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Abstract

This paper defines visual explanations to the Verification Problem in argumentation, that is, of why
a set of arguments is or is not acceptable under a given semantics. These explanations rely upon the
modularity of the acceptability semantics, and they take the form of subgraphs of the original argu-
mentation graph. Graph properties that these subgraphs satisfy depending on whether or not the set is
acceptable, are established. Properties of the proposed explanations are addressed, and the potential of
the modularity of the approach is highlighted.

Note that this research report is the complete version of a paper submitted to a conference. In this
complete version, the reader can find the proofs of the results given in the submitted paper.
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1 Introduction

In the context of Explainable Artificial Intelligence (XAI), Abstract Argumentation is increasingly studied
as a formal tool to provide explanations of decisions made using an Artificial Intelligence system. The
recent survey by [1] indicates that Argumentation can be used to generate explanations in various domains
(machine learning notably) and that explanations for the argumentative process itself are also necessary.

Regarding the argumentation process, the main questions which have been addressed so far concern
the global acceptability status (credulous or skeptical) of an argument or of a set of arguments. The most
common approach consists in identifying some set(s) of arguments which act as explanation(s) (as in [2, 3,
4, 5, 6, 7]). One may however argue that, since the argumentative process of Abstract Argumentation already
provides ways for selecting arguments, explaining this process by more selection of arguments (although
different ones) may not be fully helpful. Furthermore, beyond the question of the global acceptability of an
argument or of a set of arguments, many other questions on the outcomes of argumentation or on the process
of argumentation itself can be asked.

A grammar which defines sets of such questions can be found in [8]. Answers to these questions are
presented there in the form of relevant subgraphs, as in [9, 10, 11]. As such, this approach is a visual one,
graphs having been shown to be helpful for humans to comply with argumentation reasoning principles [12].
This graph-based approach not only highlights arguments, but also subsets of attacks.

This paper aims at defining explanations to the Verification Problem Verσ defined as follows: given an
Argumentation Framework A , a set of arguments S and an extension-based semantics σ , “Is S acceptable
under σ in A ?”. The answer to this problem is “yes” or “no”. We aim at providing a visual explanation
of why the answer is so. For this reason, we define the Explanation Verification Problem XVerσ : “Why is
S (not) acceptable under σ in A ?”. Subgraphs answering this question will be formally defined for some
acceptability semantics in Dung’s framework [13], and properties they satisfy will be established, depending
on whether the answer to the corresponding verification problem is “yes” or “no”. This methodology follows
the line of [14] in that an explanation for a set S satisfying a semantic principle σ is a (set of) subgraph(s) G
of A such that G satisfies a given graph property C. Moreover, the semantics that we consider are based on
a modular definition, which allows the explanations to be decomposed.

The paper is organised as follows: Sec. 2 recalls background notions relative to abstract argumentation
and graph theory. Sec. 3 defines explanations to the acceptability of a set of arguments under atomic semantic
principles, and it investigates properties such explanations should satisfy. Explanations for semantics based
on a composition of atomic principles are presented in Sec. 4. Related works are discussed in Sec. 5, and
Sec. 6 concludes, presents potentials of the modular approach as avenues for future works.

2 Preliminary Notions

In this section we give some basic definitions on which our work is built. These concern Dung’s Abstraction
Framework formalism as well as some graph-theoretic notions.

2.1 Abstract Argumentation

We begin by recalling background notions on Abstract Argumentation.

Def. 1 (Argumentation Framework (AF) [13]). A Dung’s Argumentation Framework (AF) is an ordered
pair A = (A,R) such that R ⊆ A×A.
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Each element a ∈ A is called an argument and aRb means that a attacks b. For S ⊆ A, S attacks a ∈ A iff
bRa for some b ∈ S. Any AF can be represented as a directed graph.

a
b

c
d e

f g

h i

Figure 1: Example of an AF from [15]

The main asset of Dung’s approach is the definition of semantics using some basic principles in order to
define sets of acceptable arguments, as follows.

Def. 2. Given A = (A,R), a ∈ A is acceptable wrt S ⊆ A iff for all b ∈ A, if bRa then cRb for some c ∈ S.
The characteristic function of A is FA : 2A → 2A such that FA (S) = {a ∈ A | a is acceptable wrt S} for any
S ⊆ A.1 Let S ⊆ A. S satisfies the principle:

CF (conflict-freeness) iff there are no a and b in S such that a attacks b
Def (defence) iff for any a ∈ S, a is acceptable wrt S
Reins (reinstatement) iff ∀a ∈ A, if a is acceptable wrt S then a ∈ S
CA (complement-attack) iff each argument in A\S is attacked by S

Some semantics originally defined in [13] can be characterized as follows:

Def. 3. Given A = (A,R), a subset S of A is said to be:
Adm (admissible) iff it satisfies each principle of the set {CF, Def}
Co (complete) iff it satisfies each principle of the set {CF, Def, Reins}
Sta (stable) iff it satisfies each principle of the set {CF, CA}

2.2 Graph Theory

This section recalls some graph-theoretic notions. These concern particular subgraphs and nodes, as well as
the successor and predecessor functions.

Def. 4 (Subgraph, Induced subgraph, Partial subgraph). Let G = (V,E) and G′ = (V ′,E ′) be two graphs.

• G′ is a subgraph of G iff V ′ ⊆V and E ′ ⊆ E.

• G′ is an induced subgraph of G by V ′ if G′ is a subgraph of G and for all a,b ∈ V ′,(a,b) ∈ E ′ iff
(a,b) ∈ E. G′ is denoted as G[V ′]V .

• G′ is a partial subgraph2 of G by E ′ if G′ is a subgraph of G and V ′ =V . G′ is denoted as G[E ′]E .

A subgraph G′ of G is included in G. In an induced subgraph G′ of G by a set of vertices S, some
vertices of G can be missing but all the edges concerning the kept vertices are present (see Fig. 2). In a
partial subgraph G′ of G by a set of edges S, all the vertices of G are present but some edges of G can be
missing (see Fig. 3). Note that the computation of an induced or a partial subgraph is obviously polynomial
in the size of the original graph.

Induced and partial subgraphs are examples of ways to compute a graph from another single graph. We
continue with a particular kind of graphs, bipartite graphs.

1Note that any unattacked argument of A belongs to FA (S) whatever is S.
2The name spanning subgraph is also used in the literature.
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a
b

c
d e

f

Figure 2: Induced subgraph of Fig. 1
by {a,b,c,d,e, f}

a
b

c
d e

f g

h i

Figure 3: Partial subgraph of Fig. 1 by {(g, f ),(e, f ),(h,g),
(i,g),(h, i),(i,h)}

Def. 5 (Bipartite Graph). Let G = (V,E) be a graph. G is bipartite (with parts T and U) iff there exists
T,U ⊆V such that T ∪U =V and T ∩U =∅ (T and U are a partition of V ) and for every (a,b) ∈ E, either
a ∈ T and b ∈U , or a ∈U and b ∈ T . G will be denoted with (T,U,E) and U is the complement part of T
(and vice-versa).

