} m(B) \times \sum_{\omega \in B} \frac{u(a(\omega))}{|B|} \\
& =\sum_{B \in \mathcal{S}_{m}} m(B) \times f_{u \circ a}^{\mathrm{TBEU}}(B)
\end{aligned}
$$

Definition 16. The utility of a mixed strategy profile $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$, for player i of type θ_{i}, is:
$\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\rho)=\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{\substack{ \\B \in \mathcal{S}_{m}{ }_{\begin{subarray}{c}{\text { Dem }} }} \|_{\theta_{i}}}\end{subarray}} m_{\mid \theta_{i}}^{D e m}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B)$
where the Dempster conditioning is used and $v_{i}^{\sigma}(\theta)=u_{i}(\sigma(\theta), \theta)$

Using XEU $=$ CEU, we find back Definition 14 .
The definitions of pure and mixed Nash equilibria remain unchanged, i.e. ρ is a pure (resp. mixed) Nash equilibrium for XEU iff, whatever $\left(i, \theta_{i}\right)$, there exists no pure (resp. mixed) strategy ρ_{i}^{\prime} such that $\operatorname{XEU}_{\left(i, \theta_{i}\right)}\left(\rho_{i}^{\prime} . \rho_{-i}\right)>\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\rho)$.

3.2.2. $B e l$ games in the credal interpretation

In the credal interpretation, the mass distribution actually defines a family of probability over the combinations of types, hence the use of the Fagin-Halpern conditioning. This interpretation is compatible with the Choquet-based decision rule (when the capacity used is a Bel measure, the Choquet value of a decision is equal to the minimum value of the expected utilities provided by the different probabilities of the family). [29] shows that it is also compatible with Jaffray's linear utility (JEU).

Notice that alternative rules of conditioning exist in this interpretation, the Strong conditioning 6, 17, 30, also called "geometrical conditioning", which amounts to applying Jeffrey's rule when learning the categorical mass function m^{\prime} such as $m^{\prime}(C)=1$ and the weak conditioning [31, seldom used because leading to strange results (for example $\operatorname{Bel}^{\text {Weak }}(C \mid C)=\operatorname{Bel}(C) / \operatorname{Pl}(C) \leq 1$).

$$
\begin{aligned}
m_{\mid C}^{\text {Strong }}(B) & = \begin{cases}m(B) / \operatorname{Bel}(C) & \text { if } B \subseteq C \\
0 & \text { otherwise }\end{cases} \\
m_{\mid C}^{\text {Weak }}(B) & = \begin{cases}m(B) / \operatorname{Pl}(C) & \text { if } B \cap C \neq \emptyset \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Notice that Dempster's rule also receives an interpretation in the credal context: it leads to a family consisting of the conditionals of those probabilities in the family which are the most likely (assessing a maximal probability to the event C we now know for sure) - hence the name "Max likelihood conditioning".

So, in a credal game:
Definition 17. The utility of a mixed strategy profile $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$, for player i of type θ_{i}, is:

$$
\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\rho)=\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} m_{\mid \theta_{i}}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B)
$$

where $\mathrm{XEU} \in\{\mathrm{JEU}, \mathrm{CEU}\}$ and $m_{\mid C} \in\left\{m_{\mid C}^{F H}, m_{\mid C}^{\text {Strong }}, m_{\mid C}^{\text {Weak }}, m_{\mid C}^{\text {Dem }}\right\}$

This modelling leaves the definitions of pure and mixed Nash equilibria unchanged, i.e. ρ is a pure (resp. mixed) Nash equilibrium for XEU iff, whatever $\left(i, \theta_{i}\right)$, there exists no pure (resp. mixed) strategy ρ_{i}^{\prime} with a greater XEU.

4. From Bel games to complete games

One of the most prominent results about Bayesian games is Howson's and Rosenthal's theorem [12]: any 2-player Bayesian game can be transformed into a (complete information) polymatrix game equivalent to the original one. This result is important from the computational point of view since it provides 2-player Bayesian games with practical resolution tools: to solve a 2-player Bayesian games, it is enough to use this theorem and to solve the resulting polymatrix game by using one of the algorithms proposed for such games [15, 16]. In the sequel, we generalize this theorem to Bel games and extend it to any number of players.

4.1. The direct transform

A first idea is to define from a Bel game G, an hypergraphical game \tilde{G}, the vertices (players) of which are pairs $\left(i, \theta_{i}\right)$ with action set A_{i} - to each pure strategy σ of G corresponds a unique pure strategy $\tilde{\sigma}$ of \tilde{G} and conversely - we call $\tilde{\sigma}$ the Selten ${ }^{3}$ transform of $\sigma 4$

Definition 18 (Selten transform of a pure strategy). For any pure strategy σ of G, the Selten transform of σ is the vector $\tilde{\sigma}$ defined by $\tilde{\sigma}_{\left(i, \theta_{i}\right)}=\sigma\left(\theta_{i}\right)$.

The local games of the hypergraphical game correspond to the focal elements of m. Roughly, $\left(i, \theta_{i}\right)$ plays in the local game corresponding to the focal element B if the type θ_{i} is plausible for B - technically, if there exists $\theta^{\prime} \in B$ such

[^2]that $\theta_{i}^{\prime}=\theta_{i}$. In this local game, $\left(i, \theta_{i}\right)$ obtains a local utility $K_{\mid \theta_{i}} \cdot m(B) \cdot$ $\min _{\theta^{\prime} \in B, \theta_{i}^{\prime}=\theta_{i}} u_{i}\left(\sigma\left(\theta^{\prime}\right), \theta^{\prime}\right)$.

Given a profile of actions $\tilde{\sigma}$, and a player $\left(i, \theta_{i}\right)$, the hypergraphical game sums $\left(i, \theta_{i}\right)$'s local utilities over all the focal elements for which θ_{i} is plausible: the global utility for $\left(i, \theta_{i}\right)$ is equal to the XEU of the joint σ.

