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Abstract

This paper explores the definition of questions and the computation
of explanations in general, and in the specific context of abstract ar-
gumentation. We aim at 1) defining a methodological way to generate
questions asking for explanations in a certain context, and 2) defining
explanations based on the questions they answer and on the context
in which they are asked. Applied to abstract argumentation, the ex-
planations that we define are designed to be visual, in the sense that
they take the form of subgraphs of the argumentation graph which is
a part of the context of the questions they apply to. Moreover, these
explanations rely on the modular aspects of abstract argumentation
semantics and can consequently be either aggregated or decomposed.
Finally, we also investigate the adequacy of the explanations with sev-
eral desirable properties that they should possess, with a particular
focus on Grice’s maxims of conversation.
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1 Introduction
When it comes to explanations of decisions made using an Artificial Intel-
ligence system, Abstract Argumentation (introduced in [1]) is increasingly
studied as a formal tool to provide them. In Abstract Argumentation, the
main object of study is an Argumentation Framework, which is a graph in
which nodes are abstract arguments (in the sense that their internal struc-
ture is left unspecified) and the binary relation is a conflict relation. Given
an Argumentation Framework, the objective is to find the arguments that
can collectively be deemed receivable according to some criteria. Such sets
of arguments are called extensions and the criteria that are considered de-
sirable give rise to semantics for selecting extensions. The recent survey
[2] indicates that Argumentation can be used to generate explanations in
various domains (machine learning notably) and that explanations for the
argumentative process itself are also necessary.

In this respect, the main questions which have been addressed so far con-
cern the global acceptability status (credulous or skeptical) of an argument
or of a set of arguments. In addition, the approach that is most often used
consists in identifying some set(s) of arguments which act as explanation(s)
([3, 4, 5, 6, 7, 8]). One may however argue that, since the argumentative
process of Abstract Argumentation already provides ways for selecting ar-
guments, explaining this process by more selection of arguments (although
different ones) may not be of much help. Furthermore, beyond the question
of the global acceptability of an argument or a set of arguments, many other
questions on the outcomes of argumentation or on the process of argumen-
tation itself can be asked.

More generally, for any process that uses some context to compute some
result, questions may arise. In this respect, we define a general formal tool to
generate a wide range of questions. Using it, our answers (i.e. explanations)
are tailored to the way a question is structured and generated. In the context
of Abstract Argumentation, our answers take the form of relevant subgraphs,
as in [9, 10, 11]. As such, our approach is a visual one, which has been shown
to be helpful for humans to comply with reasoning principles [12], and which
not only highlights arguments, but also subsets of attacks.

The paper is organised as follows: Section 2 recalls background notions
relative to abstract argumentation, formal grammars and graphs theory. In
Section 3 we define a general tool for the generation of questions and give
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a specific instance for the domain of Abstract Argumentation. In Section 4,
we define our explanations for Abstract Argumentation as answers to spe-
cific questions generated using our general tool. In Section 5, we provide a
discussion on the quality of our explanations. Section 6 relates our approach
to other existing ones. Section 7 concludes and presents some future works.

2 Preliminary Notions
In this section, we give the background notions that will be of use in this pa-
per. They include some definitions about Argumentation frameworks, formal
grammars and the description of some important operations over graphs.

2.1 Abstract Argumentation

We begin by recalling basic notions on Abstract Argumentation. The object
handled in this formalism is called an Argumentation Framework.

Definition 1 (Argumentation Framework ([1])). A Dung’s Argumentation
Framework is an ordered pair (A,R) such that R ⊆ A× A.

Each element a ∈ A is called an argument and aRb means that a attacks
b. For S ⊆ A, we say that S attacks a ∈ A iff bRa for some b ∈ S. Any
argumentation framework can be represented as a directed graph.

a

b

c

d e

f g

h i

Figure 1: Example of an Argumentation Framework (AF) from [13]

The main asset of Dung’s approach is the definition of semantics using
some basic properties in order to define sets of acceptable arguments, as
follows.

Definition 2. Given (A,R), an argument a ∈ A is acceptable wrt S ⊆ A iff
for all b ∈ A, if bRa then cRb for some c ∈ S.
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Definition 3. The characteristic function of A = (A,R) is FA : 2A → 2A

such that FA(S) = {a ∈ A | a is acceptable wrt S} for any S ⊆ A.

The semantics originally defined in [1] are as follows.

Definition 4. Given A = (A,R), a subset S of A is said to be:

• conflict-free iff there are no a and b in S such that a attacks b,

• admissible iff S is conflict-free and for any a ∈ S, a is acceptable wrt
S,

• complete iff S is admissible and for any a ∈ A, if a is acceptable wrt S
then a ∈ S,

• preferred iff S is maximal (in the sense of set-inclusion) admissible,1

• grounded iff S is the least fixpoint for FA,

• stable iff S is conflict-free and S attacks any a ∈ A \ S.

Some properties have been proven in [1] establishing a link between the
different semantics. For instance:

Proposition 1. Given A = (A,R):

• There exists at least one preferred extension.

• Every preferred extension is complete, but not vice-versa.

• Every stable extension is preferred, but not vice-versa.

• The grounded extension is the least (with respect to set-inclusion) com-
plete extension.

Table 1 illustrates these semantics for the AF given in Figure 1.
1We write ⊆-maximal.
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Admissible Complete Preferred Grounded Stable
∅ ✓ ✓ ✓
{h} ✓ ✓
{i} ✓ ✓
{a, d} ✓ ✓
{b, c} ✓
{a, d, h} ✓
{a, d, i} ✓
{b, c, h} ✓
{b, c, i} ✓
{b, c, e} ✓ ✓
{a, d, h, f} ✓ ✓ ✓ ✓
{a, d, i, f} ✓ ✓ ✓ ✓
{b, c, e, h} ✓ ✓ ✓ ✓
{b, c, e, i} ✓ ✓ ✓ ✓

Table 1: Acceptable sets of the AF of Figure 1 under the different semantics

2.2 Formal Grammars

Formal grammars provide a mechanism to generate languages, that is to
say, sets of aggregation of symbols. The most known instance of formal
grammars are Context-free grammars, that are used for example to describe
programming languages. In this paper, we will use formal grammars as a
way to generate the questions that we wish to provide answers to. This will
allow us to link a certain answer to a certain pattern of questions. Note
that, in the following definitions, we will use the writing conventions of the
Backus-Naur Form (BNF, [14]) when describing formal grammars.

Definition 5 (Formal grammar ([15])). A formal grammar is a 4-tuple
(N, T, P, S) such that:

• N is a finite set of symbols that we call nonterminal symbols

• T is a finite set of symbols that we call terminal symbols

• P is a set of production rules of the form α ::= β where α is a chain
of terminal and nonterminal symbols that contains at least one nonter-
minal symbol and β is a chain of terminal and nonterminal symbols
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• S ∈ N is a particular nonterminal symbol that we call start symbol

In Context-free grammars, a nonterminal symbol always produces the
same possibilities, no matter the words (a word being a set of symbols) that
may be present around it. In a Context-sensitive grammar however, a non-
terminal symbol can produce different possibilities depending on the words
that surround it. Considering the same nonterminal symbol, there is then
one production rule for each possible context. Context-sensitive grammars
are thus more complex but also more general than Context-free grammars.
Here, we have chosen to use and to present Context-sensitive grammars.

Definition 6 (Context-sensitive grammar [15]). A formal grammar (N, T, P, S)
is context-sensitive if all its rules are of the form

uXv ::= uxv

where X ∈ N and u, v, x are arbitrary words. We call u the left context of
X and v the right context of X.

Example. Consider the formal grammar (N, T, P, S) such that:

• N = {<S>, <B>, <C>, <W>, <Z>}

• T = {a, b, c}

• S = <S>

and P contains the following production rules:

1. <S> ::= "a"<S><B><C>

2. <S> ::= "a"<B><C>

3. <C><B> ::= <C><Z>

4. <C><Z> ::= <W><Z>

5. <W><Z> ::= <W><C>

5. <W><C> ::= <B><C>

6. "a"<B> ::= "ab"

7. "b"<B> ::= "bb"

8. "b"<C> ::= "bc"

9. "c"<C> ::= "cc"

This grammar generates the language {anbncn | n ≥ 1}. Note that this
language cannot be generated by a Context-free grammar.
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Looking at production rule 7, we see that <B> corresponds to the X in Defini-
tion 6. Consequently, its left context is "a" and its right context is the empty
word. It turns into the word "b" which corresponds to the x in Definition 6.
As an instance, we detail the production of the word a2b2c2. The application
of rules 1 and 2 gives "aa"<B><C><B><C>. Following this, rules 3, 4, 5 and
6 give "aa"<B><B><C><C>.2 Then, by applying rules 7 and 8, we obtain
"aabb"<C><C>. Finally, using rules 9 and 10 we have "aabbcc".3

2.3 Operations on Graphs

In this section we essentially provide ways to compute graphs from other
graphs. We will use these operations to compute our explanations in later
sections.

Definition 7 (Subgraph). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. We say that G1 is a subgraph of G2 iff V1 ⊆ V2 and E1 ⊆ E2.

So a subgraph G1 of G2 is included in G2. The next definitions describe
some particular subgraphs that are studied a lot in the literature.

Definition 8 (Induced subgraph). Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs. We say that G1 is an induced subgraph of G2 (or the induced
subgraph of G2 by V1) if G1 is a subgraph of G2 and for all a, b ∈ V1, (a, b) ∈ E1

iff (a, b) ∈ E2.
We denote the induced subgraph of G by S as G[S]V .

So, considering a graphG2 and its induced subgraphG1 by a set of vertices
S, some vertices of G2 can be missing in G1 but all the edges concerning the
kept vertices must be present in G1.
Example. Figure 2 represents the induced subgraph of Figure 1 by {a, b, c, d,
e, f}. Figure 3 represents the induced subgraph of the same graph by
{e, f, g, h, i}.
Definition 9 (Partial subgraph). Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs. We say thatG1 is a partial subgraph of G2 (or the partial subgraph
of G2 by E1) if G1 is a subgraph of G2 and V1 = V2.

We denote the partial subgraph of G by S as G[S]E.4

2These four rules are used in order to transform <C><B> into <B><C>.
3Note that, in the rules 1 and 2, the numbers of "a", <B> and <C> are strictly

identical; moreover the other rules cannot modify these numbers.
4The name covering subgraph is also used in the literature.
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So, considering a graph G2 and its partial subgraph G1 by a set of edges
S, all the vertices of G2 must be present in G1 but some edges can be missing
in G1.

Example. Figure 4 represents the partial subgraph of Figure 1 by {(a, b),
(b, d), (d, c), (c, a), (d, e), (e, f)} . Figure 5 represents the partial subgraph of
the same graph by {(g, f), (e, f), (h, g), (i, g), (h, i), (i, h)}.

Induced and partial subgraphs are examples of ways to compute a graph
from another single graph. We now turn to how to combine several graphs
in order to obtain another one. These are basically extensions of set-union
and set-intersection to graphs.

Definition 10 (Graph union). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. We define the union of G1 and G2 by G1 ∪G2 = (V1 ∪ V2, E1 ∪E2).

The union of two graphs, much like the union of two sets, represents the
aggregation of the information contained in the two graphs.

Example. Let G1, G2, G3, G4 be the graphs of Figures 2, 3, 4 and 5 respec-
tively. Then G1 ∪G2 and G3 ∪G4 are both represented by Figure 1.