Bipartite graphs are those graphs whose set of vertices can be split in two disjoint sets and in which
every arc connects a vertex of one part to a vertex of the other part.

The next notions are about the successor and the predecessor functions.

Def. 6 (Successor and Predecessor functions). Let G = (V,E) be a graph. The successor function of G
is the function E+ : V 7→ 2V such that E+(v) = {u | (v,u) ∈ E} and the predecessor function of G is the
function E− : V 7→ 2V such that E−(v) = {u | (u,v) ∈ E}. Let S be a set of vertices, E+(S) =

⋃
v∈S E+(v)

and E−(S) =
⋃

v∈S E−(v).

Let n ≥ 0. The n-step successor (resp. predecessor) function of G is E+n(v) =

n times︷ ︸︸ ︷
E+ ◦ · · · ◦E+(v) (resp.

E−n(v) =

n times︷ ︸︸ ︷
E− ◦ · · · ◦E−(v)). By convention, we have E+0(v) = E−0(v) = v.3

Considering an AF, the successor (resp. predecessor) function represents the arguments that are attacked
by (resp. the attackers of) some argument(s). An AF being usually denoted by (A,R), the successor and
predecessor functions are thus denoted R+ and R− in this context.

Finally, we recall some notions on vertices having a particular status in a graph.

Def. 7 (Source, Sink, Isolated vertex). Let G = (V,E) be a graph and v be a vertex of G. v is said to be a
source iff E−(v) =∅ and it is said to be a sink iff E+(v) =∅. v is said to be isolated iff it is both a source
and a sink.

Thus, sources (resp. sinks) are vertices that may only be origins (resp. endpoints) of arcs. Isolated
vertices are those that are connected to no other vertices.

3 Explanations for Principles of Semantics

Given A = (A,R) an AF, S ⊆ A a set of arguments, and σ ∈ {CF,Def ,Reins,CA,Adm, Co,Sta} an accept-
ability semantics or a principle used in such a semantics, the question we aim at answering is the following
one:

Qσ : “Why is S acceptable under σ in A ?”

3Note that E+1(v) = E+(v) and E−1(v) = E−(v)
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Given the definitions presented in Sec. 2, an explanation of why S is acceptable under σ should show
how S satisfies each of the principles which compose σ .4

This section will define explanations to the satisfaction by S of each of the four atomic acceptability
principles, that is, we will answer Qσ for σ ∈ {CF,Def ,Reins,CA}. These explanations will take the form
of subgraphs relative to S, and properties of these subgraphs which will depend on whether the principle
is satisfied or not by S will be characterised. Properties of these explanations will also be investigated.
Sec. 4 will use these explanations for the atomic acceptability principles, to explain the satisfaction by S of
acceptability semantics which combine them, answering then Qσ for σ ∈ {Adm,Co,Sta}.

Notice that Qσ is the positive part of XVerσ introduced in Sec. 1. This focus aims at enhancing the
readability of the results which will follow. Whether the question is positive or negative, the explanation
subgraphs will be the same, but their properties and interpretation will differ depending on whether S is
acceptable or not.

On the form, in the explanation subgraphs, the nodes the question is about will be shaded (in blue).
Depending on the principle to be explained, the nodes or arcs which may cause the principle not to be
satisfied will appear with a bold line (in red).

3.1 Characterisations

Conflict-freeness principle (CF) Fig. 4 illustrates why {d, f ,h} constitutes a conflict-free set in the AF
of Fig. 1: if we focus only on those arguments, we see that they are linked with no arc. On the contrary,
one can observe on Fig. 5 that {a,d,e} is not conflict-free as the focus on those arguments highlights the
presence of a conflict.

d
f

h

Figure 4: Why is {d, f ,h} conflict-free?

a d e

Figure 5: Why is {a,d,e} not conflict-free?

Thus, an explanation for the property of conflict-freeness should show the conflicts inside a set, with the
absence of said conflicts considered as a testimony for the property to hold. So the explanation for a given
set is only the subgraph induced by this set:

Def. 8 (Explanation for conflict-freeness). Let A = (A,R) and S ⊆ A. The subgraph GCF(S) = A [S]V is an
answer to QCF.

The next theorem shows that this explanation enjoys the property of containing conflicts iff the queried
set is not conflict-free.

Theo. 1. Let A = (A,R) and S ⊆ A. S is conflict-free iff CCF is satisfied by S, with CCF : “there are no
attacks in GCF(S)”.

In order to provide some properties about the minimality / maximality of our explanation, we need to
define what constitutes a minimal or maximal explanation for conflict-freeness. The notion of minimal or
maximal explanation revolves around what reason suffices to decide whether a set is conflict-free or not. So
a minimal explanation is an explanation containing one such reason, while a maximal explanation contains
them all.

4In order to explain why S is not acceptable under σ , at least one of the principles of σ which is not satisfied by S has to be
shown.
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Def. 9. Let A = (A,R) and S ⊆ A. GCF(S) = (A′,R′) is minimal iff |R′| ≤ 1. It is maximal iff {(a,b) ∈
R | a,b ∈ S} ⊆ R′.

Sec. 3.2 will present results regarding the minimality, maximality, existence and unicity of our explana-
tions.

Defence principle (Def) In an AF, defence (by a set) is captured by the notion of acceptability (w.r.t. that
set) which states that all attackers of an argument must in turn be attacked by an argument of the defending
set. Fig. 6 illustrates why {b,c} defends all its arguments in the AF of Fig. 1: all arguments that attack b or
c, namely a and d, are also attacked by either b or c. On the other hand, Fig. 7 illustrates why {b,e} does
not defend all its arguments: a that attacks b is immediately spotted as receiving no attack from either b or
e.

a

b

c

d

Figure 6: Why {b,c} defends all its arguments

a

b

d e

Figure 7: Why {b,e} does not defend all its ar-
guments

Thus, an explanation for defence should have the property of focusing on a set and its attackers, and on
the attacks between these two groups of arguments. The fact that all the attackers receive an attack back
is considered a testimony for the defence of the queried set. The next definition formalises this notion of
explanation for defence.

Def. 10 (Explanation for defence). Let A = (A,R) and S ⊆ A. The subgraph GDe f (S) is an answer to QDef :

GDe f (S) = (A [S ∪ R−1(S)]V )[{(a,b) ∈ R | a ∈ R−1(S) and b ∈ S,or a ∈ S and b ∈ R−1(S)}]E

As such, the explanation for defence on a set S is simply the subgraph GDe f (S) induced by S and its
attackers, and in which we only keep the attacks between S and its attackers. In the following, we prove
results showing that our notion of explanation for defence respects the properties we highlighted in the
previous examples.5

Prop. 1. Let A = (A,R) and S ⊆ A. If S is conflict-free, GDe f (S) is a bipartite graph and S can always be
one of its parts.