One may note that two pairs $\left(i, \theta_{i}\right)$ and $\left(i, \theta_{i}^{\prime}\right)$ may play in the same local game - this happens when θ and θ^{\prime} belong to the same focal element. In this case, the utility of (i, θ_{i}^{\prime}) does not depend on the action played by $\left(i, \theta_{i}\right)$ and conversely.

For any focal element B of m, let $\operatorname{Players}(B)=\left\{\left(i, \theta_{i}\right) \mid \theta \in B, i \in N\right\}-$ Players (B) denotes the future players involved in the local game corresponding to B. Let \tilde{E} be the multiset $\tilde{E}:=\left[\operatorname{Players}(B) \mid B \in S_{m}\right]$. The elements e of \tilde{E} and the focal elements in S_{m} are in one-to-one correspondence and we denote B_{e} the focal element of m which leads to e. These notations allow us to propose a first, direct generalization of Howson's and Rosenthal's transform to Bel games:

Definition 19 (Direct transform of a Bel game). The direct transform of a Bel game $G=\left(N,\left(A_{i}, \Theta_{i}, u_{i}\right)_{i \in N}, m\right)$ is the hypergraphical game $\tilde{G}=\left(\tilde{N}, \tilde{E},\left(\tilde{A}_{\left(i, \theta_{i}\right)}\right)_{\left(i, \theta_{i}\right) \in \tilde{N}},\left(\tilde{u}_{\left(i, \theta_{i}\right)}^{e}\right)_{e \in \tilde{E},\left(i, \theta_{i}\right) \in e}\right)$ where:

- $\tilde{N}=\left\{\left(i, \theta_{i}\right) \mid i \in N, \theta_{i} \in \Theta_{i}\right\}$,
- $\tilde{A}_{\left(i, \theta_{i}\right)}=A_{i}$,
- $\tilde{E}=\left[\operatorname{Players}(B) \mid B \in \mathcal{S}_{m}\right]$,
- For each $e \in \tilde{E},\left(i, \theta_{i}\right) \in e$ and $\tilde{\sigma} \in \tilde{A}$,

$$
\tilde{u}_{\left(i, \theta_{i}\right)}^{e}\left(\tilde{\sigma}_{e}\right)=K_{\mid \theta_{i}} \cdot m\left(B_{e}\right) \cdot f_{\tilde{v}_{i}^{\tilde{\sigma}}}^{\mathrm{XEU}}\left(B \cap\left\{\theta^{\prime} \mid \theta_{i}^{\prime}=\theta_{i}\right\}\right), u \operatorname{sing} \tilde{v}_{i}^{\tilde{\sigma}}(\theta)=u_{i}\left(\tilde{\sigma}_{\theta}, \theta\right)
$$

It is easy to show that the XEU value of a pure strategy ρ in G and the global utility of $\tilde{\rho}$ in \tilde{G} are equal, whatever is the couple $\left(i, \theta_{i}\right)$ considered.

Proposition 1. Let G be a Bel game based on the Dempster rule of conditioning and let \tilde{G} be its direct transform. For any pure strategy σ of G, it holds that $\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\sigma)=\tilde{u}_{(i, \theta)}(\tilde{\sigma})$.

Let us extend the Selten transform to mixed strategies ρ of G : each $\tilde{\rho}_{\left(i, \theta_{i}\right)}=$ $\rho_{i}\left(\theta_{i}\right)$ is then a probability distribution over A_{i}, and $\tilde{\rho}$ is then a vector of such distributions.

Proposition 2. Let G be a Bel game and \tilde{G} its direct transform. For any mixed strategy ρ of G, it holds that $\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\rho)=\tilde{u}_{(i, \theta)}(\tilde{\rho})$.

It can be checked that when m is a probability distribution, and G is a 2player game, we get at most $|\Theta|$ local games, each involving two players $\left(i, \theta_{i}\right)$ and $\left(j, \theta_{j}\right): \tilde{G}$ is a polymatrix game, and Howson's and Rosenthal's Theorem is recovered. More generally, we prove:

Theorem 1 (Generalized Howson-Rosenthal Theorem). For any Bel game G based on a XEU utility and the Dempster rule of conditioning, there exists an hypergraphical game \tilde{G} such that ρ is a pure (resp. mixed) Nash equilibrium of G iff $\tilde{\rho}$ is a pure (resp. mixed) Nash equilibrium of \tilde{G}.

Example 4. Let us define the direct transform of the Bel game G corresponding to our running example (again, with Dempster conditioning and the Choquet expected utility). The set of players is: $\tilde{N}=\{(1, \mathrm{P}),(1, \overline{\mathrm{P}}),(2, \mathrm{R}),(2, \overline{\mathrm{R}})\}$. The set of actions are $\tilde{A}_{\left(i, \theta_{i}\right)}=\left\{P_{i}, Q_{i}, R_{i}\right\}$.

Because m has two focal elements $B_{1}=\{(\overline{\mathrm{P}}, \mathrm{R})\}$ and $B_{2}=\{(\overline{\mathrm{P}}, \overline{\mathrm{R}}),(\mathrm{P}, \overline{\mathrm{R}})\}$ each with a mass of $\frac{1}{2}, \tilde{G}$ involves two local games. The set of players involved are respectively $e_{1}=\{(1, \overline{\mathrm{P}}),(2, \mathrm{R})\}$ and $e_{2}=\{(1, \overline{\mathrm{P}}),(1, \mathrm{P}),(2, \overline{\mathrm{R}})\}$. \tilde{G}^{\prime} 's hypergraph is drawn on Figure 1.

Player $(2, \overline{\mathrm{R}})$ plays only in e_{2}, we have for instance:

$$
\begin{aligned}
\tilde{u}_{(2, \overline{\mathrm{R}})}^{e_{2}}\left(R_{1}, P_{1}, R_{2}\right) & =K_{\overline{\mathrm{R}}} \cdot m\left(B_{2}\right) \times \min \left[u_{2}\left(\left(R_{1}, R_{2}\right),(\mathrm{P}, \overline{\mathrm{R}})\right), u_{2}\left(\left(P_{1}, R_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right)\right] \\
& =1 \times \min (2,3)=2 .
\end{aligned}
$$

Figure 1: G's direct transform. Gray circles denote vertices (players; one shade per agent), white boxes denote hyperedges (local games; linked to the players involved).

