
HAL Id: hal-03631670
https://ut3-toulouseinp.hal.science/hal-03631670

Submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reward-Based Environment States for Robot
Manipulation Policy Learning

Cédérick Mouliets, Isabelle Ferrané, Heriberto Cuayáhuitl

To cite this version:
Cédérick Mouliets, Isabelle Ferrané, Heriberto Cuayáhuitl. Reward-Based Environment States for
Robot Manipulation Policy Learning. NeurIPS Workshop on Deployable Decision Making in Embodied
Systems (DDM 2021), University of Toronto, Dec 2021, Toronto, Canada. pp.1-6. �hal-03631670�

https://ut3-toulouseinp.hal.science/hal-03631670
https://hal.archives-ouvertes.fr

Reward-Based Environment States for Robot
Manipulation Policy Learning

Cédérick Mouliets
Engineering school UPSSITECH
University of Toulouse III, France

cederick.mouliets@univ-tlse3.fr

Isabelle Ferrané
IRIT, Paul Sabatier University

CNRS, Toulouse, France
isabelle.ferrane@irit.fr

Heriberto Cuayáhuitl
School of Computer Science
University of Lincoln, UK

hcuayahuitl@lincoln.ac.uk

Abstract

Training robot manipulation policies is a challenging and open problem in robotics
and artificial intelligence. In this paper we propose a novel and compact state
representation based on the rewards predicted from an image-based task success
classifier. Our experiments—using the Pepper robot in simulation with two deep
reinforcement learning algorithms on a grab-and-lift task—reveal that our proposed
state representation can achieve up to 97% task success using our best policies.

1 Introduction

Teaching a robot new skills easily, quickly and reliably is one of the main goals of robotics and AI. In
that way, robots could be of great assistance at home (for example carrying out cleaning or cooking
tasks), in factories (carrying out assembly or quality check tasks during production of products), or in
public spaces (for instance serving food/drinks or playing games), among other scenarios [1, 3, 7].
Some of the requirements for such an ambitious scientific and engineering goal include understanding
robot commands from a human instructor, understanding of the environment and task, acquisition and
processing of visual (and audio) perceptions, characterisation of the learning task, ability to select
actions for achieving the task, and ability to measure performance, among others. Those requirements
and the fact that the world situations are always different, make the problem of skill acquisition of
a tall order. The fields of Deep Learning and Reinforcement Learning have been suggested as a
promising framework to enable the requirements above. This implies the creation of an agent with
a concrete set of states, actions, rewards, and a simulator or logged data. Training a robot means
finding the policy that maximises the long-term reward signal via trial-and-error search [10, 14].

The learning scenario of focus in this paper is illustrated in Figure 1, where the Humanoid robot
Pepper has to carry out a manipulation task in a simulated environment. We focused particularly on a
classic task in robotics: grab-and lift. The robot has to grab an object and lift it without dropping it by
using reinforcement learning. The novel aspect in this architecture is the use of compact environment
states. In contrast to previous works that use states with learnt features from visual images [13, 11]
(not as compact as ours), we use the last N=15 rewards to represent our proposed states. To our
knowledge, this approach has not been studied before. Intuitively, those reward-based states can be
seen as describing a sequence of task success scores—where the scores grow as the task progresses
from a time step to the next.

NeurIPS Workshop on Deployable Decision Making in Embodied Systems, 2021

Figure 1: Cycle of the proposed learning agent

2 Related Work

Visual reward learning has been considered as a promising solution for equipping robots with learnable
manipulation abilities [13, 11, 6]. This approach measures the success of experiences via reward in
robotic tasks by estimating the probability of success from realistic input images [8]. While [13] focus
on standard Convolutional Neural Networks (CNNs), [11] extend CNN-based architectures with
additional paths on the neural network to add more information for better predictions and therefore
calculating visual rewards more reliably. These works tested DRL (Deep Reinforcement Learning)
agents in classic tasks using a variety of reinforcement algorithms such as DDPG, TD3 or SAC. To
do so, different dense and sparse rewards have been investigated, where dense rewards have been
found as a more promising alternative than sparse rewards.

Previous works in DRL for robot manipulation such as [4, 9, 5, 13] represent environment states
mostly based on image-based features, where raw images are digested by CNNs in order to learn
compact representations that can be used for policy learning. But the idea of using rewards as
environment states or part the environment states has not really been studied. This highlights the need
for a comparison of different state representations, which we identify as a research gap in this paper.
In our case, we focus our study on comparing image-based against reward-based state representations.