Theo. 2. Let A = (A,R) and S ⊆ A be a conflict-free set of arguments. S ⊆ FA (S) iff CDe f is satisfied by S,
with CDe f : “there are no source vertices in R−1(S) in GDe f (S)”.

Here the notion of minimal or maximal explanation is defined as follows. Since a set is defended
provided that all its attackers are attacked back, a minimal explanation is such that all attackers are the
endpoint of at most one arc. A maximal explanation contains all possible arcs the set can use to defend
itself.

Def. 11. Let A = (A,R) and S ⊆ A. GDe f (S) = (A′,R′) is minimal iff for all x ∈ R−1(S), |R′−(x)| ≤ 1. It is
maximal iff {(a,b) ∈ R | a ∈ S,b ∈ R−1(S)} ⊆ R′.

5The results require the queried set to be conflict-free: this is not a strong limitation, defence being checked in combination with
conflict-freeness in many semantics.
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Reinstatement principle (Reins) This principle can be viewed as two sub-principles: Reins1 meaning that
all the unattacked arguments must be in the set and Reins2 meaning that the set contains all the attacked
arguments it defends. In the AF of Fig. 1, an empty subgraph can illustrate Reins1 for S = {h} or S = {b,c}
(since there is no unattacked argument in this AF, whereas Fig. 8 and 9 illustrate Reins2 on the same two
sets.

e
f g

h i

Figure 8: Why {h} contains all the arguments it
defends: h defends itself against i and although
it defends f against g, h is ineffective against e.
So, f is not defended by h and thus not part of
the set

a
b

c
d e

Figure 9: Why {b,c} does not contain all the ar-
guments it defends. Indeed, b defends e against
d, its only attacker, but e is not part of the set

Through these examples we see that two subgraphs are necessary: the first one with the unattacked
arguments of the graph; the second one with all the arguments that are in a range of 2 from the set following
the relation. In the latter case, these arguments must (resp. must not) be in the set if they are (resp. are not)
defended. 6 Thus the definition for an explanation of reinstatement:

Def. 12 (Explanation for reinstatement). Let A = (A,R) and S ⊆ A. The set of subgraphs {GReins1(S),
GReins2(S)} is an answer to QReins, with GReins1(S) = A [{a ∈ A|R−(a) = ∅}]V and GReins2(S) = (A [S∪
R2(S)∪R−1(R2(S))]V ) [{(a,b) ∈ R | a ∈ R−1(R2(S)) and b ∈ R2(S), or a ∈ S and b ∈ R−1(R2(S))}]E .

GReins1(S) is induced by the unattacked arguments; GReins2(S) is induced by S, the arguments defended
by S and the attackers of those arguments, and in which the only attacks are from the attackers to the
arguments defended by S and from S to the attackers.

In the following, we prove results showing that our notion of explanation for reinstatement respects the
properties highlighted in the previous examples.

Theo. 3. Let A = (A,R) and S ⊆ A. If CReins1 and CReins2 are satisfied by S then FA (S) ⊆ S, with CReins1:
“all vertices in GReins1(S) are in S” and CReins2: “all vertices in R2(S)\S are the endpoint of an arc whose
origin is a source vertex in GReins2(S)”.

Theo. 4. Let A =(A,R) and S⊆A. If FA (S)⊆ S then CReins1 and C′
Reins2 are satisfied by S, with C′

Reins2: “all
vertices in R2(S)\S are the endpoint of an arc whose origin is a source vertex or is in R2(S), in GReins2(S)”.

From Theo. 3 and 4 follows the next Corollary, which shows an equivalence result:

Cor. 1. Let A = (A,R) and S ⊆ A such that R2(S) is conflict-free. FA (S) ⊆ S iff CReins1 and CReins2 are
satisfied by S.

For Reins1, a minimal GReins1 must contain at most the unattacked arguments of S plus one other argu-
ment (not in S); for the maximality it must contain all the unattacked arguments. For Reins2, the concept of

6If these two graphs were merged, it would not be possible to differentiate unattacked arguments in the merger of GReins1 and
GReins2 which should be in S from those which should not be; hence the two graphs.
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minimality/maximality of explanations for reinstatement relies on the same concept as for explanations for
defence. So, we require that in GReins2, each attacker of R2(S) is the endpoint of at most one arc. For the
maximality, we require that it includes all such arcs.

Def. 13. Let A = (A,R) and S ⊆ A.
GReins1(S) = (A′,R′) is minimal iff |A′ \S| ≤ 1. It is maximal iff {x|R−(x) =∅} ⊆ A′.
GReins2(S) = (A′,R′) is minimal iff for all x ∈ R−1(R2(S)), |R′−(x)| ≤ 1. It is maximal iff {(a,b) ∈ R | a ∈
S,b ∈ R−1(R2(S))} ⊆ R′.

Complement Attack (CA) Fig. 10 illustrates why {a,d, f ,h} attacks its complement in the AF of Fig. 1:
every argument that is not in {a,d, f ,h} receives an attack from either a, d, f or h. On the contrary, Fig. 11
illustrates why {b,c,h} does not attack its complement: neither e or f that are not in {b,c,h} are attacked
by b, c or h.

a

b

c

d e

f g

h i

Figure 10: Why {a,d, f ,h} attacks its comple-
ment

a

b

c

d e

f g

h i

Figure 11: Why {b,c,h} does not attack its com-
plement

Hence, we see that an explanation for the attack of a set’s complement should show the arguments
attacked by that set among all the other arguments in the AF. If these two groups happen to coincide, then
we can conclude that the set indeed attacks its complement. Thus the definition for an explanation of
complement attack is simply the partial subgraph by the attacks from the set to arguments that are not in it:

Def. 14 (Explanation for complement attack). Let A = (A,R) and S ⊆A. The subgraph GCA(S) is an answer
to QCA with GCA(S) = A [{(a,b) ∈ R | a ∈ S and b /∈ S}]E .

As such, the explanation for complement attack on a set is simply the partial subgraph by the attacks
from the set to arguments that are not in it.

Next, we prove results which show that our notion of explanation respects the properties mentioned in
the introductory examples.

Prop. 2. Let A = (A,R) and S ⊆ A. GCA(S) is a bipartite graph, S can always be one of its parts and all
vertices in S are sources in it.7

Theo. 5. Let A = (A,R) and S ⊆ A. A\S ⊆ R+(S) iff CCA is satisfied by S, with CCA: “there are no isolated
vertices in the complement part of S in GCA(S)”.