For player $(1, \bar{P})$, which plays in both local games, we have for instance:

$$
\begin{array}{ll}
\tilde{u}_{(1, \overline{\mathrm{P}})}^{e_{1}}\left(P_{1}, P_{2}\right)= & K_{\overline{\mathrm{P}}} \cdot m\left(B_{1}\right) \times u_{1}\left(\left(P_{1}, P_{2}\right),(\overline{\mathrm{P}}, \mathrm{R})\right)=0.5 \times 2=1 \\
\tilde{u}_{(1, \overline{\mathrm{P}})}^{e_{2}}\left(-, P_{1}, Q_{2}\right)= & K_{\overline{\mathrm{P}}} \cdot m\left(B_{2}\right) \times u_{1}\left(\left(P_{1}, Q_{2}\right),(\overline{\mathrm{P}}, \overline{\mathrm{R}})\right)=0.5 \times 3=1.5
\end{array}
$$

The Selten transform of the Nash equilibrium ρ^{\prime} described in the example 3 is:
$\tilde{\rho^{\prime}}((1, \overline{\mathrm{P}}))=P_{1}, \tilde{\rho^{\prime}}((1, \mathrm{P}))=Q_{1}, \tilde{\rho}^{\prime}((2, \overline{\mathrm{R}}))=R_{1}, \tilde{\rho}^{\prime}((2, \mathrm{R}))=Q_{2}$.
It is easy to check that:
$\tilde{u}_{(1, \overline{\mathrm{P}})}\left(\tilde{\rho^{\prime}}\right)=\tilde{u}_{(1, \overline{\mathrm{P}})}^{e_{1}}\left(\left(P_{1}, Q_{2}\right)\right)+\tilde{u}_{(1, \overline{\mathrm{P}})}^{e_{2}}\left(\left(Q_{1}, P_{1}, R_{2}\right)\right)=\operatorname{CEU}_{(1, \overline{\mathrm{P}})}\left(\rho^{\prime}\right)$.

Notice that in the sum, one part of the utility of $(1, \overline{\mathrm{P}})$ comes from subgame e_{1} (i.e., from B_{1}) and the other part from local game e_{2} (i.e., from B_{2}).

As to the complexity of the transform, let α (resp. β) be the maximum number of actions (resp. types) per player in G and k the degree of additivity of m. It holds that G contains n utility tables of size $(\alpha \cdot \beta)^{n}$ and the size of the description of m is bounded by $k \cdot n \cdot\left|\mathcal{S}_{m}\right|$. So, $\operatorname{Size}(G)$ is in $O\left(n \cdot(\alpha \cdot \beta)^{n}+k\right.$. $\left.n \cdot\left|\mathcal{S}_{m}\right|\right)$.
\tilde{G} contains $\left|\mathcal{S}_{m}\right|$ local games. Each of them involves at most $k \cdot n$ players $\left(i, \theta_{i}\right)$ - the size of their SNF representation is thus at most $k \cdot n \cdot \alpha^{k n}$ - hence a spatial cost for the representation of \tilde{G} in $O\left(\left|\mathcal{S}_{m}\right| \cdot k \cdot n \cdot \alpha^{k n}\right)$. Notice now that since m is k-additive, $\left|\mathcal{S}_{m}\right|<\beta^{k \cdot n}$. So, $\operatorname{Size}(\tilde{G})$ is bounded by $k \cdot n \cdot(\alpha \cdot \beta)^{k \cdot n} \leq$ $n^{k} \cdot(\alpha \cdot \beta)^{k \cdot n}$. In short, we get:

Proposition 3 (Complexity of the direct transform). The direct transform of a Bel game G has a temporal complexity in $O\left(\left|\mathcal{S}_{m}\right| \cdot k^{2} \cdot n \cdot \alpha^{k \cdot n} \cdot \beta\right) \subseteq$ $O\left(k \cdot \beta \cdot \operatorname{Size}(G)^{k}\right)$ and a spatial complexity in $O\left(\left|\mathcal{S}_{m}\right| \cdot k \cdot n \alpha^{k \cdot n}\right) \subseteq O\left(\operatorname{Size}(G)^{k}\right)$

So, the degree of additivity of the bpa is the main factor of complexity. Hopefully, low degrees of additivity can be assumed - it has indeed been shown [32, 33] that such low values (typically, $k \leq 3$) allow the description of many cases of interest. In such situations, the transform is quadratic or, at worst, cubic.

The direct transform, as defined above, holds for Demspter rule of conditioning. A variant can be used for each conditioning rule in which the focal elements of conditionned bpa are obtained by directly conditioning the original focal elements (each focal element B containing θ_{i} leads to a focal element $B_{\mid \theta_{i}}$). During strong or weak conditioning, masses aren't transferred but stay on the prior focal elements - i.e. $B_{\mid \theta_{i}}=B$. Modifying the local utility definition, switching the term $f_{\tilde{v}_{i}^{\tilde{\sigma}}}^{\mathrm{XEU}}\left(B \cap\left\{\theta^{\prime} \mid \theta_{i}^{\prime}=\theta_{i}\right\}\right)$ to $f_{\tilde{v}_{i}^{\tilde{\sigma}}}^{\mathrm{XEU}}(B)$, captures both strong conditioning (with $K_{\mid \theta_{i}}=1 / \operatorname{Pl}\left(\left\{\theta^{\prime} \mid \theta_{i}^{\prime}=\theta_{i}\right\}\right)$) and weak conditioning (with $\left.K_{\mid \theta_{i}}=1 / \operatorname{Bel}\left(\left\{\theta^{\prime} \mid \theta_{i}^{\prime}=\theta_{i}\right\}\right)\right)$.

Unless in very particular cases, this kind of transform cannot be used with Fagin-Halpern's rule of conditioning, in which the conditioned focal elements cannot be assumed to be subsets of the prior ones.