3 Research Methods and Results

3.1 Methodology

We study the overall problem of how to train robot manipulation policies using reinforcement learning
in a simulated environment. Given a state-of-the-art algorithm and a defined set of continuous actions,
we adopted a reward function based on the success classifier approach as in [13, 11]. To study our
proposed state representation, we relied on the following methodology.

1. Create an environment for the grab-and-lift task.
2. Create a dataset of success and non-success images.
3. Train a probabilistic task success classifier (to be used as a reward function).
4. Define reward-based states and action representations.
5. Determine the policy learning algorithm with support for continuous actions.
6. Train policies using the states, actions and rewards specified above.
7. Test the learnt policies using evaluation metrics such as avg. reward and avg. task success.

We used the qiBullet robot simulation environment [2], which is powered by the Bullet physics engine
and the PyBullet real-time physics simulation framework. To create our simulation environment, we
used Unified Robot Description Format (URDF) files for creating cube and table objects as illustrated
in Figure 1—the task environment component. To make the robot interact with the cube objects, we
specified friction, dampening and stiffness coefficients in the URDF files and put low weights (100g)
so the cubes can be lifted. The images for visual perceptions are generated by the 2D camera on the
mouth of the robot with resolution KQVGA=(320,240).

2

3.2 Visual Reward Classifier and Policy Learning

Instead of manually engineering a reward function, we use learnt rewards from visual observations.
To do so, we employ an image-based binary classifier to predict task success (CNN-based). The goal
is to generalise situations on the simulation environment in a data efficient manner. From the front
camera, the robot only sees two cubes on a table. ‘Success’ images show the robot’s hand with the
cube grabbed, from different angles, in front of the camera, while ‘Non-Success’ images show the
cube outside the robot’s hand. We randomised the arm positions (on or away from the cube) and
generated a total of 6400 labelled images. This dataset of images was created from 10 balanced
capture sessions, each session consisting of 200 success images and 440 non-success ones. From
one capture session to another, we modified the robot’s right arm to introduce variability in its work
space. Non-success images are more present because they are more likely to be encountered. The
neural architecture of our reward predictor is based on Tensorflow’s image classifier 1.

To learn manipulation policies, we experimented two actor-critic algorithms for decision-making
with continuous actions: DDPG [9], and TD3 [5]. We used the Stable-Baselines3 framework2 with
default hyperparameters to implement our policies and experimented different state representations.
Regarding actions and since the proposed policies only use the right arm of the robot, we focused on
four joints: RShoulderPitch, RElbowRoll, RHand, and RShoulderRoll. Those actions are generated
by rotating at a constant speed the angle of each corresponding joint between 0° and 180°. A typical
learning episode from Figure 1 is as follows. (A) The robot captures an image of the current situation
from the simulated environment. (B) This image is sent to the pre-trained classifier which outputs a
confidence score from its last Softmax layer. This score will be considered both as the reward as well
as a part of the state representation. (C) Finally and via a deep reinforcement learning algorithm, the
agent will choose an action that combines the four joints previously mentioned.

3.3 Reward Classification and Manipulation Results

We split our dataset of success/non-success images (6400 in 10 demos) into three subsets: 8 demos
for training, 1 demo for validation and 1 demo for testing. We experimented different configurations
in terms of number of epochs and batch size. Our results report that all of our 6 classifiers achieve
high performance in terms of classification accuracy (98% average accuracy on test data-set) and we
selected our best model for predicting visual rewards. Each classifier provides a confidence score of
the success of the task which implies that the closer the arm is to the cube, the greater the confidence.
Each classifier has been trained and tested using the same dataset split. The high performance is
presumably due to the much simpler simulation environment than the real world. The classifier
prediction time per image varied between 5.2 and 5.6 milliseconds3.

We trained DDPG policies with six different state representations and compared against their cor-
responding TD3 policies. These state representations include three different image resolutions
(320x240, 160x120, 80x60), Imagenet-based pre-trained embeddings4 and PCA-based (Principal
Component Analysis) images with 50 components [12]. Our goal was to improve them using our pro-
posed compact representation based on the last 15 visual rewards (predicted from 160x120 images).

1https://www.tensorflow.org/tutorials/images/classification
2https://github.com/DLR-RM/stable-baselines3
3PC specs: 32Gb RAM, Intel Core I7-8650U CPU
4https://github.com/jaredwinick/img2vec-keras

Table 1: Best Policy Learning Results

Reinforcement Agent DDPG | TD3 DDPG | TD3
State Representation Avg. Reward Avg. Task Success (%)
Pixels 320X240 2.000 | 2.100 76.60 | 78.11
Pixels 160x120 2.500 | 1.800 80.09 | 78.34
Pixels 80x60 1.600 | 2.500 28.40 | 88.04
Image embeddings 0.003 | 0.001 2.7e−5 | 1.8e−4

PCA-based images 1.900 | 1.000 11.33 | 57.80
Last 15 rewards 1.834 | 2.326 97.04 | 96.78

3

https://www.tensorflow.org/tutorials/images/classification
https://github.com/DLR-RM/stable-baselines3
https://github.com/jaredwinick/img2vec-keras

PCA and image embeddings enable the significant reduction of amount of information contained
in an image. While with PCA we reduced the amount of features to 50 components, with image
embeddings we obtained vectors of 2048 dimensions.