Definition 11 (Graph intersection). Let G1 = (V1, E1) and G2 = (V2, E2)
be two graphs. We define the intersection of G1 and G2 by G1 ∩ G2 =
(V1 ∩ V2, E1 ∩ E2).

The intersection of two graphs, much like the intersection of two sets,
contains the information that is present in both graphs at the same time.

Example. Let G1, G2, G3, G4 be the graphs of Figures 2, 3, 4 and 5 respec-
tively. Then Figure 6 represents G1 ∩G2 while Figure 7 represents G3 ∩G4.

Finally, we recall the graph-theoretic notions of successor function and
predecessor function.

Definition 12 (Successor and predecessor functions). Let G = (V,E) be a
graph. The successor function of G is the function E+ : V 7→ 2V such that
E+(v) = {u | (v, u) ∈ E} and the predecessor function of G is the function
E− : V 7→ 2V such that E−(v) = {u | (u, v) ∈ E}.
We also define extensions of the successor and predecessor functions to sets of
vertices, which we continue to denote by E+ and E−, by E+(S) =

⋃
v∈S E

+(v)
and E−(S) =

⋃
v∈S E

−(v), with S ⊆ V .
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a

b

c

d e

f

Figure 2: Induced subgraph of Fig-
ure 1 by {a, b, c, d, e, f}

e

f g

h i

Figure 3: Induced subgraph of Fig-
ure 1 by {e, f, g, h, i}

a

b

c

d e

f g

h i

Figure 4: Partial subgraph of Figure 1 by {(a, b), (b, d), (d, c), (c, a), (d, e),
(e, f)}

a

b

c

d e

f g

h i

Figure 5: Partial subgraph of Figure 1 by {(g, f), (e, f), (h, g), (i, g), (h, i),
(i, h)}
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e

f

Figure 6: Graph inter-
section of Figure 2 and
Figure 3

a

b

c

d e

f g

h i

Figure 7: Graph intersection of Figure 4 and
Figure 5

Note that, considering an Argumentation Framework, the successor func-
tion represents the arguments that are attacked by some argument(s) and
the predecessor function represents the attackers of some argument(s). Since
an Argumentation Framework is usually denoted by (A,R), the successor
and predecessor functions are thus denoted R+ and R− in this context.

From the successor and predecessor functions, we define what we call their
n-step extensions.

Definition 13 (N-step successor and predecessor functions). Let G = (V,E)
be a graph and n ≥ 0.

The n-step successor function of G is E+n(v) =

n times︷ ︸︸ ︷
E+ ◦ · · · ◦ E+(v) and its n-

step predecessor function is E−n(v) =

n times︷ ︸︸ ︷
E− ◦ · · · ◦ E−(v). By convention, we

have E+0(v) = E−0(v) = v.

Remark. We have E+1(v) = E+(v) and E−1(v) = E−(v)

Thus, considering an Argumentation Framework, R+2(a) is the set of
arguments defended by argument a, whereas R−2(a) is the set of defenders
of a.
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3 A grammar for generating questions
In this section, we present an instance of Context-sensitive grammar that
generates an array of questions asking for explanations that we wish to be
as close as possible to natural language. Of course with this constraint,
this grammar could be simplified to become more concise and efficient. We
describe this grammar as adaptable to the domain on which the questions
are asked. We begin with the elements of the grammar that are independent
from the domain and how to structure and use elements from the domain to
instantiate such a grammar. We then give an instance relative to Abstract
Argumentation that we will use throughout this paper.

3.1 A generic domain-independent grammar

We begin by defining the symbols used in this grammar. They represent the
part of the grammar that is not relative to a specific domain.

Definition 14 (Questions grammar’s symbols).

• The set T of terminal symbols is the set of all letters, lowercase and
capital, used in English, as well as the symbols “?” and “␣” (blank
space)

• The set N of nonterminal symbols is {<Q>, <RefState>, <ContrState>,
<ElemInt>, <Prop>, <ContInfo>}

• The start symbol is <Q>

The nonterminal symbols determine the grammatical structure of these
questions. The structure we consider is a question made of one and possibly
two constructions that we call statements and that can be put in contrast.
The first statement of the question is called the reference statement and the
second is called the contrast statement. They both have the same organi-
sation, that is to say they are both made of the same objects, in the same
order. These objects are elements of interest, properties and contextual in-
formation. What is represented by these objects is largely dependant on the
domain we want to ask questions on. These abstract objects are thus used
to adapt and instantiate the grammar to a specific domain. A schema of the
structure of questions we wish to generate using this grammar can be seen
on Figure 8.
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Why do we have

Reference statement
Element Property Contextual
of interest information

Contrast statement
Element Property Contextual
of interest information

?

Figure 8: Structure of questions considered in this paper. Optional compo-
nents are shown using dashed lines.

The reader may have noticed that, in order to complete our definition of
a grammar, we still need a set of rules of production. The grammar’s rules of
production will in fact rely on the dependencies between elements of interest,
properties and contextual information. Hence, we begin by formalising the
abstract concepts we talked about previously.

Definition 15 (Constitutive elements). We call constitutive elements a 5-
tuple (E,P,C,DP , DC) where:

• E is a finite set of elements of interest

• P is a finite set of properties on elements of interest

• C is a finite set of contextual information for the properties

• DP : E 7→ 2P is a dependence function that associates an element of
interest with the properties that can be assigned to it

• DC : P 7→ 2C is a dependence function that associates a property with
the contextual information that is relevant for it

14



The idea is that elements of interest should represent precisely defined
objects that we handle in the domain with which we wish to instantiate the
grammar. Properties should then be understood as particular conditions that
can be verified or not on these objects. To finish, Contextual information
should represent additional parameters that are used to verify whether or
not the properties hold.

We then define the reverse functions5 of the dependence functions, that
we will need in the definition of the productions rules.

Definition 16 (Reverse of dependence functions). Let (E,P,C,DP , DC) be
constitutive elements. We define the reverse of the dependence functions as:

• D−
P : P 7→ 2E is a function defined for all p ∈ P by D−

P (p) = {e | e ∈
E, p ∈ DP (e)}

• D−
C : C 7→ 2P is a function defined for all c ∈ C by D−

C (c) = {p | p ∈
P, c ∈ DC(p)}

Thus, given an element of interest e, DP (e) represents the properties that
may hold on e; similarly given a property p, D−

P (p) represents the elements
of interest on which p may hold. We now give the rules of production of our
grammar.6

Definition 17 (Production rules for questions grammar). Given constitutive
elements (E,P,C,DP , DC), we define the following rules to produce questions
requiring answers about these elements:

1.

<Q> ::= "Why do we have " <RefState> [<ContrState>] "?"

2.

<RefState> ::= <ElemInt> <Prop> [<ContInfo>]

3. Let E = {e1, . . . , en}. Then,

5We call them reverse functions because they are somewhat similar in spirit to inverse
functions, but are not exactly inverse functions.

6Note that following our wish to generate questions that are as close as possible to
natural language, the grammar generates questions in natural language. Of course, these
questions could made more concise, for instance by replacing the beginning sequence "Why
do we have" by "Why".
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<ElemInt> ::= "e1 " | ...| "en "

4. For all e ∈ E, let DP (e) = {p1, . . . pn}. Then, for all e ∈ E,

"e " <Prop> ::= "e " ["not "] ("p1 " | ...| "pn ")

5. For all p ∈ P , let DC(p) = {c1, . . . , cn}. Then, for all p ∈ P ,

"p " <ContInfo> ::= "p " ("c1 " | ...| "cn ")

6.

<ContrState> ::= "and not " [<ElemInt>] [<Prop>] [<ContInfo>]

7. For all e ∈ E, let DP (e) = {p1, . . . , pn}. Then, for all e ∈ E,

"e " ["not "] ("p1 " | ...| "pn ") [<ContInfo>] "and not "
<Prop> ::=

"e " ["not "] ("p1 " | ...| "pn ") [<ContInfo>] "and not "
("p1 " | ...| "pn ")

8. For all p ∈ P , let DC(p) = {c1, . . . , cn} and let D−
P (p) = {e1, . . . , em}. Then,

for all p ∈ P ,

("e1 " | ...| "em ") ["not "] "p " [<ContInfo>] "and not "
<ContInfo> ::=

("e1 " | ...| "em ") ["not "] "p " [<ContInfo>]
"and not " ("c1 " | ...| "cn ")

9. For all p ∈ P , let DC(p) = {c1, . . . , cn} and let D−
P (p) = {e1, . . . , em}. Then,

for all p ∈ P ,

("e1 " | ...| "em ") ["not "] "p " [<ContInfo>] "and not "
("e1 " | ...| "em ") <ContInfo> ::=

("e1 " | ...| "em ") ["not "] "p " [<ContInfo>]
"and not " ("e1 " | ...| "em ") ("c1 " | ...| "cn ")

Note. The members of the sets E, P and C must be strings of terminal
symbols.

16



This grammar for questions is generic, but in the next section it will
be instantiated in a specific context, and examples of sentences that it can
generate will be built.

Using these rules, a question is enforced to possess a reference statement
and may or may not possess a contrast statement (rule 1). A reference state-
ment must be about an element of interest and a property of that element,
but contextual information is optional (rule 2). A property following an ele-
ment of interest must be chosen from the properties that can be applied on
this element via the corresponding dependence function (rule 4). The same
goes for contextual information with properties (rule 5). The three objects
of a contrast statements are all optional but must follow the same order as in
the reference statement (rule 6). If a property is present in a contrast state-
ment devoid of element of interest, we consider that it refers to the reference
statement’s one. As such, it must be once again chosen from the proper-
ties that can be applied on this element via the corresponding dependence
function (rule 7). The same goes for contextual information in a contrast
statement devoid of property (rule 8 and 9).

Remark. With these rules of production, it is possible to generate structurally
incorrect questions. For instance, using rule 6 and yielding the empty string
after "and not ". Another example is a question like "Why do we have e
p and not e ?" creating a self-contrast on e. This results from our wish to
keep the rules as few and simple as possible. Please note that, on the other
hand, since we cannot predict what question a user will ask, this allows for
modelling users that may deliberately ask incorrect questions. Concerning
rule 6, we are only interested in contrastive questions in which at least one
object of the constrast statement is present.

3.2 An instance concerning Abstract Argumentation

We now turn to define the specific instance of our grammar we use for Ab-
stract Argumentation. As previously said, to instantiate our grammar, one
only needs to provide the constitutive elements, the production rules then
follow mechanically. Hence, it is the subject of our next definition.

The constitutive elements we use are based on the object that we consider,
that is to say, an Argumentation Framework. In order to have an idea of what
kind of questions could be asked, we make the following hypothesis on the
situation in which the need for explanation occurs:
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A user asks for an explanation after she has been presented
the result of a Formal Argumentation process (typically the
selection of arguments via a semantics) by a program that we
will refer to as the system.

(H1)

With this in mind, we now define the constitutive elements that we use
in this paper.