Since a set S attacks its complement only when all other arguments are attacked by some argument of
S, a minimal explanation is such that any argument not in S is the endpoint of at most one arc. A maximal
explanation contains all possible arcs S can use to attack other arguments.

Def. 15. Let A = (A,R) and S ⊆ A. GCA(S) = (A′,R′) is minimal iff for all x /∈ S, |R′−(x)| ≤ 1. It is maximal
iff {(a,b) ∈ R | a ∈ S,b /∈ S} ⊆ R′.

7In GCA(S), since any vertex in S is a source, by definition of bipartite graphs, any vertex in the complement part of S is a sink.
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Synthesis Table 1 sums up all the previous characterisations of our explanations with regard to the user’s
questions giving the answer we produce and their interpretation.8

σ
Question Qσ : “Why is S acceptable under σ in A ?”

Answer Interpretation of the Answer: Gσ = (A′,R′)

CF
GCF YES iff CCF is satisfied by S (Th.1)

(Def.8) with CCF : “R′ =∅ in GCF(S)”

Def
GDe f when S is conflict-free, YES iff CDe f is satisfied by S (Th.2)

(Def.10) with CDe f : “∄b ∈ R−1(S)∩A′ st R′(b) =∅ in GDe f (S)”

Reins
GReins1
GReins2

YES if CReins1 and CReins2 are satisfied by S (Th.3)
YES only if CReins1 and C′

Reins2 are satisfied by S (Th.4)
when R2(S) is conflict-free, YES iff CReins1 and CReins2 are satisfied by S (Cor.1)
with CReins1: “A′ ⊆ S in GReins1(S)”

(Def.12) CReins2: “∀x ∈ R2(S)\S, ∃(b,x) ∈ R′ st R′−(b) =∅ in GReins2(S)”
C′

Reins2: “∀x ∈ R2(S)\S, ∃(b,x) ∈ R′ st R′−(b) =∅ or b ∈ R2(S) in GReins2(S)”

CA
GCA YES iff CCA is satisfied by S (Th.5)

(Def.14) with CCA: “∀x ∈ A′ \S,∃(b,x) or (x,b) ∈ R′ in GCA(S)”

Table 1: Synthesis of explanations for principles with their interpretation: “YES” means that no reason can
be exhibited in our answer for proving that S is not acceptable under σ (and so our answer shows why S is
acceptable under σ in A )

To finish with, we would like to point out that, since all our explanations are defined using only induced
subgraphs and partial subgraphs, they are efficiently computed.

3.2 Additional properties

Regarding uniqueness, our explanations for the five (sub-)principles described in the previous section (CF,
Def , Reins1, Reins2, CA) are unique given a set of arguments:

Prop. 3. Let A = (A,R), S,S′ ⊆ A and σ ∈ {CF,Def ,Reins1,Reins2,CA}. If S = S′, then Gσ (S) = Gσ (S′).

About the non-emptiness of explanations, the conditions are different depending on the concerned
(sub-)principle: if for CF, Def , Reins2 the explanations are empty only when the queried set is the empty
set, it is when there exists no unattacked argument that the explanation for Reins1 is empty and when the
original graph is empty that the explanation for CA is empty.

Prop. 4. Let A = (A,R), S ⊆ A. Let σ ∈ {CF,Def ,Reins2}: Gσ (S) = (∅,∅) iff S =∅. GReins1(S) = (∅,∅)
iff {a|R−(a) =∅}=∅. GCA(S) = (∅,∅) iff A = (∅,∅).

Regarding maximality, the explanations for the five (sub-)principles are maximal:

Prop. 5. Let A = (A,R), S ⊆ A and σ ∈ {CF,Def ,Reins1,Reins2,CA}. Gσ (S) is a maximal explanation
for σ on S.

Regarding minimality, a specific case for the explanation for the CF principle exists:

8For the negative version of these questions, i.e. “Why is S not acceptable under σ in A ?”, the answer is obviously the same
but with an opposite interpretation.
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Prop. 6. Let A = (A,R) and S ⊆ A. If S is conflict-free, GCF(S) is a minimal explanation for conflict-
freeness on S.

For the four other (sub-)principles, our explanations may not be minimal and some simple counterex-
amples are enough for illustrating this point (see Fig. 12, 13 and 14).

a

b
c d

Figure 12: GDe f and GReins2 not mini-
mal: A and its GDe f and GReins2 for
S = {a,b,d}; either (a,c) or (b,c)
is enough for a minimal explanation
about the defence or the part 2 of re-
instatement of S

a

b
c

Figure 13: GReins1 not mini-
mal: A and its GReins1 for S =
{c}; either a or b is enough for
a minimal explanation about
the part 1 of reinstatement of
S

a

b
c

Figure 14: GCA not minimal: A
and its GCA for S = {a,b}; either
(a,c) or (b,c) is enough for a
minimal explanation about S at-
tacking its complement

4 Explanations for Semantics

Semantics have been defined as sets of principles they should all satisfy. Since we gave explanations con-
cerning these principles (and sub-principles), explanations concerning semantics naturally arise as sets of
explanations on (sub-)principles.

Def. 16 (Explanation for semantics). Let A = (A,R) and S ⊆ A.9

• GAdm(S) is an answer to QAdm with GAdm(S) = {GCF(S),GDe f (S)}

• GCo(S) is an answer to QCo with GCo(S) = {GCF(S),GDe f (S),GReins1(S),GReins2(S)}

• GSta(S) is an answer to QSta with GSta(S) = {GCF(S),GCA(S)}

Since explanations for semantics are composed of explanations for (sub-)principles, properties of the lat-
ter naturally extend to the former, provided that these properties are universally enjoyed by all explanations
for (sub-)principles. This is for instance the case concerning properties of uniqueness and maximality.

Prop. 7. Let A = (A,R), S,S′ ⊆ A and σ ∈ {Adm,Co,Sta}. If S = S′, then Gσ (S) = Gσ (S′). Moreover,
Gσ (S) is a maximal explanation for σ on S.

In addition, all explanations for (sub-)principles are efficiently computed, thus it is also the case for
explanations for semantics.

In a similar fashion, properties that are not universally enjoyed by all explanations for (sub-)principles
are also not enjoyed by explanations for semantics. So, considering the minimality of explanations, Fig. 12, 13
and 14 can be used for showing that GAdm(S), GCo(S) and GSta(S) are not minimal. To finish with, consider
the emptyness property:

Prop. 8. Let A = (A,R), S ⊆ A. GAdm(S) = (∅,∅) iff S = ∅. GCo(S) = (∅,∅) iff S = ∅ and {x ∈
A|R−(x) =∅}=∅. GSta(S) = (∅,∅) iff A = (∅,∅).