The following transform enables both kind of conditioning.

4.2. The Conditioned transform

In the previously defined transform, we compute the CEU over the prior focal set, which is not possible in general. On the contrary, for the following transform, we first compute the set of conditioned focal elements, which will all lead to a local game, even if they are not (subsets of) prior focal elements.

Let $\mathcal{S}_{\cup}=\bigcup_{i \in N, \theta_{i} \in \Theta_{i}} \mathcal{S}_{m_{\mid \theta_{i}}}$ be the set of all $m_{\mid \theta_{i}}$'s focal elements, that is, the union of focal sets obtained after all possible conditioning "given θ_{i} ". The local games of the hypergraphical game \tilde{G} correspond to the elements $B \in \mathcal{S}_{\cup}$. Again, $\left(i, \theta_{i}\right)$ plays in the local game corresponding to B if the type θ_{i} is plausible for B and obtains a local utility $m_{\mid \theta_{i}}(B) \times f^{\mathrm{XEU}}(B)$, equal to the amount of XEU which is computed over B.

Definition 20 (Conditioned transform).

The conditioned transform of a Bel game $G=\left(N,\left(A_{i}, \Theta_{i}, u_{i}\right)_{i \in N}, m\right)$ is the hypergraphical game $\tilde{G}=\left(\tilde{N}, \tilde{E},\left(\tilde{A}_{\left(i, \theta_{i}\right)}\right)_{\left(i, \theta_{i}\right) \in \tilde{N}},\left(\tilde{u}_{\left(i, \theta_{i}\right)}^{e}\right)_{e \in \tilde{E},\left(i, \theta_{i}\right) \in e}\right)$ where:

- $\tilde{N}=\left\{\left(i, \theta_{i}\right) \mid i \in N, \theta_{i} \in \Theta_{i}\right\}$,
- $\tilde{A}_{\left(i, \theta_{i}\right)}=A_{i}$,
- $\tilde{E}=\left[\operatorname{Players}(B) \mid B \in \bigcup_{\left(i, \theta_{i}\right) \in \tilde{N}} \mathcal{S}_{m_{\mid \theta_{i}}}\right]$,
- For each $e \in \tilde{E},\left(i, \theta_{i}\right) \in e$ and $\tilde{\rho} \in \tilde{A}, \tilde{u}_{\left(i, \theta_{i}\right)}^{e}\left(\tilde{\rho}_{e}\right)=m_{\mid \theta_{i}}\left(B_{e}\right) \times f_{\tilde{v}_{i}^{\tilde{\sigma}}}^{\mathrm{XEU}}\left(B_{e}\right)$, where $\tilde{v}_{i}^{\tilde{\sigma}}(\theta)=u_{i}\left(\tilde{\sigma}_{\theta}, \theta\right)$.

It is easy to show that the XEU value of a pure strategy ρ in G and the global utility of $\tilde{\rho}$ in \tilde{G} are equal, whatever is the couple $\left(i, \theta_{i}\right)$ considered. We also prove that:

Proposition 4. Let G be a Bel game and \tilde{G} its conditioned transform. For any pure or mixed strategy ρ of G, it holds that:
(i) $\operatorname{CEU}_{\left(i, \theta_{i}\right)}(\rho)=\tilde{u}_{(i, \theta)}(\tilde{\rho})$
(ii) ρ is a Nash equilibrium of G iff $\tilde{\rho}$ is a Nash equilibrium of \tilde{G}.

Example 5. The hypergraph of the conditioned transform our running example is drawn on Figure 2.

Figure 2: G's conditioned transform. Gray circles are vertices (players; one color per agent), white boxes are hyperedges (local games; linked to the involved players).

This transform can be applied with any rule of conditioning. Notice that the hypergraphical game it leads to can be different from the one obtained with
the direct transform (assuming the same conditioning in both, e.g. Dempster's the direct transform.

Proposition 5 (Complexity of the conditioned transform).

The conditioned transform of a Bel game G has a temporal complexity in $O(n$. $\left.\beta \cdot T_{\text {cond }}+\left|\mathcal{S}_{\cup}\right| \cdot k^{\prime 2} \cdot n \cdot \alpha^{k^{\prime} \cdot n}\right)$ and a spatial complexity in $O\left(\left|\mathcal{S}_{\cup}\right| \cdot k^{\prime} \cdot n \cdot \alpha^{k^{\prime} \cdot n}\right)$, where

5. Conclusion

This article provides two main contributions. On the one hand, we define a model for simultaneous games of incomplete information based on belief functions. On the other hand, we introduce two transformations which make it 54 possible to build an hypergraphical game (of complete information) equivalent to the initial Bel game, thus generalizing Howson and Rosenthal's theorem. The
transformation preserves utilities, so the study of a Bel game can be reduced to that of a complete game. In particular, Nash equilibria are in correspondence: any equilibrium in one game is an equilibrium in the other. Furthermore, under

Appendix A. Proofs

Appendix A.1. Proofs of correctness

Proof 1 (Relevancy of definitions 14,16 and 17 - Utility of a mixed strategy profile).
On the one hand, any mixed strategy profile $\rho \in \prod_{i \in N}\left(\Theta_{i} \rightarrow \pi\left(A_{i}\right)\right)$ defines a probability Pr^{ρ} over the possible pure strategy profiles $\sigma \in \Sigma=\prod_{i \in N}\left(\Theta_{i} \rightarrow A_{i}\right)$ by 5

$$
\operatorname{Pr}^{\rho}(\sigma)=\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)
$$

On the other hand, merging ρ and $m_{\mid \theta_{i}}$ leads to a bpa m^{ρ} over $A \times \Theta$, from which any element $X=\left\{(a, \theta),\left(a^{\prime}, \theta^{\prime}\right), \ldots\right\}$ is focal iff $B=\left\{\theta, \theta^{\prime}, \ldots\right\}$ is focal
565 for m and (at least) one pure strategy profile σ is compatible with X and possible according to Pr^{ρ}; i.e. $\sigma(\theta)=a, \sigma\left(\theta^{\prime}\right)=\left(a^{\prime}\right), \ldots$ and $\operatorname{Pr}^{\rho}(\sigma)>0$.