Definition 18 (Constitutive elements for Abstract Argumentation). Let
(A,R) be any AF. Let x denote any argument (x ∈ A) and S denote any set
of arguments (S ⊆ A). We consider the following constitutive elements:

• E = Ex ∪ ES with Ex = {x, x ∈ A} and ES = {S, S ⊆ A}

• P = {accepted, as a conflict-free extension, as an admissible
extension, as a complete extension, as a stable extension}

• C = {in the extension S, for the conflict-free semantics,
for the admissible semantics, for the complete semantics,
for the stable semantics, in the AF (A,R)}

• DP (x) = {accepted} for any x ∈ Ex

• DP (S) = P for any S ∈ ES

• DC(accepted) = C

• DC(as a conflict-free extension) = {in the AF (A,R)}

• DC(as an admissible extension) = {in the AF (A,R)}

• DC(as a complete extension) = {in the AF (A,R)}

• DC(as a stable extension) = {in the AF (A,R)}

Once again, before we detail our definition, please not that, as we already
said in the introduction of Section 3, the grammar is aimed at generating
questions that are as close as possible to natural language. Hence, some
constitutive elements could be simplified. For example, we could have:

P = {accepted, conflict-free, admissible, complete, stable}
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Elements of interest are supposed to capture what the user will focus
on when asking questions. In the hypothetical situation in which we place
ourselves in, it seems reasonable to assume that, if the need of explanation
rises from being presented an extension, then the focus of the questions will
be on arguments or groups of arguments.7

Once elements of interest have been introduced, selecting properties for
them more or less comes down to identifying in which state they can be
met. In our hypothetical situation, the user is presented an extension by
the system. Hence, sets of arguments can have the property of being an
extension for a certain semantics. Moreover, particular arguments can have
the property of being part of such an extension, which can then be extended
quite naturally to groups of arguments as well.

Finally, contextual information is what we need in order to verify the
properties over the elements of interest. In order to verify if a given set of
arguments is indeed an extension for a given semantics, we need the Argu-
mentation Framework from which this set of arguments is taken from. Once
again (A,R) is just a general notation scheme here, and it is perfectly allowed
to ask questions on Argumentation Frameworks using different notations like
(A′, R′). The Argumentation Framework is also needed in order to verify that
an argument or a group of arguments is part of an extension, along with this
extension and the semantics under which it was computed. Please note that
these three pieces of information represent everything that define the need for
explanation in our hypothetical situation: some extension, computed under
some semantics, in some Argumentation Framework. Hence, we will refer to
these pieces of information collectively as the question’s context.

We now give some examples of questions that can be generated using our
instantiation of our grammar.

Example (Derivation of a question on the acceptability of one argument).

<Q> ::= "Why do we have "

<RefState>︷ ︸︸ ︷
<ElemInt>︷︸︸︷
"a "

<Prop>︷ ︸︸ ︷
"accepted " "?"

7Even though we only used notations x and S, these are supposed to be general nota-
tion schemes and are not exclusive. Thus, it is perfectly allowed to ask questions about
some precise arguments or sets of arguments using different notations such as a, b, c for
arguments and T , U , S′ for sets of arguments. We will use lowercase letters for arguments
and capital letters for sets of arguments (except A and R that are used in the notation of
an AF).
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Example (Derivation of a question on the non-acceptability of one argument
with context).
<Q> ::= "Why do we have "

<RefState>︷ ︸︸ ︷
<ElemInt>︷︸︸︷
"a "

<Prop>︷ ︸︸ ︷
"not accepted "

<ContInfo>︷ ︸︸ ︷
"in the extension {b,c} " "?"

Example (Derivation of a question on several arguments being a complete
extension).

<Q> ::= "Why do we have "

<RefState>︷ ︸︸ ︷
<ElemInt>︷ ︸︸ ︷

"{a,b,c} "

<Prop>︷ ︸︸ ︷
"as a complete extension " "?"

Example (Derivation of a contrastive question on the acceptability of one
argument compared to another).

<Q> ::= "Why do we have "

<RefState>︷ ︸︸ ︷
<ElemInt>︷︸︸︷
"a "

<Prop>︷ ︸︸ ︷
"accepted "

<ContrState>︷ ︸︸ ︷
"and not "

<ElemInt>︷︸︸︷
"b "

"?"

Example (Derivation of a contrastive question on the non-acceptability of
several arguments in different situations).

<Q> ::= "Why do we have "

<RefState>︷ ︸︸ ︷
<ElemInt>︷ ︸︸ ︷

"{a,b,c} "

<Prop>︷ ︸︸ ︷
"accepted "

<ContInfo>︷ ︸︸ ︷
"in the AF (A,R) "

<ContrState>︷ ︸︸ ︷
"and not "

<ContInfo>︷ ︸︸ ︷
"in the AF (A’,R’) " "?"

Using the grammar described in this section, we are now able to define
some questions about the results of the argumentation process. In the next
section, we turn to how to answer some questions that can be generated using
our grammar.

4 Providing answers to questions about argu-
mentation

We begin by stating some assumptions that we rely on in order to define
our answers. We then continue by defining answers for questions about sets

20



of arguments being extensions for a certain semantics. Finally, we define
answers for questions about arguments being accepted in some extension for
a certain semantics.

4.1 Initial assumptions

In this section we make clear what are the assumptions we rely on for defining
our explanations.

First of all, we recall the context of our work and so our first assumption
(see in Sect.3.2):

A user asks for an explanation about the result of an
abstract argumentation process (H1)

Thus the user asks her question in reaction to a computer program, that
we called the system presenting her the result of an argumentative process.
We called the question’s context the result that is presented to the user, the
semantics under which it was computed and the Argumentation Framework
that was used to compute it.8 This behaviour is illustrated in Figure 9 in
which we consider a user interested in a specific stable extension presented
by the system.

Figure 9: The first assumption: a user reacts to a given result produced by
the system

Then we add some other assumptions. The first one is the following:
8Now, a transparent system should allow for the user to have access to this context.

Still, an efficient system could focus on communicating only what is asked for, that is, in
this case, the result of the argumentative process. The two are not mutually exclusive,
so the system could be designed for only communicating the result it computed, but also
always letting the user access the context that was part of the computation if required.
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The user is able to understand Argumentation Frameworks. (H2)

Indeed, the purpose of explanations would then be to select the relevant
parts of this context in order to facilitate the user’s inspection process. The
hypothesis we make is that, when presented with a graph interpreted as an
Argumentation Framework, the user is able to understand that the nodes
represent arguments and that the arcs represent conflicts between the argu-
ments. The main reason we feel confident about this assumption is that if
the user is not able to understand Argumentation Frameworks, it should not
be complicated to describe how to “read” one.

The next hypothesis we make is directly related to the first one:

The user knows Abstract Argumentation semantics. (H3)

Thus, we assume that the user is already versed in Abstract Argumenta-
tion. As such, the explanations we define are not yet for ordinary users.9

Finally, as noted in [16], explanation is a social process, one that does not
stop at the selection of an explanation. People receiving explanations expect
them to obey to a certain number of rules, and evaluate their quality based
on their adequecy with these rules. An example of such rules are Grice’s
maxims of conversation ([17]). Grice gave a set of simple rules that people
tend to follow when engaging in cooperative conversation. Cooperative con-
versation is a discussion that happens between two or more agents that all
make efforts in contributing to reaching a common goal which may be for
instance exchanging information or achieving social bonding. Grice firstly
gives one general principle to follow when engaging in cooperative conversa-
tion: “Make your conversational contribution such as is required, at the stage
at which it occurs, by the accepted purpose or direction of the talk exchange
in which you are engaged”. Grice calls this the Cooperative Principle. Grice
then gives four categories of maxims to follow in order to adhere to the Co-
operative Principle that he calls Quantity, Quality, Relation and Manner.
He gives the following maxims in these categories (directly cited from [17]) :

9This is however the objective we want to reach. Hence, we intend to drop this hy-
pothesis in future work, so that we are able to generate explanations for any user and not
only those that already know Abstract Argumentation.
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1. Quantity : (a) Make your contribution as informative as required (for
the current purpose of the exchange); (b) Do not make your contribu-
tion more informative than is required

2. Quality : (a) Do not say what you believe to be false; (b) Do not say
that for which you lack adequate evidence

3. Relation: (a) Be relevant

4. Manner : (a) Avoid obscurity of expression; (b) Avoid ambiguity; (c)
Be brief (avoid unnecessary prolixity); (d) Be orderly

Grice also gives what he calls supermaxims, namely “Try to make your con-
tribution one that is true” (Quality category) and “Be perspicuous” (Manner
category). And so the last assumption we make is:

Grice’s maxims are correct and should thus be followed when
engaging in cooperative conversation. (H4)

In addition, we argue that seeking and providing explanation in a question-
answer setting (such as the one we place ourselves in) certainly falls into the
category of cooperative conversation. As such, we will make efforts to define
explanations that adhere to these maxims, and use them as a way to evaluate
our explanations.

4.2 Implicit context in questions

In this section, we deal with a kind of equivalence class of questions. By that
we mean that some questions that are generated by our grammar have the
same meaning and ask for the same explanation, even though their formula-
tion is different. We illustrate the case we are interested in with the following
example.

Example. Let A = (A,R) be an Argumentation Framework and S ⊆ A be an
extension of A for semantics σ. Suppose that the system computed the result
S under semantics σ using the Argumentation Framework (A,R). Consider
then that the user asks the question "Why do we have x accepted in the
extension S for the σ semantics in the AF (A,R) ?". Consider now
that, instead of that question, the user asks "Why do we have x accepted
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?". We argue that, in this particular context, these questions are the same,
in the sense that they ask for the same answer (or equivalently, for the same
explanation).
Note. In the previous example, A = (A,R), S and σ are the context of the
question. For the rest of the paper, in examples and definitions, we will
always refer to the question’s context using these notations.

Through this example, we raise the idea that some questions, albeit con-
taining a different amount of explicit information, are in fact the same, de-
pending on the context in which they are asked. In this situation, we interpret
the less uttering question to be as informative as the more one. That is to
say, we consider that both questions contain the same additional, contextual,
information, which is only left implicit in the second question, whatever be
the reason why this contextual information is left implicit.

Another example shows that such missing contextual information can also
appear in contrastive questions but with a complete different impact.
Example. Let A = (A,R) be an Argumentation Framework and S ⊆ A be
an extension of A under semantics σ. Consider then that the user asks the
question "Why do we have x accepted in the extension S’ for the σ′

semantics in the AF (A’, R’) and not y ?". Consider now that, instead
of that question, the user asks "Why do we have x accepted and not y ?".
We argue that the contextual information in the contrast statement of each
question is different.

To begin with, please note that the contextual information in the first
question may not correspond to the question’s context, hence the different
notations with the primes. Through this second example, we see that the
implicit information in the contrast statement of both questions in fact refers
to the corresponding information of the reference statement. In the first
question, we understand that the user puts the acceptance of x in contrast
with the acceptance of y, both in the extension S ′ for semantics σ′ in the
AF (A′, R′). Similarly, in the second question, we understand that the user
puts the acceptance of x in contrast with the acceptance of y, both in the
extension S for semantics σ in the AF (A,R) (this information being left
implicit in the reference statement, it refers to the context of the question).
As such, if an information is not stated in the contrast statement, be it
element of interest, property or contextual information, we consider that
this information is nonetheless present and in fact equal to the corresponding
information in the reference statement.
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To sum up our discussion in this question, when dealing with a question
that is incomplete, in the sense that not all information is explicitly stated,
we treat it as equivalent to a complete question using a method to retrieve
the missing information. In the case of implicit information in the reference
statement, we use the question’s context to complete it. In the case of implicit
information in the contrast statement, we refer to the reference statement in
order to retrieve it.