9Using sets allows to not have a fixed order in the sequence of subgraphs.

12



5 Related Works

A similar approach to ours in providing explanation in Abstract Argumentation is [9]. The authors aim to
explain the credulous non acceptance of some argument using strongly rejecting subframeworks, that is,
induced subgraphs of the original AF s.t. neither this subgraph nor its supergraphs credulously accept the
queried argument. As such, strongly rejecting subframeworks capture the core argumentative reasons for
why an argument is not credulously accepted under a certain semantics. We focus on a different problematic,
the status of a set of arguments as a (non-)extension. In addition, while strongly rejecting subframeworks are
exclusively induced subgraphs, we use both induced and partial subgraphs as we consider attacks to be as
important as arguments in an explanation. [10] also studies subgraphs as explanations for the credulous non
acceptance of some argument for a given semantics using both induced and partial subgraphs. Nevertheless
these subgraphs are not combined like we do in our work.

A specific kind of graph that is used in explaining argumentative results is defence trees: trees where
nodes are arguments and each successor of a node is an attacker of that node. As such, they can be used
to prove whether an argument is defended or not. While not being subgraphs technically speaking, one can
easily retrieve the subgraph represented by a defence tree using the original AF. Some works, like [11], use
defence trees as explanations for argumentative results. The authors of [11] argue that a defence tree is a
dialogical explanation for an argument since it can be used to show that it is defended. Other works, like [2],
use them to compute their notion of explanations. While not being subgraphs technically speaking, one can
easily retrieve the subgraph represented by a defence tree using the original AF. Thus, a defence tree can be
seen as a visual explanation (in the sense of a proof) of the (non-)acceptability of some argument w.r.t. a
given set.

Some works explore the idea of explanations as elements to remove from an AF to modify a given result
(e.g. an argument being credulously accepted or not). In [16], the authors explain why an argument is
not credulously accepted under admissibility. Their explanations consist of sets of arguments or attacks to
remove from the AF to make the queried argument credulously accepted under admissibility in the resulting
subgraph. This is also the method used in [17], which called such sets “diagnosis”. [10] notes that, for
explanations, diagnoses can be seen as the dual of induced and partial subgraphs. Indeed, each diagnosis
infers an induced or partial subgraph, and conversely, each induced or partial subgraph is computed using
(the complement of) a diagnosis.

Finally, the most widely used method to define explanations is as sets of arguments. Among this
category, several works like [2, 3, 4, 15, 18, 5] are interested in explanations for the credulous/skeptical
(non-)acceptance of some argument(s). In [2], the authors define an explanation semantics, called related
admissibility, which provides all the reasons why an argument belongs to an admissible set. In [3, 4], the
authors propose a basic framework to compute explanations as sets of arguments for the credulous/skeptical
(non-)acceptance of an argument, and extend it in subsequent works [15, 18]. [5] proposes strong explana-
tions for credulous acceptance of a set of arguments under a given semantics, that is, a set of arguments such
that for every subgraph induced by a superset of the explanation, there exists an extension of the considered
semantics that contains the set to explain. Other works that use sets of arguments as explanations deal with
the same question we focus on in this paper. In [6], the authors base their approach on the observation
that each Strongly Connected Component (SCC) of an AF can be seen as making a choice for accepting
conflict-free sets of arguments. From these choices results the rest of the accepted arguments, hence such
choices can be seen as explanations for the rest of the arguments in a set. Using this idea and extending be-
yond choices of conflict-free sets in SCC, they explore explanation semantics and their properties. Similarly,
in [7], the authors observe that complete and admissible semantics are computed firstly by computing the

13



grounded (resp. strongly admissible) extension, then making choices in even cycles, and finally computing
the grounded (resp. strongly admissible) extension again. As such, they define the arguments chosen in the
even cycles as the explanations for some complete or admissible extension.

6 Conclusion and Future Work

This paper provides explanations to why a set of arguments is or is not acceptable under a given semantics
σ in Dung’s framework (XVerσ problem). Semantic principles and semantics which combine them are
addressed. Graph properties satisfied by the subgraphs or sets of subgraphs defined as explanations for
the problem, depending on the actual acceptability of the considered set, have been proven. Properties
of the explanations themselves such as uniqueness, non-emptiness, maximality and minimality have been
investigated. The modularity of the considered semantics make the explanations modular as well. The
considered problem, the solution in term of induced and partial subgraphs, its properties and its modularity,
as far as we know, make the proposed approach original.

These explanations should make the Verification Problem in Argumentation more intelligible to humans
(be they ordinary users or specialists of argumentation who may have to use or develop argumentation
solvers for instance). However, experiments with human users should be conducted, as in much of the XAI
literature as [1] underlines, to check to which extend the proposed explanations actually make best sense.

Back to the problem, semantics which involve a minimality or a maximality principle (e.g. the grounded
or the preferred semantics [13]) are more challenging to graphically explain. However, in the case where it
is a set S output from a solver that a user may want to be explained, the modularity of our approach allows
an explanation to be provided. Actually, when presented with a maximal (resp. minimal) set S satisfying a
set P of principles, if a user wants S to be explained, it may be because, as advocated in [8], they think that S
is not maximal (resp. minimal) satisfying P, hence that a superset (resp. subset) S′ of S should be. The user
may then ask why S′ is not acceptable under the considered semantics. By the property of maximality (resp.
minimality), the answer will show the principles of P the property applies to, which are not satisfied by S′.

Beyond maximality and minimality, the explanation problem should be extended to additional principles
and semantics. It may even be extended to frameworks which enrich Dung’s one. For an overview of such
semantics and frameworks, see [19, 20].

Moreover, a contrastive variant of the problem may be considered: explaining why a set S is acceptable
under a semantics σ and not under a semantics σ ′. The modularity of the approach may here again be
helpful: given σ and σ ′ defined as sets of principles, the explanation may consist in showing how S behaves
on the principles on which σ and σ ′ differ. As an example, if σ is the admissible semantics and σ ′ the
complete semantics, the explanation will show that the reinstatement principle is not satisfied by S.

Such extensions of the proposed approach, on principles, semantics, enriched frameworks and con-
trastive questions, are avenues for future works.
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[1] Čyras K, Rago A, Albini E, Baroni P, Toni F. Argumentative XAI: A Survey. In: Proc. of IJCAI; 2021.
p. 4392-9.

[2] Fan X, Toni F. On Computing Explanations in Argumentation. In: Proc. of AAAI; 2015. p. 1496-502.

[3] Borg A, Bex F. Necessary and Sufficient Explanations in Abstract Argumentation. Computing Re-
search Repository (CoRR). 2020;abs/2011.02414.

14



[4] Borg A, Bex F. Necessary and Sufficient Explanations for Argumentation-Based Conclusions. In:
Proc. of ECSQARU. vol. 12897 of LNCS. Springer; 2021. p. 45-58.