[^3]Let $g . B:=\{(g(\theta), \theta) \mid \theta \in B\}$ denote such focal element. By definition:

$$
m_{\mid \theta_{i}}^{\rho}(g . B)=m(B) \times \sum_{\substack{\sigma \in \Sigma \\ \forall \theta \in B, \sigma(\theta)=g(\theta)}} \operatorname{Pr}^{\rho}(\sigma)
$$

Thus, the XEU of a mixed strategy profile rewrites:

$$
\begin{aligned}
\mathrm{XEU}_{\left(i, \theta_{i}\right)}(\rho) & =\sum_{g \cdot B \in \mathcal{S}_{m_{\mid \theta_{i}}^{\rho}}} m_{\mid \theta_{i}}^{\rho}(g \cdot B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} \sum_{g: B \rightarrow A} m_{\mid \theta_{i}}(B) \times\left(\sum_{\substack{\sigma \in \Sigma \\
\forall \theta \in B, \sigma(\theta)=g(\theta)}} \operatorname{Pr}^{\rho}(\sigma)\right) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} \sum_{g: B \rightarrow A} \sum_{\substack{\sigma \in \Sigma \\
\forall \theta \in B, \sigma(\theta)=g(\theta)}} m_{\mid \theta_{i}}(B) \times \operatorname{Pr}^{\rho}(\sigma) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B)
\end{aligned}
$$

Given any $B \subseteq \Theta$, the set of functions $g: B \rightarrow A$ defines a partition of Σ, so:

$$
\begin{aligned}
\mathrm{XEU}_{\left(i, \theta_{i}\right)}(\rho) & =\sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} \sum_{\sigma \in \Sigma} m_{\mid \theta_{i}}(B) \times \operatorname{Pr}^{\rho}(\sigma) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{\sigma \in \Sigma} \operatorname{Pr}^{\rho}(\sigma) \times \sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} \times m_{\mid \theta_{i}}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} m_{\mid \theta_{i}}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B)
\end{aligned}
$$

Proof 2 (Propositions 1 and 2-Direct transform). Let G be a Bel Game, \tilde{G} be its conditioned transform and $E_{\theta_{i}}=\left\{\theta^{\prime} \mid \theta_{i}^{\prime}=\theta_{i}\right\}$ be the conditioning event "given θ_{i} ".

Recall that for any mixed strategy profile ρ of $G, \tilde{\rho}$ is its Selten transform and $\tilde{\rho}_{\left(i, \theta_{i}\right)}=\rho_{i}\left(\theta_{i}\right)$ is a probability distribution over $A_{i}=\tilde{A}_{\left(i, \theta_{i}\right)}$. Similarly, for any pure strategy profile $\sigma, \tilde{\sigma}$ is its Selten transform and $\tilde{\sigma}_{\left(i, \theta_{i}\right)}=\sigma_{i}\left(\theta_{i}\right) \in A_{i}=$ $\tilde{A}_{\left(i, \theta_{i}\right)}$. Finally, since Selten transform is bijective, we have:

$$
\begin{aligned}
\operatorname{XEU}_{\left(i, \theta_{i}\right)}(\rho) & =\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{\substack{B \in \mathcal{S}_{m_{1} D_{\theta_{i}}}}} m_{\left.\right|_{i}}^{D \theta_{i} m}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{\substack{B \in \mathcal{S}_{m} \\
B \cap E_{\theta_{i}} \neq \emptyset}} K_{\mid \theta_{i}} \times m(B) \times f_{v_{i}^{\tilde{F}}}^{\mathrm{XEU}}\left(B \cap E_{\theta_{i}}\right) \\
& =\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{\substack{e \in \tilde{E} \\
\left(i, \theta_{i}\right) \in e}} K_{\mid \theta_{i}} \times m\left(B_{e}\right) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}\left(B_{e} \cap E_{\theta_{i}}\right) \\
& =\sum_{\tilde{\sigma} \in \tilde{A}}\left(\prod_{\left(i, \theta_{i}\right) \in \tilde{N}} \tilde{\rho}_{\left(i, \theta_{i}\right)}\left(\tilde{\sigma}_{\left(i, \theta_{i}\right)}\right)\right) \times \tilde{u}_{\left(i, \theta_{i}\right)}(\tilde{\sigma}) \\
& =E U_{\left(i, \theta_{i}\right)}(\tilde{\rho})
\end{aligned}
$$

Proof 3 (Proposition 4 - Conditioned transform). Same remarks as for proof 2 . It leads to:

$$
\begin{aligned}
& \mathrm{XEU}_{\left(i, \theta_{i}\right)}(\rho)=\sum_{\sigma \in \Sigma}\left(\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} \rho_{i}\left(\theta_{i}\right)\left(\sigma_{i}\left(\theta_{i}\right)\right)\right) \times \sum_{B \in \mathcal{S}_{m_{\mid \theta_{i}}}} m_{\mid \theta_{i}}(B) \times f_{v_{i}^{\sigma}}^{\mathrm{XEU}}(B) \\
& =\sum_{\tilde{\sigma} \in \tilde{A}}\left(\prod_{\left(i, \theta_{i}\right) \in \tilde{N}} \tilde{\rho}_{\left(i, \theta_{i}\right)}\left(\tilde{\sigma}_{\left(i, \theta_{i}\right)}\right)\right) \times \sum_{B \in \mathcal{S}_{\mathcal{S}_{\mid \theta_{i}}}} m_{\mid \theta_{i}}(B) \times f_{\tilde{v}_{\tilde{\tilde{\sigma}}}}^{\mathrm{XEU}}(B) \\
& =\sum_{\tilde{\sigma} \in \tilde{A}}\left(\prod_{\left(i, \theta_{i}\right) \in \tilde{N}} \tilde{\tilde{N}}_{\left(i, \theta_{i}\right)}\left(\tilde{\sigma}_{\left(i, \theta_{i}\right)}\right)\right) \times \sum_{\substack{e \in \tilde{E} \\
\theta_{i} \in e}} m_{\mid \theta_{i}}\left(B_{e}\right) \times f_{\tilde{v}_{\tilde{i}}^{\tilde{E}}}^{\mathrm{XEU}}\left(B_{e}\right) \\
& =\sum_{\tilde{\sigma} \in \tilde{A}}\left(\prod_{\left(i, \theta_{i}\right) \in \tilde{N}} \tilde{\rho}_{\left(i, \theta_{i}\right)}\left(\tilde{\sigma}_{\left(i, \theta_{i}\right)}\right)\right) \times \tilde{u}_{\left(i, \theta_{i}\right)}(\tilde{\sigma}) \\
& =E U_{\left(i, \theta_{i}\right)}(\tilde{\rho})
\end{aligned}
$$