4.3 Semantics Extensions

In this section, we focus on how to provide answers to a certain class of
questions, namely the ones whose property in the reference statement is to
be an extension of a given semantics. As an immediate consequence of this
choice and of the constitutive elements we use to generate the questions, the
elements of interest in the reference statement of such questions can only be
sets of arguments, and the contextual information can only be argumenta-
tion frameworks. We also make an additional assumption: we do not consider
contrastive questions in this section. Therefore, the scope of questions con-
sidered here is rather limited. It only consists of questions of the form "Why
do we have S [not] as an X extension ?" or "Why do we have S [not]
as an X extension in the AF (A,R) ?" with X ranging over conflict-free,
admissible, complete and stable, (A,R) being potentially any Argumentation
Framework and S being any subset of A.

With the way these questions are structured, we could be tempted to make
assumptions on whether S is in fact (or not) an extension of the considered
semantics prior to providing an answer. Indeed, a question like "Why do we
have S as an admissible extension ?" tends to imply that S is in fact an
admissible extension. We instead consider that the question merely implies
that S is perceived as being an admissible extension by the user. We thus
reject the assumption that such questions will not be asked on sets that are
not extensions. In other words, we consider that the user could be wrong.
As a consequence, the answers we define must provide elements supporting
whether or not S is an extension of the considered semantics independently
from how the user perceives it. That is to say, we should not restrain from
providing elements showing that the user is wrong.

Example. Consider the Argumentation Framework depicted on Figure 1.
Imagine that a user asks the question "Why do we have { a,b,c } as a
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complete extension ?". In this case, {a, b, c} is not a complete extension,
thus we would need to provide the elements that show what makes it impossi-
ble for {a, b, c} to be a complete extension. Alternatively, imagine that a user
asks the question "Why do we have { a,d } not as a complete extension
?". In this case, {a, d} is a complete extension, hence we should provide the
elements that show the reasons for this set to be such an extension.

The next step is to discuss what these elements are. To define them, we
adopt the modular view saying that the properties we consider (being an
extension of a semantics) are a conjunction of different conditions. In other
terms, to verify that a set of arguments is an extension of a given seman-
tics, we must verify that this set respects a certain number of conditions.
Alternatively, to verify that a set of arguments is not an extension of a given
semantics, we must verify that this set does not respect one condition out of a
certain number of them. This is undoubtedly a very basic viewpoint, but it is
supported by the fact that semantics are precisely defined this way. Hence,
to explain why a set of arguments is an extension of a certain semantics,
we provide the relevant parts of the argumentation framework that allow to
check that all the conditions defining being an extension for this semantics
are satisfied. Consequently, an explanation here is made of two components:

• A part (subgraph) of the argumentation framework

• A checking procedure (that answers YES or NO)

When providing explanations, we will focus on having the checking proce-
dures as simple and intuitive as possible. Thus, we will describe them infor-
mally in each case. In addition, if we wish to show an explanation for several
conditions at once, we may show the aggregation of the reasons for every
condition to hold.

The arguments of the extension which is given as input will be in blue
in the explanation subgraph, and arguments or attacks that may cause a
checking procedure to fail will appear in thick red.

4.3.1 Explanation for conflict-freeness

In light of the aspects discussed above, we go on by defining explanations for
the considered semantics. We begin with the conflict-free semantics. Recall
that a set of arguments is conflict-free if and only if there are no edges between
its members. Hence, if we are to show why a set of arguments is conflict-free,
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we must show a part of the graph that highlights the absence of edges within
this set. We begin with an example in order to provide an intuition of how
to define the explanation, and then move on to the formal definition.

a d

f

h

Figure 10: Explanation on why
{a, d, h, f} is conflict-free in Fig-
ure 1. All arcs between a, d, h and
f are represented and since there
are none, {a, d, h, f} is conflict-
free.

a d e

Figure 11: Explanation on why
{a, d, e} is not conflict-free in Fig-
ure 1. All arcs between a, d and
e are represented, and we see that
there is one between d and e.

Example. Consider the Argumentation Framework of Figure 1 and the ques-
tions "Why do we have {a,d,h,f} as a conflict-free extension ?" and
"Why do we have {a,d,e} as a conflict-free extension ?". Figures 10
and 11 show the answers for the first and second question respectively. Fig-
ure 10 in fact shows why {a, d, h, f} is conflict-free while Figure 11 in fact
shows why {a, d, e} is not conflict-free. The idea is to make sure that all the
arcs that are present within the given set are shown. Hence, if there is at
least one, we can conclude the set is not conflict-free and if there is none, we
can conclude it is.

Following the examples, we realise that we must compute a subgraph of
the Argumentation Framework that shows any arc between the arguments
of the set the question is about, if there are some. Preferably, this subgraph
should be as small as possible to get rid of any irrelevant information.

Definition 19 (Explanation for conflict-freeness). Let A = (A,R) be an
Argumentation Framework and S ⊆ A be an extension of A for semantics σ.
Consider a question generated using our grammar such that:

• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»
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• Production rule 3 is used with the value "S’ "

• Production rule 4 is used with the value "as a conflict-free exten-
sion "

The relevant subgraph to answer this question is10

A[S ′]V (E1)

The checking procedure for (E1) is to verify that the set of edges in the
resulting subgraph is ∅.

Note. We assume that the user could ask such a question on any possible set.
Thus, the answer does not depend on S and σ (the context of the question)
and instead depends on the information contained in the question. This note
can be applied to all the explanations for semantics of this section.

Figure 12 illustrates the built answer giving the subgraph and the check-
ing procedure (in this case, the used context is the context of the question,
and S = S ′).

Figure 12: Explanation (E1) about the conflict-freeness

By defining the explanation as an induced subgraph, we make sure to
have a reduced size as well as showing all the arcs that are concerned.

4.3.2 Explanation for admissibility

Next comes the admissible semantics. Recall that a set of arguments is admis-
sible if and only if it is conflict-free and all its arguments are acceptable with
respect to it. Since to be conflict-free is a condition to be admissible, part
of the explanation for admissibility is the explanation for conflict-freeness.

10This is the induced graph by S′
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The other part of the explanation involves the acceptability of all members
of the set with respect to the set itself, which can be understood as defending
the point of view represented by the set of arguments against its attackers.
Therefore, if we are to show why a set of arguments only contains arguments
that are acceptable with respect to it, we must show a part of the graph
highlighting that all the attackers of this set are attacked in return. We be-
gin by illustrating on some examples to give the intuition, and then formally
define these explanations.

a

b

c

d e

f g

h i

Figure 13: Explanation (E2) on
why {a, d, h, f} defends all its ar-
guments in Figure 1. All the at-
tackers of a, d, h and f are at-
tacked in return.

a

b

d e

Figure 14: Explanation (E2) on
why {b, e} does not only con-
tain arguments that are acceptable
w.r.t. {b, e} in Figure 1. b is at-
tacked by a and a is not attacked
by b or e in return.

Example. Consider the Argumentation Framework of Figure 1. Figures 13
and 14 show why {a, d, h, f} defends all its arguments and why {b, e} does
not. In Figure 13, we can see that all the attackers of a, d, h and f are the
endpoint of an arc whose origin is either a, d, h or f . In Figure 14, we see
that a attacks b and neither b or e defends b against this attack.

Following the examples, we realise that we must compute a subgraph
of the Argumentation Framework that includes both the set the question is
about and its attackers. The only arcs that are relevant are those from the
attackers to the set (to show that they are indeed attackers) and from the
set to attackers (to show whether the set defends itself or not). So we must
first compute an induced subgraph and then a specific partial subgraph of
this induced subgraph.

Definition 20 (Explanation for defence). Let A = (A,R) be an Argumen-
tation Framework and S ⊆ A. The relevant subgraph to explain whether or
not S contains only arguments that are acceptable w.r.t. S is

29



(
A[S ∪R−1(S)]V

)
[{(a, b) ∈ R | a ∈ R−1(S) and b ∈ S,

or a ∈ S and b ∈ R−1(S)}]E
(E2)

The checking procedure for (E2) is to verify that every argument that does
not belong to S in the resulting subgraph is the endpoint of an edge whose
origin is in S.

Remark. Informally, (E2) is the subgraph of A in which we only keep the
arguments of S, the attackers of S (so R−1(S)) and the edges for which one
extremity is an attacker of S and the other a member of S.

We can now define the explanation for admissibility. As we previously
said, this explanation is in two parts: one for conflict-freeness and one for
defence. Hence, the explanation for admissibility is defined as the set of these
two components. These two subgraphs may be aggregated into a single one,
using the union operator of Definition 10, hence giving an explanation for
admissibility as a single subgraph. Such an explanation, even if more concise,
may prevent a user to see at a glance the two parts which led to it. This
is the reason why we choose to keep the explanation subgraphs separated
in the definition of an explanation for admissibility. However, in examples
later in this article, we may consider the aggregation of the subgraphs as the
explanation.

Definition 21 (Explanation for admissibility). Let A = (A,R) be an Ar-
gumentation Framework and S ⊆ A be an extension of A for semantics σ.
Consider a question generated using our grammar such that :

• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 3 is used with the value "S’ "

• Production rule 4 is used with the value "as an admissible exten-
sion "

The relevant set of subgraphs (with their checking procedures) to answer this
question is given by

(E1) and (E2) (applied on S ′) (E3)
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Figure 15: Explanation (E3) about admissibility

Figure 15 illustrates on a very simple example the built answer giving the
subgraphs for (E1) and (E2) and the corresponding checking procedures (the
used context is the context of the question, and S = S ′.)

4.3.3 Explanation for completeness

We continue with the complete semantics. Recall that a set of arguments
is complete if and only if it is admissible and all the arguments that are
acceptable with respect to it are members of this set. Hence, part of the
explanation for completeness is the explanation for admissibility. The other
part of the explanation is about the membership of all acceptable arguments.
This can be understood as adopting a point of view in which we take all the
arguments we know we can defend (in a sense, we take as much as we are
“forced” to). Thus, if we want to show why a set of arguments contains all
the arguments it can defend, we must show a part of the graph highlighting
that the arguments this set could defend are either defended (and so, part of
it) or not defended (and so, not part of it). We begin by illustrating on some
examples to give the intuition, and then formally define these explanations.

Example. Consider the Argumentation Framework of Figure 1. Figures 16
and 17 show why {a, d, h, f} accepts all the arguments it defends and why
{b, c} does not. In Figure 16, we can see that all the arguments that can
be reached in two steps via the attack relation from {a, d, h, f} are in fact
a, d, h and f themselves. If we consider the attackers of these arguments,
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Figure 16: Explanation (E4) on
why {a, d, h, f} accepts all the ar-
guments it defends in Figure 1.
The arguments {a, d, h, f} could
defend are those that can be
reached in two steps via the rela-
tion from either a, d, h or f . They
are in fact a, d, h and f them-
selves, since they are all defended
and all belong to the set.

a

b

c

d e

Figure 17: Explanation (E4) on
why {b, c} does not accept all the
arguments it defends in Figure 1.
e is defended by b but does not be-
long to the set.

we observe that they are all attacked by a, d, h or f . Since these arguments
are all included in the set, we can conclude that {a, d, h, f} accepts all the
arguments it defends. In Figure 17, we see that e is defended by b, but does
not belong to the set {b, c}. Hence, {b, c} does not accept all the arguments
it defends.