[5] Ulbricht M, Wallner JP. Strong Explanations in Abstract Argumentation. In: Proc. of AAAI; 2021. p.
6496-504.

[6] Liao B, van der Torre L. Explanation Semantics for Abstract Argumentation. In: Proc. of COMMA.
vol. 326. IOS Press; 2020. p. 271-82.

[7] Baumann R, Ulbricht M. Choices and their Consequences - Explaining Acceptable Sets in Abstract
Argumentation Frameworks. In: Proc. of KR; 2021. p. 110-9.

[8] Besnard P, Doutre S, Duchatelle T, Lagasquie-Schiex MC. Question-Based Explainability in Abstract
Argumentation. IRIT, France; 2022. IRIT/RR–2022–01–FR.

[9] Saribatur ZG, Wallner JP, Woltran S. Explaining Non-Acceptability in Abstract Argumentation. In:
Proc. of ECAI. vol. 325; 2020. p. 881-8.

[10] Niskanen A, Järvisalo M. Smallest Explanations and Diagnoses of Rejection in Abstract Argumenta-
tion. In: Proc. of KR; 2020. p. 667-71.

[11] Racharak T, Tojo S. On Explanation of Propositional Logic-based Argumentation System. In: Proc.
of ICAART. vol. 2; 2021. p. 323-32.

[12] Vesic S, Yun B, Teovanovic P. Graphical Representation Enhances Human Compliance with Principles
for Graded Argumentation Semantics. In: Proc. of AAMAS; 2022. .

[13] Dung PM. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence. 1995;77(2):321-57.
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A Proofs

A.1 Proofs for the characterisation of principles

A.1.1 Conflict-freeness characterisation

Theo. 1 Let A = (A,R) and S ⊆ A. S is conflict-free iff CCF is satisfied by S, with CCF : “there are no attacks
in GCF(S)”.

Proof. (of Theo. 1) We prove both directions.
⇒: Suppose that S is conflict-free and that there is an attack (a,b) in A [S]V . By Definition 4, we have

that a,b ∈ S and that (a,b) ∈ R. This contradicts Definition 3 on conflict-freeness.
⇐: Suppose now that there are no attacks in A [S]V and that S is not conflict-free. By Definition 3, there

exists a,b ∈ S such that (a,b) ∈ R. Thus, by Definition 4, (a,b) is in A [S]V . This contradicts the absence of
attacks in A [S]V .

A.1.2 Defence characterisation

Prop. 1 Let A = (A,R) and S ⊆ A. If S is conflict-free, GDe f (S) is a bipartite graph and S can always be
one of its parts.

Proof. (of Prop. 1) Suppose S is conflict-free. Let GDe f (S) = (A′,R′). By assumption, S is conflict-free,
and thus S∩R−1(S) =∅. Since by Definition 10 A′ = S∪R−1(S), S and R−1(S) then form a partition of A′.
According to Definition 5, we must then show that for every (a,b) ∈ R′, a ∈ S and b ∈ R−1(S) or a ∈ R−1(S)
and b ∈ S. This is given by Definition 10.

Theo. 2 Let A = (A,R) and S ⊆ A be a conflict-free set of arguments. S ⊆ FA (S) iff CDe f is satisfied by S,
with CDe f : “there are no source vertices in R−1(S) in GDe f (S)”.

Proof. (of Theo. 2) We prove both directions.
⇒: Let GDe f (S) = (A′,R′) and assume that S ⊆ FA (S). Suppose now that there is a source vertex a in

R−1(S) in GDe f (S). By Definition 7, we have that R′−(a) =∅, which means there exists no b ∈ A′ such that
(b,a) ∈ R′. However, by Definition 10 of GDe f (S), we know that for all (x,y) ∈ R′, x ∈ S and y ∈ R−1(S) or
x ∈ R−1(S) and y ∈ S. This first means that, because S is conflict-free, S∩R−1(S) = ∅ and a ∈ R−1(S), it
must be the case that b ∈ S. Hence, there exists no b ∈ S such that (b,a)∈ R′. In addition, since R′ ⊆ R, there
exists no b ∈ S such that (b,a) ∈ R. As a ∈ R−1(S), there exists c ∈ S such that (a,c) ∈ R. Hence, we know
that there exists a ∈ A with (a,c) ∈ R for some c ∈ S and such that there exists no b ∈ S with (b,a) ∈ R. This
contradicts the assumption that S ⊆ FA (S).

⇐: Let GDe f (S) = (A′,R′) and assume that there are no source vertices in R−1(S) in GDe f (S). Suppose
now that there is some c ∈ S such that c is not acceptable w.r.t. S. By Definition 2, this means that there
exists a ∈ A such that (a,c) ∈ R and there is no b ∈ S with (b,a) ∈ R. First, notice that by Definition 6,
a ∈ R−1(c) and so a ∈ R−1(S). Secondly, since c ∈ S, a ∈ R−1(S) and (a,c) ∈ R, by Definition 10, it holds
that c,a ∈ A′ and (a,c) ∈ R′. Thus, by assumption, a is not a source vertex in GDe f (S). Subsequently, there
exists b ∈ A′ such that (b,a) ∈ R′. Moreover, by Definition 10, for all (x,y) ∈ R′, x ∈ S and y ∈ R−1(S) or
x ∈ R−1(S) and y ∈ S. Since a ∈ R−1(S) and S is conflict-free (i.e. S∩R−1(S) =∅), it holds that b ∈ S and
(b,a) ∈ R. Thus, we have that c ∈ S such that c is not acceptable w.r.t. S and for any a ∈ A with (a,c) ∈ R,
there is b ∈ S with (b,a) ∈ R, a contradiction.
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A.1.3 Reinstatement characterisation

Theo. 3 Let A = (A,R) and S ⊆ A. If CReins1 and CReins2 are satisfied by S then FA (S)⊆ S, with CReins1: “all
vertices in GReins1(S) are in S” and CReins2: “all vertices in R2(S)\S are the endpoint of an arc whose origin
is a source vertex in GReins2(S)”.