Proof 4 (Theorem 1 - Extended Howson-Rosenthal's theorem). Direct corollary of proof (also a corollary of proof 3).

Appendix A.2. Proofs of complexity - mass function operations
In this section we consider a k-additive mass function m. We denote $s=$
${ }_{580}\left|\mathcal{S}_{m}\right|$. Set operations on focal elements (such as union, intersection and mem-
bership) involve $O(k)$ operations. The focal set and the corresponding masses involve a space of $O(k s)$.

We denote it by $\operatorname{Time}(\cap) \in O(k)$ and $\operatorname{Size}(m) \in O(k s)$ for example.
Proof 5 (Complexity of the Dempster, Strong and Weak conditioning "given C ").

First, note that every focal element of $m_{\mid C}^{D e m}$ is a subset of one of m, so $m_{\mid C}^{D e m}$ is k-additive and $\left|\mathcal{S}_{m_{\mid C}^{\text {Dem }}}\right| \leq s$. Thus we have $\operatorname{Size}\left(m_{\mid C}^{\text {Dem }}\right) \leq \operatorname{Size}(m) \in O(k s)$.

To compute all the values of $m_{\mid C}^{D e m}$, two loops over \mathcal{S}_{m} suffice. Initialize $m_{\mid C}^{D e m}$ as a function which defaults to 0 , and also a single variable $\operatorname{Pl}(C):=0$.

- First, compute both $m_{\mid C}^{D e m}$'s unnormalized values and the normalization factor $\mathrm{Pl}(C):$ for each $B \in \mathcal{S}_{m}$, if $B \cap C \neq \emptyset$, add $m(B)$ to $m_{\mid C}^{D e m}(B \cap C)$ and to $\mathrm{Pl}(C)$.
- Second, normalize those values: for each $B \in \mathcal{S}_{m_{\mid C}^{D e m}}, m_{\mid C}^{D e m}(B)$ becomes $m_{\mid C}^{D e m}(B) / \mathrm{Pl}(C)$.

The first loop involves s tests thus is in $O(k s)$. The second one doesn't involve any test and is thus in $O(s)$. Finally, Time $\left(m_{\mid C}^{D e m}\right) \in O(k s)$.

For the weak conditioning, the proof is similar since the algorithm is almost identical: the only difference is that masses stays on B (they are not added to $B \cap C$). For the strong conditioning, the test condition changes to $B \subseteq C$ (thus the normalisation factor is $\operatorname{Bel}(C)$), but stays in $O(k)$.

Finally, $\operatorname{Time}\left(m_{\mid C}^{\text {Strong }}\right)$, Time $\left(m_{\mid C}^{W e a k}\right)$, Size $\left(m_{\mid C}^{\text {Strong }}\right)$ and Size $\left(m_{\mid C}^{W e a k}\right)$ also are in $O(k s)$.

Proof 6 (Complexity of the Fagin-Halpern conditioning "given C ").
Following the algorithm of [20], it appears to be combinatorial to compute all values of $m_{\mid C}^{F H}$. Initialize $m_{\mid C}^{F H}$ by a function which defaults to 0 and also a single variable and $\mathrm{Pl}(C):=0$.

- First construct two subsets of $\mathcal{S}_{m}, \mathcal{B}^{\prime}$ and $\mathcal{B}^{\prime \prime}$, which contains respectively the focal elements which are included in C and that intersect both C and C^{c}. It involves two tests in a single loop over \mathcal{S}_{m}, thus in $O(k s)$. One may also compute $\operatorname{Pl}(C)$ during this loop, as for proof 5 .
- Then, for each $B_{0} \in \mathcal{B}^{\prime}$, consider all combinations B_{1}, \ldots, B_{m} of elements of $\mathcal{B}^{\prime \prime}$ (there are $2^{\left|\mathcal{B}^{\prime \prime}\right|}$) and let $B^{*}=C \cap \bigcup_{i=0}^{m} B_{i}$. B^{*} 's computation involves $r \leq s$ set operations, thus in $O(k s)$. If $B^{*} \neq \emptyset$, then for all the r ! permutations p of $1 . . r$, add the value $\prod_{i=0}^{m} \frac{m\left(B_{i}\right)}{\operatorname{Pl}(C)-\sum_{j=1}^{i} m\left(B_{p(j)}\right)}$ to $m_{\mid C}^{F H}\left(B^{*}\right)$, which involves $O(r(r-1) / 2)=O\left(r^{2}\right)$ operations.

The second loop is the longest one: since $r \leq s$, it involves $O\left(s 2^{s}\left(k s+k s!s^{2}\right)\right.$ Finally, $\operatorname{Time}\left(m_{\mid C}^{F H}\right) \in O\left(k s^{3} 2^{s} s!\right)$.

Appendix A.3. Proofs of complexity - Games
In this section we consider a Bel game G with $n \geq 2$ players, each of those having at most $\alpha \geq 2$ actions and $\beta \geq 2$ types, among with a k-additive mass function with s focal elements, each of them is a set of n-tuples of types - so $s \leq \beta^{k n}$.