Following the examples, we realise that we must compute a subgraph of
the Argumentation Framework induced by the set of arguments the question
is about and the arguments this set could defend and the attackers of these
arguments. Moreover, the only arcs that are relevant are those from the
attackers to the arguments the set could defend (to show that they are indeed
attackers) and from the set to these attackers (to show whether the set indeed
defends these arguments or not). So the corresponding answer will be a
specific partial subgraph of the induced subgraph.

Definition 22 (Explanation for reinstatement). Let A = (A,R) be an Argu-
mentation Framework and S ⊆ A. The relevant subgraph to explain whether
or not S contains all arguments that are acceptable w.r.t. S is
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(
A[S ∪R2(S) ∪R−1(R2(S))]V

)
[{(a, b) ∈ R | a ∈ R−1(R2(S)) and b ∈ R2(S)}
∪{(a, b) ∈ R | a ∈ S and b ∈ R−1(R2(S))}]E

(E4)

The checking procedure for (E4) is to verify that for every argument in
R2(S) in the resulting subgraph, if it is in S then all its attackers are the
endpoint of an edge whose origin is in S, otherwise (for the arguments that
are not in S) at least one of its attackers is not the endpoint of an edge whose
origin is in S.

Remark. Informally, (E4) is the subgraph of A in which we only keep the
arguments of S, the arguments that S could defend (so R2(S)) and the
attackers of these arguments (so R−1(R2(S))). The edges of this subgraph
are restricted to those from the attackers to the arguments S could defend
and from S to the attackers.

Much like with the explanation for admissibility, we now have what we
need to define the explanation for completeness. Once again, this explanation
is the set of its different components.

Definition 23 (Explanation for completeness). Let A = (A,R) be an Ar-
gumentation Framework and S ⊆ A an extension of A for semantics σ.
Consider a question generated using our grammar such that :

• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 3 is used with the value "S’ "

• Production rule 4 is used with the value "as a complete extension "

The relevant set of subgraphs (with their checking procedures) to answer this
question is given by

(E1) and (E2) and (E4) (applied on S ′) (E5)

Example. Consider the Argumentation Framework of Figure 1 and the ques-
tion "Why do we have {a,d,h,f} as a complete extension ?". Figure 18
shows the answer for this question.
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Conflict-freeness (E1): Defence (E2):

a d

f

h

Result of the checking pro-
cedure: no internal conflict
in {a, d, f, h}

a

b

c

d e

f g

h i

Result of the checking procedure: no
undefended argument in {a, d, f, h}

Reinstatement (E4):

a

b

c

d e

f g

h i

Result of the checking procedure: any argument defended by {a, d, f, h}
belongs to {a, d, f, h}

Figure 18: Explanation (E5) on why {a, d, h, f} is complete in Figure 1.
It is the sequence of Figures 10, 13 and 16. Note that, in this example, the
subgraph for the defense and the subgraph for the reinstatement are identical
but not the checking procedures.
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4.3.4 Explanation for stability

The last semantics we turn to is the stable semantics. Recall that a set
of arguments is stable if and only if it is conflict-free and attacks all the
arguments that do not belong to it. Therefore, part of the explanation for
stability is the explanation for conflict-freeness. The other part involves
the attack from S to its complement. This can be understood as adopting
a dominant point of view in which we want to contradict everything that
might be said against it. Consequently, if we want to show why a set of
arguments is stable, we must show a part of the graph highlighting that this
set of arguments attacks all the other arguments. We begin by illustrating
on some examples the intuition, and then formally define these explanations.

a

b

c

d e

f g

h i

Figure 19: Explanation (E6) on why {a, d, h, f} attacks all the other argu-
ments in Figure 1. For all other arguments in the Argumentation Framework,
there is an arc from a, d, h or f to that argument.

a

b

c

d e

f g

h i

Figure 20: Explanation (E6) on why {b, c, i} does not attack all the other
arguments in Figure 1. e and f are not attacked by b, c or i.

Example. Consider the Argumentation Framework of Figure 1. Figure 19
shows why {a, d, h, f} attacks all the other arguments in the Argumentation
Framework and Figure 20 shows why {b, c, i} does not. In Figure 19, we

35



can see that there is an arc from a, d, h or f 11 to every other argument in
the Argumentation Framework. In Figure 20 however, we see that there are
some arguments that are attacked by neither b, nor c, nor i (namely, e and
f).

Following the examples, we realise that we must compute a subgraph of
the Argumentation Framework that includes all the arguments. However,
the only arcs that are relevant are those from the set the question is about
to any argument that is not in that set. So we need to compute a specific
partial subgraph.

Definition 24 (Explanation for complement attack). Let A = (A,R) be an
Argumentation Framework and S ⊆ A. The relevant subgraph to explain
whether or not S attacks its complement is

A[{(a, b) ∈ R | a ∈ S and b /∈ S}]E (E6)

The checking procedure for (E6) is to verify that all arguments not be-
longing to S are attacked by an argument of S.

Remark. Informally, (E6) is the partial subgraph of A in which we only keep
the edges from S to arguments that are not in S.

In a similar fashion than with the previous semantics, we can now use the
explanation for complement attack and the explanation for conflict-freeness,
to define the explanation for stability. Again, it is defined as the set of its
components.

Definition 25 (Explanation for stability). Let A = (A,R) be an Argumen-
tation Framework and S ⊆ A be an extension of A for semantics σ. Consider
a question generated using our grammar such that :

• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 3 is used with the value "S’ "
11In this example, f does not attack any argument, so its presence in the explanation

is useless. Nevertheless, in a first step, it seems important to keep in each explanation all
the elements of the set interesting the user, in order to give her the most complete view
about the properties of this set. In future works, when we will study the notion of minimal
explanations, this constraint will be probably relaxed.
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• Production rule 4 is used with the value "as a stable extension "

The relevant set of subgraphs (with their checking procedures) to answer this
question is given by

(E1) and (E6) (applied on S ′) (E7)

Conflict-freeness (E1) : Complement Attack (E6) :

a d

f

h

Result of the checking pro-
cedure: no internal conflict
in {a, d, f, h}

a

b

c

d e

f g

h i

Result of the checking procedure: any
argument that ̸∈ {a, d, f, h} is attacked
by {a, d, f, h}

Figure 21: Explanation (E7) on why {a, d, h, f} is stable in Figure 1.

Example. Consider the Argumentation Framework of Figure 1 and the ques-
tion "Why do we have {a,d,h,f} as a stable extension?". Figure 21
shows the answer for this question.

4.4 Acceptance

In this section, we turn to providing answers to another class of questions,
namely the ones whose property in the reference statement is to be accepted
in an extension of a given semantics. By “to be accepted in an extension”, we
mean “to be part of an extension”. As such, this property can be understood
as the standard relation of set-inclusion regarding a set respecting a certain
number of conditions.

In addition, since we focus on questions in which the reference statement’s
property is to be accepted, we know that elements of interest can be either
one argument or a set of arguments, and all possible contextual information
can be explicitly mentioned. We also consider contrastive questions on ac-
ceptance, reducing a bit their scope by considering the additional assumption
that:
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If a contrast statement is present in the question, the contrast
is only made on elements of interest, and not on the property
or contextual information.

(H5)

That is to say, we suppose that the property and contextual information
in the contrast statement are the same as in the reference statement. This
assumption is specific to this section and does not apply to the entire doc-
ument. It only has the effect of focusing on a certain number of contrastive
questions and not all that are possible in this specific context (that is, with
the property in the reference statement being to be accepted in an extension
of a given semantics).

Example. "Why do we have a accepted ?" and "Why do we have {b,c}
accepted and not d ?" are examples of questions we are interested in, in
this section. "Why do we have a accepted in the extension {a,b,c} and
not in the extension {d,e,f} ?", "Why do we have {b,c} accepted and
not as a stable extension ?" and "Why do we have a accepted in the
AF (A,R) and not in the (A’,R’) ?" are examples of questions that we do
not consider in this setting.

In order to provide answers to this kind of questions, we rely on the
structure of the question and its context. It is common to consider that a
question of the form “Why P ?” is in fact a question of the form “Why P and
not Q ?”, with Q left implicit. P and Q are often referred to as the fact and
the foil respectively (see [16]). Thus, the key to this kind of question is to
be able to identify the implicit foil.

Now, in our case, the minimal question is "Why do we have e p ?" with e
an element of interest and p a property on e. The natural foil to this kind of
question would then be that e does not enjoy property p. In other words, the
question "Why do we have e p ?" is in fact the question "Why do we have e
p and not p ?" with p representing the absence of property p. Please note
that here, the fact and foil are not exactly “p” and “p” but rather “e being
p” and “e being p” (i.e. “e not being p”). So, the approach we use to answer
questions relies on the following hypothesis:

To explain “e being p” is to show that “e not being p” is not
possible. (H6)
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Put it differently, to explain “e being p” is to show its necessity. This is
already the approach we used in Section 4.3 on questions related to why a
given set of arguments is (or not) an extension of some semantics. Indepen-
dently from what the user perceives to be true, it holds that either “e being
p” or “e being p” is true, but not both. The choice we made was to show the
element supporting the truth, and thus that its contrary is not possible. In
the case of questions related to why an argument or set of arguments is (resp.
is not) part of an extension of some semantics, we adopt the point of view
of showing that the argument or set of arguments cannot not be part (resp.
be part) of that extension. That is, we directly compute the foil suggested
by the question and show it to the user so that she may come herself to the
conclusion that the argument or set of arguments must (resp. must not) be
part of that extension.

Example. Suppose we are in a situation in which the system works with
the Argumentation Framework of Figure 1 and is required to provide an
admissible extension. It presents the set {a, d, h} to the user, which is indeed
an admissible extension. Suppose then that the user asks "Why do we have
a accepted ?". In this case, the fact is “a being accepted” and the foil is
“a not being accepted”. To answer the user’s question, we thus show that “a
not being accepted” cannot hold. That is to say, we show the explanation for
admissibility on {d, h}. As {d, h} is, in fact, not an admissible extension of
Figure 1, the answer will show why {d, h} cannot be an admissible extension,
and thus why a must be accepted (in this case, to defend d).

Example. Suppose we are in the same context as in the previous example.
Suppose then that the user asks "Why do we have i not accepted ?". To
answer this question, we show the explanation for admissibility on {a, d, h, i}.
This will show the user what is problematic with trying to accept i in addition
of the arguments that were originally accepted. In this case, the user will see
that accepting i gives rise to an internal conflict between h and i.

Remark. With this method, it is entirely possible to ask a question that
suggests a valid extension that is different from the one originally presented
by the system. For instance, consider the same context as in the previous
example and suppose the user asks the question "Why do we have h accepted
?". The system would then show the explanation for admissibility on {a, d},
which happens to be, in fact, an admissible extension of Figure 1. In this
situation, our objective to show that it must be the case that h is accepted
is a failure. We will elaborate more on this in following examples and in
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Section 5.

In the following, we will make a distinction between questions of the form
Why do we have X accepted? (with X being either an argument x or a set of
arguments S) and questions of the form Why do we have X not accepted?.
The difference lies on using a negation on the property in the case of the
latter questions. Hence, we will call the former positive questions and the
latter negative questions.

4.4.1 Non-contrastive questions

In this section, we precisely define the answers to non-contrastive questions
on acceptance. Taking into consideration the variation on elements of interest
in the questions (an argument or a set or arguments), there are 2 possible
positive non-contrastive questions and 2 possible negative non-contrastive
questions.