Proof. (of Theo. 3) Let GReins1(S) = (A′,R′), GReins2(S) = (A′′,R′′) and assume that A′ ⊆ S and that all
vertices in R2(S)\S are the endpoint of an arc whose origin is a source vertex in GReins2(S). In other words,
A′ ⊆ S and for every x ∈ R2(S) \ S, there exists y ∈ A′ such that (y,x) ∈ R′ and R′−(y) = ∅. Consider
a ∈ FA (S). This means that for every b ∈ A such that (b,a) ∈ R, there exists c ∈ S with (c,b) ∈ R. We must
show that a ∈ S. Suppose first that a is not attacked in A . That is to say, R−(a) =∅. By Definition 12, we
have that a ∈ A′, and thus by assumption, a ∈ S. Suppose now that R−(a) ̸= ∅. By Definition 6, we have
a ∈ R2(S) and for every b ∈ A such that (b,a) ∈ R, b ∈ R−1(R2(S)). As such, by Definition 12, we have
that a,b,c ∈ A′′ and (b,a),(c,b) ∈ R′′. Thus, for every b ∈ A′′ such that (b,a) ∈ R′′, R′′−(b) ̸= ∅. Hence,
all b ∈ A′′ such that (b,a) ∈ R′′ are not source vertices. Consequently, by assumption, a /∈ R2(S)\S, but we
know that a ∈ R2(S). It follows that a ∈ R2(S)∩S, and thus that a ∈ S.

Theo. 4 Let A = (A,R) and S ⊆ A. If FA (S)⊆ S then CReins1 and C′
Reins2 are satisfied by S, with C′

Reins2: “all
vertices in R2(S)\S are the endpoint of an arc whose origin is a source vertex or is in R2(S), in GReins2(S)”.

Proof. (of Theo. 4) Let GReins1(S) = (A′,R′), GReins2(S) = (A′′,R′′) and assume that FA (S) ⊆ S. Suppose
now that either A′ ̸⊆ S or there is a vertex a in R2(S) \ S that is not the endpoint of an arc whose origin
is a source vertex or in R2(S). In the first case, by Definition 12 we have that there exists x ∈ A such that
R−(x) = ∅ and x /∈ S. However, by Definition 2, this means that x ∈ FA (S) and x /∈ S, a contradiction. In
the second case, we have a /∈ S and for every b ∈ A′′ such that (b,a) ∈ R′′, R′′−(b) ̸= ∅ and b /∈ R2(S). In
other words, b /∈ R2(S) and there exists c ∈ A′′ with (c,b) ∈ R′′. By Definition 12, (x,y) ∈ R′′ if and only if
x ∈ R−1(R2(S)) and y ∈ R2(S) or x ∈ S and y ∈ R−1(R2(S)). Since a ∈ R2(S) and b /∈ R2(S), we thus know
that b ∈ R−1(R2(S)). In addition, also because b /∈ R2(S), it must be the case that c ∈ S. So, for every b ∈ A′′

such that (b,a) ∈ R′′, there exists c ∈ S with (c,b) ∈ R′′. By Definition 12 again, we deduce that for every
b ∈ A such that (b,a) ∈ R, there exists c ∈ S with (c,b) ∈ R. By Definition 2, this means that a is acceptable
w.r.t. S and so that a ∈ FA (S). Hence, by assumption, a ∈ S, a contradiction.

Cor. 1 Let A = (A,R) and S ⊆ A such that R2(S) is conflict-free. FA (S) ⊆ S iff CReins1 and CReins2 are
satisfied by S.

Proof. (of Cor. 1) From Theorem 3 we have that if all vertices in GReins1(S) are in S and all vertices in
R2(S)\S are the endpoint of an arc whose origin is a source vertex in GReins2(S), then FA (S)⊆ S. Theorem 4
gives that if FA (S) ⊆ S then all vertices in GReins1(S) are in S and all vertices in R2(S)\ S are the endpoint
of an arc whose origin is a source vertex, or is in R2(S), in GReins2(S). However, as R2(S) is conflict-free,
a vertex in R2(S) \ S cannot be the endpoint of an arc whose origin is in R2(S) in A , and so in GReins2(S).
It follows that if FA (S) ⊆ S then all vertices in GReins1(S) are in S and all vertices in R2(S) \ S are the
endpoint of an arc whose origin is a source vertex, in GReins2(S). Hence we have the two directions of the
equivalence.
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A.1.4 Complement attack characterisation

Prop. 2 Let A = (A,R) and S ⊆ A. GCA(S) is a bipartite graph, S can always be one of its parts and all
vertices in S are sources in it.

Proof. (of Prop. 2) Let GCA(S) = (A′,R′). By Definition 4, we have that R′ ⊆ R. An obvious partition of A
based on S is of course S and A\S. By Definition 14, we know that for every (a,b) ∈ R′, a ∈ S and b ∈ A\S.
Subsequently, by Definition 5, GCA(S) is a bipartite graph. In addition, since there is no (b,a) ∈ R′ such that
b ∈ A\S and a ∈ S, it holds that for every a ∈ S, R′−(a) = ∅. Thus, by Definition 7, every vertex of S is a
source vertex in GCA(S).

Theo. 5 Let A = (A,R) and S ⊆ A. A\S ⊆ R+(S) iff CCA is satisfied by S, with CCA: “there are no isolated
vertices in the complement part of S in GCA(S)”.

Proof. (of Theo. 5) We prove both directions.
⇒: Suppose that A \ S ⊆ R+(S). Let GCA(S) = (A′,R′). Suppose now that there is an isolated vertex

a in A′ \ S. By Definition 14, we know that A′ = A. As such, there exists a ∈ A \ S such that a is isolated
in GCA(S). By Definition 7, this means in particular that R′−(a) = ∅ and thus that there is no b ∈ A′ with
(b,a) ∈ R′. Again, in particular, we have that there is no b ∈ S with (b,a) ∈ R′. However, by Definition 14,
we have that (x,y) ∈ R′ if and only if (x,y) ∈ R, x ∈ S and y /∈ S. Hence, we deduce that there is no b ∈ S
with (b,a) ∈ R. Since a ∈ A\S, this contradicts the assumption that A\S ⊆ R+(S).

⇐: Suppose now that there are no isolated vertices in A′ \S in GCA(S) and that A\S ̸⊆ R+(S). From the
first assumption, by Definition 14, we have that there are no isolated vertices in A\S in GCA(S). In particular,
by Definition 7, we know that there is no a ∈ A\S such that R′−(a) =∅, or equivalently, for every a ∈ A\S,
there exists b ∈ A such that (b,a) ∈ R′. By Definition 14, we have that (x,y) ∈ R′ if and only if (x,y) ∈ R,
x ∈ S and y /∈ S, thus we deduce that for every a ∈ A \ S, there exists b ∈ S such that (b,a) ∈ R′. From the
second assumption, we have that there exists some c ∈ A\S such that there is no b ∈ S with (b,c) ∈ R. By
Definition 14, and because c ∈ A\S and b ∈ S, we deduce that there exists some c ∈ A\S such that there is
no b ∈ S with (b,c) ∈ R′, a contradiction of the first assumption.

A.2 Proofs for the additional properties about principles

Prop. 3 Let A = (A,R), S,S′ ⊆ A and σ ∈ {CF,Def ,Reins1,Reins2,CA}. If S = S′, then Gσ (S) = Gσ (S′).