Proof 7 (Spatial complexity of a Bel game). It holds that:

- G contains n utility tables of size $(\alpha \beta)^{n}$ (one for each agent, assigning his/her utility to a strategy profile and a type configuration)
- The size of m is bounded by kns (each of the s focal elements contains at most k n-tuples of types)

Thus, $\operatorname{Size}(G) \in O\left(n(\alpha \beta)^{n}+k n s\right)$.

Proof 8 (Proposition 3 - Complexity of the direct transform). The direct transform \tilde{G} of G has exactly s local games (one for each focal element B), in which players are possible pairs $\left(i, \theta_{i}\right)$ such as $\exists \theta^{\prime} \in B, \theta_{i}^{\prime}=\theta_{i}$. They may be kn such pairs, so the corresponding local game is described by at most $k n$ matrices of $\alpha^{k n}$ cells, hence a spatial cost for the representation of \tilde{G} in $O\left(s k n \alpha^{k n}\right)$. Recall that $s \leq \beta^{k n}$ and $k n \leq n^{k}$, it holds that Size (\tilde{G}) is bounded by $k n(\alpha \beta)^{k n} \leq n^{k}(\alpha \beta)^{k n}$, i.e, $\operatorname{Size}(\tilde{G}) \in O\left(\operatorname{Size}(G)^{k}\right)$

To instantiate those matrices, one has to compute each of the utility values as from the definition 19 :

- First, for each of the $n \beta$ pairs $\left(i, \theta_{i}\right)$, compute $\operatorname{Pl}\left(E_{\theta_{i}}\right)$ by a single loop over m 's focal set in which $n \beta$ tests are made, so it involves $O(\operatorname{skn} \beta)$ operations.
- Then, for each of the s focal elements B (i.e. a local game e), for each of the $k n$ possible corresponding pairs $\left(i, \theta_{i}\right)$ and for each of the $\alpha^{k n}$ possible local strategy profiles $\tilde{\sigma}_{e}$, set $\tilde{u}_{\left(i, \theta_{i}\right)}^{e}\left(\tilde{\sigma}_{e}\right):=m(B) \times \int_{\tilde{v}_{i}^{\tilde{z}}}^{\mathrm{XEU}}\left(B \cap E_{\theta_{i}}\right) / \mathrm{Pl}\left(E_{\theta_{i}}\right)$, where $f^{\mathrm{XEU}}(b)$ involves k operations.

Thus we have Time $(\tilde{G}) \in O\left(s k n \beta+s k^{2} n \alpha^{k n}\right)=O\left(\operatorname{skn}\left(\beta+k \alpha^{k n}\right)\right)$. Since m is k-additive, Time (\tilde{G}) is bounded by $k n \beta^{k n}\left(\beta+k \alpha^{k n}\right) \in O\left(k^{2} n \beta(\alpha \beta)^{k n}\right) \subseteq$ $O\left(\beta k n^{k}(\alpha \beta)^{k n}\right)$; i.e. Time $(\tilde{G}) \in O\left(\beta k \times \operatorname{Size}(G)^{k}\right)$.

Note that since the normalization doesn't change the equilibria of \tilde{G}, usually the first loop is not necessary and the complexity becomes Time $(\tilde{G}) \in O(k \times$ $\left.\operatorname{Size}(G)^{k}\right)$.

Proof 9 (Proposition 5 - Complexity of the conditioned transform).

Let $s^{\prime}=\left|\mathcal{S}_{\cup}\right|$ be the total number of focal elements, after all conditioning, and $k^{\prime}=\max _{B \in \mathcal{S} \cup}|B|$ their maximal size. The conditioned transform \tilde{G} of F has exactly s^{\prime} local games, which involve at most $k^{\prime} n$ players each, thus they are described by at most $k^{\prime} n$ matrices of $\alpha^{k^{\prime} n}$ cells, hence a spatial cost for the representation of \tilde{G} in $O\left(k^{\prime} n s^{\prime} \alpha^{k^{\prime} n}\right)$.

If the conditioning is one of the Dempster, Strong or Weak ones, it holds that $k^{\prime} \leq k$ and $s^{\prime} \leq \beta^{k n}$, so the bound becomes $k n(\alpha \beta)^{k n}$; i.e. Size $(\tilde{G}) \in$ $O\left(\operatorname{Size}(G)^{k}\right)$.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound $k^{\prime} \in O(n \beta)$ and $s^{\prime} \in O\left(2^{n \beta}\right)$, and thus get a spatial complexity Size $(\tilde{G}) \in$ $O\left(n^{2} \beta 2^{n \beta} \alpha^{n^{2} \beta}\right)$.

To construct those local utility matrices, one has to compute each of the utility values:

- First, for each of the $n \beta$ pairs $\left(i, \theta_{i}\right)$, compute $m_{\mid \theta_{i}}$, according to the chosen conditioning, say it costs $T_{\text {cond }}$.
- Then, for each of the s^{\prime} local games, for each of its $k^{\prime} n$ players and for each of the $\alpha^{k^{\prime} n}$ possible local strategy profiles $\tilde{\sigma}_{e}$, set $\tilde{u}_{\left(i, \theta_{i}\right)}^{e}\left(\tilde{\sigma}_{e}\right):=m_{\mid \theta_{i}}\left(B_{e}\right) \times$ $f_{\tilde{v}_{\hat{i}}^{\tilde{\sigma}}}^{X E U}\left(B_{e}\right)$, where $f_{\tilde{v}_{\tilde{i}}}^{X E U}\left(B_{e}\right)$ involves at most k^{\prime} operations.

The first loop costs $n \beta T_{\text {cond }}$ operations, the second one costs $s^{\prime} k^{\prime 2} n \alpha^{k^{\prime} n}$ opera- tions.