In the case of a question on the acceptance of a set of argument, we
consider that the set represents an aggregation of arguments. That is to say,
the question is understood as a concatenation of questions on the acceptance
of one argument, one for each argument of the set. As such, we will group
both cases together by considering the case of a single argument equivalent
to the case of a singleton set containing this argument.

The questions are answered using the principles illustrated above. We
begin with the positive questions.

Definition 26 (Explanation for positive non-contrastive question on accep-
tance of a set of arguments). Let A = (A,R) be an Argumentation Frame-
work and S ⊆ A an extension of A for semantics σ. Consider a question
generated using our grammar such that :

• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 3 is used with the value "S’ "

• Production rule 4 is used with the value "accepted "

The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on S \ S ′.
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Notice that in the subgraph which will be presented as an explanation,
only the arguments of S \ S ′ will be in blue (the explanation amounting to
show why this set is or is not an extension under σ).

Example. Consider the Argumentation Framework of Figure 1 and the ad-
missible extension {a, d, h}. Suppose the user asks the question "Why do we
have a accepted ?". Figure 22 shows the corresponding answer: {d, h}
without a is not admissible (it is conflict-free but does not respect the de-
fence property) and thus that a is necessary in the extension presented by
the system.12

Step 1, explanation (E1):
conflict-freeness of {d, h}
(checking procedure: no
arc)

d

h

Result of the checking pro-
cedure: OK
So the absence of a is not
a problem for the conflict-
freeness of {d, h}

Step 2, explanation (E2): defence for
{d, h} (checking procedure: every argu-
ment ̸∈ {d, h} is the endpoint of an edge
coming from {d, h})
b

d

h i

Result of the checking procedure: NOK
So the absence of a is a problem for the
defence of {d, h}

Figure 22: Explanation on why a is accepted in the admissible extension
{a, d, h}: explanation (E3) on why {d, h} is not admissible

We now turn to negative questions. The methodology is very similar to
the positive questions, the difference being that instead of removing argu-
ments from the extension, we add them.

Definition 27 (Explanation for negative non-contrastive question on accep-
tance of a set of arguments). Let A = (A,R) be an Argumentation Frame-
work and S ⊆ A an extension of A for semantics σ. Consider a question
generated using our grammar such that :

12Note that, for some element the user is interested in, it could happen that the removal
of this element does not produce any effect. This point will be discussed in Section 5.
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• Production rule 1 does not yield the symbol «ContrState»

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 3 is used with the value "S’ "

• Production rule 4 is used with the value "not accepted "

The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on S ∪ S ′.

Notice that in the subgraph which will be presented as an explanation,
the arguments of S ∪ S ′ will be in blue (the explanation amounting to show
why S ∪ S ′ is or is not an extension under σ).

a

b

c

d e

f g

h i

Figure 23: Explanation on why a is not accepted in the complete extension
{h}: explanation (E5) on why {a, h} is not complete. Considering {a, h},
the conflict-freeness is satisfied (no arc between a and h), but the defence
property is not (a cannot be defended by h or by itself), nor is the rein-
statement property (a defends d, which is not in the considered set). So the
checking procedures corresponding to the step of defence and to the step of
reinstatement fail.

Example. Consider the Argumentation Framework of Figure 1 and the com-
plete extension {h}. Suppose the user asks the question "Why do we have a
not accepted ?". Figure 23 shows the answer for this question.

4.4.2 Contrastive questions

In this section we turn to precisely define the answers to contrastive ques-
tions on acceptance. We begin by extending the distinction made between
questions by the presence/absence of a negation on the property to con-
trastive questions, using the property of the contrastive statement as well
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as the property of the reference statement. This yields 4 types of questions:
positive-positive, positive-negative, negative-positive and negative-negative.
Taking into consideration the variation on elements of interest in the ques-
tions, there are 2 possible questions for each type. Please note that since we
use "and not" as the connection between the reference statement and the
contrast statement, we must reverse the type of the property expressed in
the contrast statement.

Example. The question "Why do we have a not accepted and not b ac-
cepted ?" is a negative-negative question, although the contrast statement’s
property is expressed as positive. Recalling the way we deal with implicit
information, the question "Why do we have a accepted and not b ?" is
then a positive-negative question.

To provide answers to these questions, we treat the contrast statement
the same way as the reference statement. Note that a contrastive question is
not a sequence of two questions; there is a specificity given by the contrast
that influences the building of the answer. So the resulting graph can be
obtained using a combination of the previous definitions given for the refer-
ence statement and for the contrast statement. We will only cover the case
in which the element of interest is a set of arguments. The case in which it
is one argument is dealt with in the same way as in the previous section.

Definition 28 (Explanation for positive-positive contrastive question on
acceptance of a set of argument). Let A = (A,R) be an Argumentation
Framework and S ⊆ A be an extension of A for semantics σ. Consider a
question generated using our grammar such that :

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 6 is used and only yields the symbol «ElemInt» and
«Prop»

• Production rule 3 is used with the value "S’ " in the reference state-
ment and "S” " in the contrast statement

• Production rule 4 is used with the value "accepted " in the reference
statement and "not accepted " in the contrast statement
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The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on (S \ S ′) \ S ′′.13

In the subgraph which will be presented as an explanation, only the ar-
guments of (S \ S ′) \ S ′′ will be in blue (the explanation amounting to show
why such a set is or is not an extension under σ).

a

b

c

d e

f g

h i

Figure 24: Explanation on why {b} and {c} are accepted in the stable exten-
sion {b, c, e, h}: explanation (E7) on why {e, h} is not stable. Without b and
c, e and h alone fail to attack every other argument in the Argumentation
Framework. Hence, b and c are necessary in this stable extension. So it is
the checking procedure corresponding to the step of complement attack that
fails.

Example. Consider the Argumentation Framework of Figure 1 and the stable
extension {b, c, e, h}. Suppose the user asks the question "Why do we have
{b} accepted and not {c} not accepted ?". Figure 24 shows the answer
for this question.

Definition 29 (Explanation for positive-negative contrastive question on
acceptance of a set of argument). Let A = (A,R) be an Argumentation
Framework and S ⊆ A be an extension of A for semantics σ. Consider a
question generated using our grammar such that :

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 6 is used and only yields the symbol «ElemInt»

• Production rule 3 is used with the value "S’ " in the reference state-
ment and "S” " in the contrast statement

13So it is the combination of Def. 26 over the reference statement and Def. 26 over the
contrast statement.
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• Production rule 4 is used with the value "accepted "

The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on (S \ S ′) ∪ S ′′.14

In the subgraph which will be presented as an explanation, the arguments
of (S \S ′)∪S ′′ will be in blue (the explanation amounting to show why such
a set is or is not an extension under σ).

a

b

c

Figure 25: Explanation of why {d, h} is accepted and not {b, c} in the conflict-
free extension {a, d, h}: explanation (E1) on why {a, b, c} is not conflict-free.
We see that removing d and h while adding b and c gives rise to internal
conflicts in the extension. So it is the checking procedure corresponding to
the step of conflict-freeness that fails.

Example. Consider the Argumentation Framework of Figure 1 and the conflict-
free extension {a, d, h}. Suppose the user asks the question "Why do we have
{d,h} accepted and not {b,c} ?". Figure 25 shows the answer for this
question.

Definition 30 (Explanation for negative-positive contrastive question on
acceptance of a set of argument). Let A = (A,R) be an Argumentation
Framework and S ⊆ A be an extension of A for semantics σ. Consider a
question generated using our grammar such that :

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 6 is used and only yields the symbol «ElemInt»

• Production rule 3 is used with the value "S’ " in the reference state-
ment and "S” " in the contrast statement

14So it is the combination of Def. 26 over the reference statement and Def. 27 over the
contrast statement.
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• Production rule 4 is used with the value "not accepted "

The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on (S ∪ S ′) \ S ′′.15

In the subgraph which will be presented as an explanation, the arguments
of (S ∪S ′) \S ′′ will be in blue (the explanation amounting to show why such
a set is or is not an extension under σ).

a

b

c

d e

f g

h i

Figure 26: Explanation on why {b, c} is not accepted and not {a, d} in the
stable extension {a, d, i, f}: explanation (E7) on why {i, f, b, c} is not stable.
If we add b and c to the extension while removing a and d we see that the
extension fails to meet the conditions for being stable (e is not attacked by
any argument of the extension). So it is the checking procedure corresponding
to the step of complement attack that fails.

Example. Consider the Argumentation Framework of Figure 1 and the stable
extension {a, d, i, f}. Suppose the user asks the question "Why do we have
{b, c} not accepted and not {a, d}?".16 Figure 26 shows the answer for
this question.

Definition 31 (Explanation for negative-negative contrastive question on
acceptance of a set of argument). Let A = (A,R) be an Argumentation
Framework and S ⊆ A be an extension of A for semantics σ.

• Production rule 2 does not yield the symbol «ContInfo»

• Production rule 6 is used and only yields the symbol «ElemInt» and
«Prop»

15So it is the combination of Def. 27 over the reference statement and Def. 26 over the
contrast statement.

16Following our interpretation of implicit contexts (see Sect. 4.2), this question is in fact:
"Why do we have {b, c} not accepted and not {a, d} not accepted?"
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• Production rule 3 is used with the value "S’ " in the reference state-
ment and "S” " in the contrast statement

• Production rule 4 is used with the value "not accepted " in the ref-
erence statement and "accepted " in the contrast statement

The relevant subgraphs and checking procedures to answer this question are
given by the explanation for σ on (S ∪ S ′) ∪ S ′′.17

In the subgraph which will be presented as an explanation, the arguments
of (S∪S ′)∪S ′′ will be in blue (the explanation amounting to show why such
a set is or is not an extension under σ).

a

b

c

d e

f g

h i

Figure 27: Explanation on why {h, f} and {d} are not accepted in the com-
plete extension {b, c, e}: explanation (E5) on why {b, c, e, h, f, d} is not com-
plete. If h, f and d are added to the extension, internal conflicts appear.
So it is the checking procedure corresponding to the step of conflict-freeness
that fails.

Example. Consider the Argumentation Framework of Figure 1 and the com-
plete extension {b, c, e}. Suppose that the user asks the question "Why do we
have {h,f} not accepted and not {d} accepted ?". Figure 27 shows the
answer for this question.

4.5 Synthesis about answers

Before we discuss the quality of our explanations, we give in this section a
synthesis about our approach in the argumentation context.

17So it is the combination of Def. 27 over the reference statement and Def. 27 over the
contrast statement.
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First of all, our assumptions (the two last ones concerning only a category
of questions, those about the acceptance):18

(H1): A user asks for an explanation after she has been presented the result
of a Formal Argumentation process (typically the selection of arguments
via a semantics) by a program that we will refer to as the system.

(H2): The user is able to understand Argumentation Frameworks.

(H3): The user knows Abstract Argumentation semantics.

(H4): Grice’s maxims are correct and should thus be followed when engaging
in cooperative conversation.

(H5): If a contrast statement is present in the question, the contrast is only
made on elements of interest, and not on the property or contextual
information.

(H6): To explain “e being p” is to show that “e not being p” is not possible
with e being an element of interest and p being a property for e.