Proof. (of Prop. 3)

1. Suppose that S = S′ but that GCF(S) ̸= GCF(S′). Let GCF(S) = (AS,RS) and GCF(S′) = (AS′ ,RS′).
Since GCF(S) ̸= GCF(S′), we have either AS ̸= AS′ or AS = AS′ and RS ̸= RS′ . In the first case, by
Definitions 8 and 4 we have AS = S and AS′ = S′, thus S ̸= S′ which contradicts our first hypothesis.
In the second case, also by Definition 4, we deduce that either there exists (a,b) ∈ R s.t. a,b ∈ S and
(a,b) /∈ RS′ or there exists (x,y) ∈ R s.t. x,y ∈ S′ and (x,y) /∈ RS. Using S = S′ leads to a contradiction
in both cases.

2. Suppose that S = S′ but that GDe f (S) ̸= GDe f (S′). Let GDe f (S) = (AS,RS) and GDe f (S′) = (AS′ ,RS′).
Since GDe f (S) ̸= GDe f (S′), we have either AS ̸= AS′ or AS = AS′ and RS ̸= RS′ . In the first case, by
Definitions 10 and 4 we have AS = S∪R−1(S) and AS′ = S′∪R−1(S′), thus S ̸= S′ which contradicts
our first hypothesis. In the second case, we deduce that either there exists (a,b)∈RS s.t. (a,b) /∈RS′ or
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there exists (x,y) ∈ RS′ s.t. (x,y) /∈ RS. Thus, by Definition 10, either there exists a,b ∈ S∪R−1(S) s.t.
a ∈ S and b ∈ R−1(S) or a ∈ R−1(S) and b ∈ S, and (a,b) /∈ RS′ , or there exists x,y ∈ S′∪R−1(S′) s.t.
x ∈ S′ and y ∈ R−1(S′) or x ∈ R−1(S′) and y ∈ S′, and (x,y) /∈ RS. Using S = S′ leads to a contradiction
in both cases.

3. Suppose that S = S′ but that GReins1(S) ̸= GReins1(S′). Let GReins1(S) = (AS,RS) and GReins1(S′) =
(AS′ ,RS′). Since GReins1(S) ̸= GReins1(S′), we have either AS ̸= AS′ or AS = AS′ and RS ̸= RS′ . In the
first case, by Definitions 12 and 4 we have AS = {x|R−(x) = ∅} and AS′ = {x|R−(x) = ∅}, hence a
contradiction arises. In the second case, since by definitions 12 we have AS = AS′ = {x|R−(x) =∅},
we know that RS = RS′ =∅, hence a contradiction also arises.

4. Suppose that S = S′ but that GReins2(S) ̸= GReins2(S′). Let GReins2(S) = (AS,RS) and GReins2(S′) =
(AS′ ,RS′). Since GReins2(S) ̸= GReins2(S′), we have either AS ̸= AS′ or AS = AS′ and RS ̸= RS′ . In
the first case, by Definitions 12 and 4 we have AS = S∪R2(S)∪R−1(R2(S)) and AS′ = S′∪R2(S′)∪
R−1(R2(S′)), thus S ̸= S′ which contradicts our first hypothesis. In the second case, we deduce that
either there exists (a,b) ∈ RS s.t. (a,b) /∈ RS′ or there exists (x,y) ∈ RS′ s.t. (x,y) /∈ RS. Thus, by
Definition 12, either there exists a,b ∈ S∪R2(S)∪R−1(R2(S)) s.t. a ∈ R−1(R2(S)) and b ∈ R2(S)
or a ∈ S and b ∈ R−1(R2(S)), and (a,b) /∈ RS′ , or there exists x,y ∈ S′ ∪ R2(S′)∪ R−1(R2(S′)) s.t.
x ∈ R−1(R2(S′)) and y ∈ R2(S′) or x ∈ S′ and y ∈ R−1(R2(S′)), and (x,y) /∈ RS. Using S = S′ leads to
a contradiction in both cases.

5. Suppose that S = S′ but that GCA(S) ̸= GCA(S′). Let GCA(S) = (AS,RS) and GCA(S′) = (AS′ ,RS′).
Since GCA(S) ̸= GCA(S′), we have either AS ̸= AS′ or AS = AS′ and RS ̸= RS′ . By Definition 10 we
have AS = A and AS′ = A, hence it must be the case that RS ̸= RS′ . We deduce that either there exists
(a,b) ∈ RS s.t. (a,b) /∈ RS′ or there exists (x,y) ∈ RS′ s.t. (x,y) /∈ RS. Thus, by Definition 10, either
there exists a,b ∈ A s.t. a ∈ S and b /∈ S and (a,b) /∈ RS′ , or there exists x,y ∈ A s.t. x ∈ S′ and y /∈ S′

and (x,y) /∈ RS. Using S = S′ leads to a contradiction in both cases.

Prop. 4 Let A = (A,R), S ⊆ A. Let σ ∈ {CF,Def ,Reins2}: Gσ (S) = (∅,∅) iff S =∅. GReins1(S) = (∅,∅)
iff ∄a ∈ A st R−(a) =∅. GCA(S) = (∅,∅) iff A = (∅,∅).

Proof. (of Prop. 4) Immediate using Definition 4 and the definitions corresponding to each principle (Def. 8,
Def. 10, Def. 12 and Def. 14).

Prop. 5 Let A = (A,R), S ⊆ A and σ ∈ {CF,Def ,Reins1,Reins2,CA}. Gσ (S) is a maximal explanation for
σ on S.

Proof. (of Prop. 5) Immediate using Definition 4 and the definitions corresponding to each principle (Def. 8,
Def. 10, Def. 12, Def. 14).

Prop. 6 Let A = (A,R) and S⊆A. If S is conflict-free, GCF(S) is a minimal explanation for conflict-freeness
on S.

Proof. (of Prop. 6) As S is conflict-free, Theorem 1 tells us that R′ =∅. Hence, |R′|= 0 and so GCF(S) is a
minimal explanation for conflict-freeness on S.
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A.3 Proofs for the properties about semantics

Prop. 7 Let A = (A,R), S,S′ ⊆ A and σ ∈ {Adm,Co,Sta}. If S = S′, then Gσ (S) = Gσ (S′). Moreover,
Gσ (S) is a maximal explanation for σ on S.

Proof. (of Prop. 7) Immediate using Definitions 3, 16 and Propositions 3 and 5.

Prop. 8 Let A = (A,R), S ⊆A. GAdm(S) = (∅,∅) iff S =∅. GCo(S) = (∅,∅) iff S =∅ and {x∈A|R−(x) =
∅}=∅. GSta(S) = (∅,∅) iff A = (∅,∅).

Proof. (of Prop. 8) Immediate using Definitions 3, 16 and Proposition 4.
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