If the conditioning is one of the Dempster, Strong or Weak ones, it holds that $k^{\prime} \leq k, s^{\prime} \leq \beta^{k n}$ and $T_{\text {cond }} \in O(k n)$, so the bound becomes $k^{2} n(\alpha \beta)^{k n}$; i.e. Time $(\tilde{G}) \in O\left(k \cdot \operatorname{Size}(G)^{k}\right)$.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound $k^{\prime} \in O(n \beta), s^{\prime} \in O\left(2^{n \beta}\right)$ and $T_{\text {cond }} \in O\left(k s^{3} 2^{s} s!\right.$, and thus get a temporal complexity Time $(\tilde{G}) \in O\left(n \beta k s^{3} 2^{s} s!+n^{3} \beta^{2} 2^{n \beta} \alpha^{n^{2} \beta}\right)$.

References

[1] O. Morgenstern, J. Von Neumann, Theory of Games and Economic Behavior, Princeton University Press, 1953.
[2] J. Nash, Non-Cooperative Games, Annals of Mathematics (1951) 286-295.
[3] J. C. Harsanyi, Games With Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model, Management Science 14 (3) (1967) 159-182.
[4] D. Ellsberg, Risk, Ambiguity, and the Savage Axioms, The Quarterly Journal of Economics (1961) 643-669.
[5] A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics 38 (1967) 325-339.
[6] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976.
[7] G. Choquet, Theory of Capacities, in: Annales de l'institut Fourier, Vol. 5, 1954, pp. 131-295.
[8] I. Gilboa, D. Schmeidler, Maxmin Expected Utility with Non-Unique Prior, Journal of Mathematical Economics 18 (2) (1989) 141-153.
[9] D. Schmeidler, Integral Representation without Additivity, Proceedings of the American Mathematical Society 97 (2) (1986) 255-261.
[10] P. Smets, R. Kennes, The Transferable Belief Model, Artificial Intelligence 66 (2) (1994) 191-234.
[11] J.-Y. Jaffray, Linear Utility Theory for Belief Functions, Operations Research Letters 8 (2) (1989) 107-112.
[17] D. Dubois, H. Prade, On the Unicity of Dempster Rule of Combination, International Journal of Intelligent Systems 1 (2) (1986) 133-142.
[18] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman \& Hall, 1991.
[19] J. Y. Halpern, R. Fagin, Two Views of Belief: Belief as Generalized Probability and Belief as Evidence, Artificial intelligence 54 (3) (1992) 275-317.
[20] J.-Y. Jaffray, Bayesian Updating and Belief Functions, IEEE Transactions on Systems, Man, and Cybernetics 22 (5) (1992) 1144-1152.
[21] D. Dubois, T. Denoeux, Conditioning in Dempster-Shafer Theory: Prediction vs. Revision, in: Belief Functions: Theory and Applications - Proceedings of the 2nd International Conference on Belief Functions, Springer, 2012, pp. 385-392.
[22] R. Fagin, J. Y. Halpern, A New Approach to Updating Beliefs, in: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, 1990, pp. 347-374.
[23] L. J. Savage, The Foundations of Statistics, Wiley, 1954.
[24] I. Gilboa, Expected Utility with Purely Subjective Non-Additive Probabilities, Journal of Mathematical Economics 16 (1) (1987) 65-88.
[25] D. Schmeidler, Subjective Probability and Expected Utility without Additivity, Econometrica: Journal of the Econometric Society (1989) 571-587.
[28] R. B. Myerson, Game Theory, Harvard university press, 2013.
[29] J.-Y. Jaffray, Linear Utility Theory and Belief Functions: a Discussion, in: Progress in decision, utility and risk theory, Springer, 1991, pp. 221-229.
[30] P. Smets, Jeffrey's Rule of Conditioning Generalized to Belief Functions, in: Uncertainty in artificial intelligence, Elsevier, 1993, pp. 500-505.
[31] B. Planchet, Credibility and Conditioning, Journal of Theoretical Probability 2 (3) (1989) 289-299.
[32] P. Miranda, M. Grabisch, P. Gil, Dominance of Capacities by k-Additive Belief Functions, European Journal of Operational Research 175 (2) (2006) 912-930.
[33] M. Grabisch, Upper Approximation of Non-additive Measures by k-additive Measures-The Case of Belief Functions., in: Proceedings of the First International Symposium on Imprecise Probabilities and Their Applications, 1999, pp. 158-164.
[34] J. Quiggin, A Theory of Anticipated Utility, Journal of economic behavior \& organization 3 (4) (1982) 323-343.
[35] The Coq Development Team, The Coq Proof Assistant: Reference Manual: version 8.15 (2022).
URL https://coq.github.io/doc/V8.15.0/refman/

[^0]: *Corresponding author.
 Email addresses: fargier@irit.fr, pierre.pomeret@irit.fr, erik.martin-dorel@irit.fr

 * This paper is a revised and extented version of a preliminary communication presented at ECSQARU'21; the additional matter includes the extention on Bel games to the credal interpretation, and the use of alternative decision rules, e.g. Jaffray's linear utility.

[^1]: ${ }^{2}$ Consider for instance a frame of discernment $\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ and a 2 -additive mass function m such as $m\left(\left\{\omega_{i}\right\}\right)>0$ for all i and $m\left(\left\{\omega_{i}, \omega_{j}\right\}\right)>0$ for all $i \neq j$. Then, for any nonempty $C \subset \Omega$, each subset of $B \subseteq C$ is a focal element of $\operatorname{Bel}(\cdot \mid C)-$ thus $\left|\mathcal{S}_{m_{\mid C}^{F H}}\right|=2^{|C|}$ and $\operatorname{Bel}(\cdot \mid C)$ is $|C|$-additive.

[^2]: ${ }^{3}$ Named after Selten, who proposed this definition for Bayesian games 3.
 ${ }^{4}$ We could use the notation ρ for both, but the pure strategies of the Bel game are vectors of functions $\rho_{i}: \Theta_{i} \mapsto A_{i}$ while the pure strategies of \tilde{G} are vectors in $\prod_{i \in N} \prod_{\theta_{i} \in \Theta_{i}} A_{i}$. So, we keep the two notations $\tilde{\sigma}$ and σ.

[^3]: ${ }^{5} \pi(X)$ denotes the set of probabilities over X