Then, let A = (A,R) be the Argumentation Framework that is the main
component of the system, the questions we are interested in:

Questions about semantics extensions: let S be the set of arguments
produced by the system for a given semantics σ (σ can be either the
conflict-freeness, or the admissibility, or the completeness, or the sta-
bility), and let consider that the user asks about S’ that denotes a set
of arguments,

Q1 "Why do we have S’ [not] as an extension for semantics σ?"
(S’ can be or not equals to S)

Note that Question Q1 will be instantiated wrt σ. Moreover this ques-
tion uses some subquestions related to the principles behind the seman-
tics (so the defence, the reinstatement and the complement attack).

Questions about acceptance: let S be the set of arguments produced by
the system for a given semantics σ and let consider that the user asks
about S’, S" that denote sets of arguments (eventually singletons),

18Note that the assumption (H6) could be also used in the questions about of semantics
extensions. Nevertheless, due to the way our answers are built, it is useless.
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Q2 (question +): Why do we have S’ accepted?

Q3 (question −): Why do we have S’ not accepted?

Q4 (question ++): Why do we have S’ accepted and not S" not
accepted?

Q5 (question +−): Why do we have S’ accepted and not S" ac-
cepted?

Q6 (question −+): Why do we have S’ not accepted and not S"
not accepted?

Q7 (question −−): Why do we have S’ not accepted and not S"
accepted?

The answers corresponding to Question Q1 are given in Tables 2 and 3.
The answers corresponding to questions Q2 to Q7 are given in Table 4.
It is worth noting that some contrastive questions are equivalent to non

contrastive ones:

• given that (S \ S ′) \ S ′′ = S \ (S ′ ∪ S ′′), Q4: Why do we have S’
accepted and not S" not accepted? is equivalent to Q2: Why do
we have S’ ∪ S" accepted?. So a positive-positive question can be
expressed as a positive question.

• given that (S ∪ S ′) ∪ S” = S ∪ (S ′ ∪ S ′′), Q7: Why do we have S’
not accepted and not S" accepted? is equivalent to Q3: Why do we
have (S’ ∪ S") not accepted?. So a negative-negative question can
be expressed as a negative question.

This can lead to a little simplification of our approach, considering only 2
kinds of contrastive questions, the positive-negative and the negative-positive
questions (the other ones being transformed into non contrastive questions).

5 Quality of Explanations
In this section, we wish to provide several insights on the quality of the
explanations we propose in this paper. To begin with, we clearly stated that
we wished to adhere to Grice’s maxims as much as possible. Thus, we use
these maxims to evaluate our explanations.
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Informal question about defence (Explanation (E2)):
Qdef “Does S ′ contain only arguments that are acceptable w.r.t. S ′?”

Subgraph:

(
A[S ∪R−1(S ′)]V

)
[{(a, b) ∈ R | a ∈ R−1(S ′) and b ∈ S ′,

or a ∈ S ′ and b ∈ R−1(S ′)}]E
Checking Proc.: every argument that does not belong to S ′ in the result-

ing subgraph is the endpoint of an edge whose origin is
in S ′

Informal question about reinstatement (Explanation (E4)):
Qreins “Does S ′ contain all arguments that are acceptable w.r.t. S ′?”

Subgraph:

(
A[S ∪R2(S ′) ∪R−1(R2(S ′))]V

)
[{(a, b) ∈ R | a ∈ R−1(R2(S ′)) and b ∈ R2(S ′)}
∪ {(a, b) ∈ R | a ∈ S ′ and b ∈ R−1(R2(S ′))}]E

Checking Proc.: for every argument in R2(S ′)’, if it is in S ′ then all its
attackers are the endpoint of an edge whose origin is in
S ′, otherwise (for the arguments that are not in S ′) at
least one of its attackers is not the endpoint of an edge
whose origin is in S ′

Informal question about complement attack (Explanation (E6)):
QcompAtt “Does S ′ attack its complement?”

Subgraph: A[{(a, b) ∈ R | a ∈ S ′ and b /∈ S ′}]E
Checking Proc.: all arguments not belonging to S ′ are attacked by an

argument of S ′

Table 2: The answers given for some informal questions about the underlying
principles used in semantics (the subgraph is the one that is built to answer
the question and the checking procedure is always applied on this subgraph)
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Q1 for conflict-freeness (Explanation (E1)):
"Why do we have S’ [not] as a conflict-free extension?"

Subgraph: A[S ′]V
Checking Proc.: The set of edges is ∅

Q1 for admissibility (Explanation (E3)):
"Why do we have S’ [not] as an admissible extension?"

Subgraph: The ones for Q1 about conflict-freeness (E1)Checking Proc.:
Subgraph: The ones for the question about defence (E2)Checking Proc.:

Q1 for completeness (Explanation (E5)):
"Why do we have S’ [not] as a complete extension?"

Subgraph: The ones for Q1 about conflict-freeness (E1)Checking Proc.:
Subgraph: The ones for the question about defence (E2)Checking Proc.:
Subgraph: The ones for the question about reinstatement (E4)Checking Proc.:

Q1 for stability (Explanation (E7)):
"Why do we have S’ [not] as a stable extension?"

Subgraph: The ones for Q1 about conflict-freeness (E1)Checking Proc.:
Subgraph: The ones for the question about complement attack (E6)Checking Proc.:

Table 3: The answers given for Question Q1, for each semantics. For some
semantics, several subgraphs (and checking procedures) exist in the expla-
nation, one for each underlying principle used in this semantics (S ′ is an
element given by the user in her question)
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Q2: Why do we have S’ accepted?
Subgraph: The ones for Q1 applied to σ:

"Why do we have S \ S ′ as an extension for σ?"Check. Proc.:
Q3: Why do we have S’ not accepted?

Subgraph: The ones for Q1 applied to σ:
"Why do we have S ∪ S ′ as an extension for σ?"Check. Proc.:

Q4: Why do we have S’ accepted and not S" not accepted?
Subgraph: The ones for Q1 applied to σ:

"Why do we have (S \ S ′) \ S ′′ as an extension for σ?"Check. Proc.:
Q5: Why do we have S’ accepted and not S" accepted?

Subgraph: The ones for Q1 applied to σ:
"Why do we have (S \ S ′)∪ S ′′ as an extension for σ?"Check. Proc.:

Q6: Why do we have S’ not accepted and not S" not accepted?
Subgraph: The ones for Q1 applied to σ:

"Why do we have (S ∪ S ′) \ S ′′ as an extension for σ?"Check. Proc.:
Q7: Why do we have S’ not accepted and not S" accepted?

Subgraph: The ones for Q1 applied to σ:
"Why do we have (S ∪S ′)∪S ′′ as an extension for σ?"Check. Proc.:

Table 4: The answers given for questions Q2 to Q7 wrt a given semantics
σ (S is the result presented by the system to the user before she asks for an
explanation and S ′, S ′′ are the elements given by the user in her question)
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First, consider the maxims of Quantity that require to say what is nec-
essary, but also to not say what is not necessary. We claim that our explana-
tions contain both the necessary information and unnecessary information.
The former results from our choice to answer to questions of the (minimal)
form "Why do we have e p ?", with e an element of interest and p a property
on e, by showing that “e not being p” must not be the case, the latter results
from our choice to look for all reasons that could allow to affirm it. To illus-
trate for the case of explanations on why a set of arguments is an extension
under some semantics or not, we use Figures 10 and 11 on conflict-freeness.
It is easy to see that all the necessary information is present in these ex-
planations. On both cases, if one node (or arc) would have been discarded,
we could have missed an information leading to a change of conclusion. On
the other hand, one can see that in general, the explanations display more
information than is necessary. In Figure 11, the arc from d to e is sufficient to
conclude that the set is not conflict-free. Thus, the node a could be removed
without changing the status of the conclusion. Similar observations can be
made on the other explanations on why a set of arguments is an extension
under some semantics or not. Concerning explanations on the acceptance of
arguments in an extension, we already argued in the beginning of Section 4.4
that our explanations contain the necessary information. However, one can
see, for instance on Figure 22, that these explanations may also contain un-
necessary information. Indeed, in this example, the main reason for {d, h}
to not be admissible after the removal of a is that d is no longer defended by
a. Hence, one could consider the information shown about h defending itself
against i as superfluous.

The other categories of maxims are more straightforward. On the maxims
of Quality, it is obvious that, since our explanations are computed using
information which is available to both the system and the user, we have all
the evidence needed to support them. Moreover, we believe that computing
explanations using induced and partial subgraphs may never lead to false
explanations, unless the original AF is twisted and modified prior to the
explanations’ computation, which is never done here. Concerning the maxim
of Relation, one might consider the unnecessary information that is present
in our explanations to be not relevant. On the other hand, we also make sure
that all the relevant information is contained in our explanations. Finally,
we believe that the category of Manner has more to do with a translation
from our graphical explanations to a dialogue in natural language, which we
are not interested in yet.
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One of the strengths of our explanations is that they are built in a mod-
ular way, and thus rely on the specific features of the semantics at hand. We
motivate our choice by showing why, in our opinion, explanations cannot rely
only on a feature that is common amongst all the semantics such as defense.
Indeed, explanations should make more understandable how results are ob-
tained, how they are computed. Thus, one of the problem with explaining
all semantics in the same way (that is, for instance, only showing defense in
every case) might infer the incorrect bias that all semantics are in fact the
same, since the explanations show that they are all computed in the same
way. Moreover, it is worth noting that not all semantics are defined based
on this notion of defence. For instance, stable extensions are stable because
they attack all the arguments that are not part of it. Thus, when asking
why a set of arguments is stable, or why some arguments are part of a stable
extension, or why an argument is credulously/skeptically accepted under sta-
ble semantics, it seems misplaced, or even confusing, to invoke the fact that
stable extensions defend all their arguments. The same goes for preferred or
grounded semantics, since they add a constraint of maximality/minimality
to the selection of arguments. One could even argue that it would not be
a relevant answer for admissible extensions, because these extensions might
defend arguments that are not part of them. Thus, justifying the presence
of an argument in an admissible extension merely by the fact that it is de-
fended by the other arguments might lead to the legitimate reply “Then why
is this other argument not in the extension although it is defended as well?”.
As such, only invoking defence for justifying the selection of an argument
only seems relevant in the case of complete semantics, where indeed, defence
equates to acceptance.

It is worth noting that sometimes our explanations consist of the entire
original AF (see for instance Figure 27). The scope of our explanations is
fairly restrained in general (in the worst case, we keep arguments that are in
a “distance” of 3 from the arguments19 of the set for which we compute an
explanation in the case of completeness). However, even with such a limited
depth of search, if the set from which we begin the search contains arguments
that are sparse and span all across the AF, one can easily see that the search
will tend to cover the entire AF. Thus, in these situations, the explanations
will indeed tend to be the entire AF. However, we have also seen through the
examples of this paper that when considering less large sets, or sets that do

19So the elements that belong to R−1(R2(S)) for a given set S of arguments.
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not span across all the AF, the explanations tend to be more local and to be
restrained to precise areas of the AF.

Our explanations concern all the classical semantics defined by Dung,
except the grounded and the preferred ones. This is because our definitions
of explanations are graphical and rely on the modular aspect of semantics. In
particular, the grounded and preferred semantics include an aspect of mini-
mality and maximality respectively. Minimality (resp. maximality) may be
shown by answering the question on why the set reduced (resp. augmented)
of a non empty subset of arguments is not an extension under the considered
semantics, and this, for any such subset. These subsets may be numerous,
and the explanation that would hence be given may not be that intelligible.
Such a solution is not that satisfactory in this sense. Another solution would
consist to let the user ask why a given set she thought would be a minimal
(resp. maximal) extension, is not. This would not be a direct explanation
of why a set is minimal or maximal, but it may be helpful to a user who
would have had in mind a different set. However, finding a direct graphical
explanation of minimality and maximality (and then, of the grounded and
preferred semantics) is a challenge for future work.

a

b

c

d

Figure 28: Explanation (E3) on why h is accepted in the admissible extension
{a, d, h}. The removal of h does not lead to an internal conflict or a defence-
less argument. Thus, h is not necessary in order to obtain the admissibility.