Our learnt policies take on average 4:45 hrs to train and Table 1 shows their performance out of five
runs. While at first sight it looks like TD3 outperforms DDPG in terms of average rewards, that is not
the case in terms of average task success. The best DDPG policy obtained a task success of 97.04%
and the best TD3 policy obtained 96.78% of task success as shown in Figure 2. Thus, both learning
algorithms can achieve similar performance—but their best policy must be found from multiple runs.
The policies were trained and tested for 10000 time steps. If the robot could not grab the cube after
50 actions, we considered the task as a failure and started over another episode as shown in Fig 2.
Manual inspection showed that when an agent finishes episodes sooner than later, it obtains less

rewards. Therefore, Average Task Success is a more reliable metric in our case. Our best policy
uses DDPG with states including the last 15 rewards—a reward-based representation and the most
successful in our comparative study. See episode examples in Figures 3 and 4 with successive steps.

Figure 2: Training and testing of TD3 with 160*120 images and 50 actions a step

(a) r1=0.0001 (b) r2=0.0023 (c) r3=0.3486 (d) r4=0.9897

Figure 3: Example 4-step episode from initial to goal state, [captions]=probabilistic success rewards

(a) r1=0.0001 (b) r2=0.0144 (c) r3=0.8827 (d) r4=0.9463 (e) r5=0.6153 (f) r6=0.9928

Figure 4: Example 6-step episode from initial to goal state, [captions]=probabilistic success rewards

4 Discussion and Concluding Remarks

This paper proposes a novel methodology for learning manipulation policies based on states rep-
resented with sequences of observed rewards derived from a probabilistic task success classifier.
Experimental results using simulated interactions in a grab-and-lift task show that our proposed state
representation can be useful to learn policies with high-task success (up to 97%). Although other
representations need to be investigated further such as tailored image embeddings or pre-trained em-
beddings with adaptation, our experiments show that it is indeed possible to achieve high performance
with reward-based states instead of image-based states. Combining image-based and reward-based
representations is an interesting strand of work that can be explored in the future. Two challenges that
remain to be investigated with priority are how to efficiently create datasets for training task success
classifiers, and how to safely deploy manipulation policies (learnt in simulation) in the real world.

4

References
[1] N. Akalin and A. Loutfi. Reinforcement learning approaches in social robotics. Sensors,

21(4):1292, 2021.

[2] M. Busy and M. Caniot. qiBullet, a bullet-based simulator for the pepper and NAO robots.
CoRR, abs/1909.00779, 2019.

[3] H. Cuayáhuitl. A data-efficient deep learning approach for deployable multimodal social robots.
Neurocomputing, 396, 2020.

[4] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Learning visual feature spaces
for robotic manipulation with deep spatial autoencoders. CoRR, abs/1509.06113, 2015.

[5] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning (ICML), volume 80, 2018.

[6] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. “Good Robot!”:
Efficient reinforcement learning for multi-step visual tasks with sim to real transfer. IEEE
Robotics and Automation Letters, 5(4), 2020.

[7] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. J. Mach. Learn. Res., 22, 2021.

[8] S. Kumra, S. Josh, , and F. Sahin. Learning robotic manipulation tasks through visual planning.
arXiv:2103.01434 [cs], 2021.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In ICLR, 2016.

[10] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley. Deep reinforcement
learning for the control of robotic manipulation: A focussed mini-review. Robotics, 10(1), 2021.

[11] A. Mohtasib, G. Neumann, and H. Cuayáhuitl. A study on dense and sparse (visual) rewards in
robot policy learning. In TAROS, 2021.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.,
12, 2011.

[13] A. Singh, L. Yang, C. Finn, and S. Levine. End-to-end robotic reinforcement learning without
reward engineering. In RSS, 2019.

[14] T. Zhang and H. Mo. Reinforcement learning for robot research: A comprehensive review and
open issues. International Journal of Robotics Research, 18(3), 2021.

5

	Introduction
	Related Work
	Research Methods and Results
	Methodology
	Visual Reward Classifier and Policy Learning
	Reward Classification and Manipulation Results

	Discussion and Concluding Remarks