To finish with, we wish to focus on situations like the one presented on
Figure 28. In this case, we supposed that the system delivered {a, d, h} as an
admissible extension and that the user asked the question "Why do we have h
accepted ?". Following our methodology expressed in our assumption (H6),
the system thus attempts to show how it cannot be the case that h is not
accepted by showing what would happen if h is indeed not accepted. In
this case, this amounts to showing the explanation for admissibility on {a, d}
(Figure 28) and looking for a problematic situation like an internal conflict
or a defenceless argument. However, such a situation does not occur since
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{a, d} is also an admissible extension in Figure 1. In consequence, our goal
to show that h is necessary in the result presented by the system has failed.
In order to solve this kind of problem, two possibilities could be taken into
account:

1. We could relax our assumption (H6) and define an additional answer
showing that the presence of h is not a problem (this additional answer
completing the answer we already build based on the absence of h).

2. We could consider that the original question of the user becomes “If
h being accepted is not necessary, then why is h accepted?”. This
question could naturally be interpreted as a suggestion from the user
to the system to change its result. In other terms, the user’s question
could be interpreted as offering feedback to the system. So a possible
improvement of our system could be the adaptation of its explanations
to the preferences of the user by a sequence of such questions. The
same can be said about the addition of arguments in the result instead
of their removal.

Of course, this focused example on a specific question in a specific context
can be extrapolated to a more general case, in which the computation of an
answer results in an explanation for an eligible result.

6 Related works
In this section we present existing works on the computation of explanations
for Abstract Argumentation, and we compare them to our approach.

Following the line of [2], our work is an exploration of AF-based expla-
nations. This survey distinguishes works that define explanations as: sub-
graphs, changes, extensions, dialogue-games.

We begin with the category of subgraphs, in which our work falls. Another
example of work defining explanations as subgraphs is [9]. It was categorised
in the second category in [2], a choice we do not agree with since the authors
of [9] seek to explain the credulous non acceptance of some argument, not
by changing its status, but by finding a strongly rejecting subframework. A
strongly rejecting subframework is an induced subgraph of an Argumentation
Framework that does not credulously accept an argument, and nor do its
supergraphs (that are still induced subgraphs of the original AF). As such,
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strongly rejecting subframeworks capture the core argumentative reasons for
why an argument is not credulously accepted under a certain semantics. Our
approach differs in that we define explanations for why a set of arguments
is (not) an extension of a given semantics, or why some arguments are (not)
part of an extension. In addition, there are some semantics not considered
in our work (namely the grounded and preferred semantics), our graphs are
not only induced subgraphs but also partial subgraphs, our second kind of
explanations are contrastive, and each explanation results from the question
it answers. [10] also studies subgraphs as explanations for the credulous non
acceptance of some argument for a given semantics (except the grounded
semantics). The difference here is that the authors consider both induced
and partial subgraphs as explanations. However, they do it separately, and
do not consider a combination of both like we do in our work.
A specific kind of graph that is used in explaining argumentative results is
defence trees. Defence trees are trees where nodes are arguments and each
successor of a node is an attacker of that node. As such, they can be used to
prove whether an argument is defended or not. While not being subgraphs
technically speaking, one can easily retrieve the subgraph represented by a
defence tree using the original AF. Some works, like [11], use defence trees
as explanations for argumentative results. The authors of [11] argue that a
defence tree is a dialogical explanation for an argument since it can be used
to show that it is defended. Other works, like [3], use them to compute their
notion of explanations.

We now turn to the second category, which concerns changes. It consists
in identifying what elements to remove from the AF in order to modify a
given result. This is the method used in [18], in which the authors explain
why an argument is not credulously accepted under admissibility. Their ex-
planations consist of sets of arguments or attacks to remove from the AF in
order to make the considered argument credulously accepted under admissi-
bility in the resulting subgraph. Such sets were also studied in [19] (in which
they were called “diagnosis”) although the authors restrained themselves to
the case where a given semantics does not yield any extension. Diagnoses
are parts of the study of [10], which provides a way of computing them (as
well as explanations as subgraphs) using logical formulas and provide com-
plexity results. As noted in [10], diagnoses can be seen as a kind of dual of
the computation of induced and partial subgraphs. Indeed, each diagnosis
infers an induced or partial subgraph, and conversely, each induced or partial
subgraph is computed using (the complement of) a diagnosis. As such, one
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could wonder what are the properties of the complement of a set used to
compute a certain induced or partial subgraph, or what can be said about
the induced or partial subgraph computed from the complement of a given
diagnosis.

The third category of approach consists of taking sets of arguments as
explanations. This is probably the most widely used approach to this prob-
lem. In most of the works using this method, the point of view is to consider
that explanation equates to justification. Hence the restriction to sets of ar-
guments as explanations, since given a set of arguments, the original AF can
be used to justify it by the mean of the attack relation. In [3], the authors
define an explanation semantics, called related admissibility, which provides
all the reasons why an argument belongs to an admissible set. The idea is
to get rid of all the arguments that are not relevant for the acceptance of
the considered argument, that is, those that are not connected to it via the
attack relation. In [4, 5], the authors propose a basic framework to compute
explanations as sets of arguments for the credulous/skeptical acceptance or
non-acceptance of an argument. It is a framework for explanations since
it can be parameterised in order to modify the way explanations are com-
puted. In their work, the authors focus on some human biases used to select
explanations such as simplicity (taken as minimality), sufficiency and neces-
sity. In subsequent works ([13, 20]) the authors extend their framework to
adapt it to Structured Argumentation (adding another parameter to con-
trol the form of the explanation) and to compute contrastive explanations
(the intersection of why an argument (the fact) is accepted and why a set
of arguments (the foils) are not). [6] proposes strong explanations for cred-
ulous acceptance of a set of arguments under a given semantics. A strong
explanation is a set of arguments such that for every subgraph induced by a
superset of the explanation, there exists an extension of the considered se-
mantics that includes the set to explain. As such, the authors use subgraphs
but only as means to compute their explanations rather than as explanations
themselves. Some other works define their explanations from the observation
that in the computation of an extension, some parts are non-deterministic
choices, while others, deterministic, result from the first ones. For instance,
in [7], the authors base their approach on the observation that each Strongly
Connected Component (SCC) of an Argumentation Framework can be seen
as making a choice for accepting conflict-free sets of arguments. From these
choices results the rest of the accepted arguments. Thus, in a set of argu-
ments, each argument can be explained by the set of arguments that were
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chosen in a given SCC. Similarly, in [8], the authors observe that complete
and admissible semantics are computed firstly by computing the grounded
(resp. strongly admissible) extension, then making choices in even cycles,
and finally computing the grounded (resp. strongly admissible) extension
again. As such, they define the arguments chosen in the even cycles as the
explanations for some complete or admissible extension.
Although the links between subgraph-based methods of explanation and
extension-based methods are less direct than with diagnosis-based methods,
there are still some that can be studied. Indeed, one could wonder what are
the links between a subgraph computed by a subgraph-based method and
the subgraph induced by the set computed by an extension-based method.
Conversely, what can be said about the set that was used to compute an
induced subgraph and the set computed by an extension-based method? Is
the explanation of an extension-based method included in the explanation of
a subgraph-based method? What about the converse? Those are questions
that could help explore the links between the two methods. At a more funda-
mental level, one may note that the subgraph induced by the set computed
by an extension-based method may contain more attacks than the subgraph
that may be defined directly as an explanation. This may reveal that, in
extension-based explanations, arguments are considered as the only relevant
elements to explain, while in subgraph-based approaches, attacks and thus
the structure of the AF are also considered relevant.

7 Conclusion and Future Work
To conclude, we have provided a general, methodological and procedural ex-
planation system. This system relies on a formal grammar to generate the
questions to which answers are required. The grammar is designed in such a
way that it can be instantiated for any domain, using the notion of constitu-
tive elements, provided that the context of the questions is known. Moreover,
given an instance of this grammar, it is easy to adapt it to different ques-
tions by modifying the constitutive elements that are used. In this paper, we
focused on a particular instance for the domain of Abstract Argumentation.

The instance we gave generates a wide range of questions, but we only
considered some of them. More precisely, we dealt with questions related to
why a given set of arguments is (or not) an extension under some semantics
and questions related to why a given argument or set of arguments is (or not)
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part of an extension of some semantics. In the former case, we stopped at
non-contrastive questions, while we studied a particular case of contrast in the
latter case, namely the contrast with another argument or set of arguments.

The answers we provide for these questions (i.e. explanations) are defined
as subgraphs, tied to how a given question is generated using the grammar.
That is, we use both the question’s structure as well as its context to de-
termine what kind of the subgraph to compute, and then use the content
of the questions to compute the correct subgraph. Moreover, the context
of the question allows for both dealing with the case of implicit information
in the question and defining contrastive answers. The choice of subgraphs
as explanations naturally yields visual explanations that are more easily un-
derstandable, and can always be used to potentially generate other forms of
explanations.

The answers to questions related to why a given set of arguments is
(or not) an extension under some semantics make use of the modularity
of Abstract Argumentation semantics. That is, we take advantage of how
semantics are composed in one another, and of the different principles that
govern them in order to build our explanations. They subsequently take
the form of several subgraphs illustrating each principle that composes the
semantics at hand. These subgraphs, each of them associated with a specific
checking procedure, can then be shown sequentially or aggregated together
in one explanation.

The answers questions related to why a given argument or set of argu-
ments is (or not) part of an extension of some semantics are always contrastive
answers. More precisely, for these questions, we consider the question’s con-
text as the fact, and the question as providing the necessary elements to
deduce the foil. We thus proceed to compute said foil as our answers us-
ing the content of the questions as well as our previous kind of answers.
In the case of contrastive questions, we subsequently naturally interpret the
contrast in the question as additional information to compute the foil.

We also discuss several aspects of our explanations, including but not
limited to their accordance with Grice’s maxims of conversation and some
particular cases of answers.

Our present work can be extended in many ways. First, our general
grammar could be refined in order to generate more questions or include some
subtleties in the generation of questions in order to tailor even more precisely
the answers we provide. On this subject, the answers we define for now are
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tied to a specific sequence of production rules. We intend to shift from this
way of doing to a more modular one, associating specific modifications of
the answer to each production rule. Amongst the questions that we already
considered there are some variants that we left aside for now. Those typically
concern contrastive questions for questions related to the status of (non-
)extension of a given set of arguments or particular cases of contrasts for
questions related to some argument or set of arguments being part of a given
extension. For instance, it could prove interesting to answer to questions
like "Why do we have S as a conflict-free extension and not as an
admissible extension ?" or "Why do we have {a, b} accepted in the
AF (A, R) and not in the AF (A’, R’) ?". For now we only considered the
case of conflict-free, admissible, complete and stable semantics, we also intend
to study answers to questions related to grounded and preferred semantics.
Finally, a formal study of the properties of our explanations, as well as an
empirical evaluation of their quality are planned.
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