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a b s t r a c t

Fuel Cell Hybrid Vehicles (FCHV) can reach near zero emission by removing the conven-

tional internal combustion from the vehicle powertrain. Nevertheless, before seeing

competitive and efficient FCHV on the market, at market prices, different technical,

economic, and social challenges should be overcome. A typical hybrid fuel cell powertrain

combines a fuel cell stack and a dedicated energy storage system along with their neces-

sary power converters. Energy storage systems are used in order to enhance the well-

to-wheel efficiency and thus reducing the hydrogen consumption. An efficient manage-

ment of power flows on the vehicle, allows optimizing the recovery of energy braking.

Moreover, working in the fuel cell maximum efficiency leads to reduced thermal losses and

thus to the downsizing of the heat exchangers. This paper presents an enhanced control of

the power flows on a FCHV in order to reduce the hydrogen consumption, by generating

and storing the electrical energy only at the most suitable moments on a given driving

cycle. While the off-line optimization-based on dynamic programming algorithm offers the

necessary optimal comparison reference on a known demand, the proposed strategy

which can be implemented on-line, is based on a fuzzy logic decision system. The fine

tuning of the fuzzy system parameters (mainly the membership functions and the gains),

is made using a genetic algorithm and the fuzzy supervisor shows performing results for

different load profiles.

ª 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
1. Introduction 1. Optimization-based strategies, such as optimal control or
Energy management strategies remain a main subject of

interest, where many industrials and academic researchers

are actively involved in recent studies as well as for residential

application [1], decentralized generation [2], and for hybrid

electric vehicles which are of paramount importance for

autonomy and real time management. Until this day, no

specific approach or strategy has been able to impose itself as

the best solution in each actual situation and a considerable

work has thus to be done in order to compare and evaluate

different strategies [3]. Nevertheless, the different approaches

used can be classified in two categories:
1; fax: þ33 561 63 88 75.
(S. Caux).
sor T. Nejat Veziroglu. Pu
dynamic programming, which often require an a priori

knowledge of the whole power profile and they are often

used off-line [4,5].

2. Rules-based management strategies used on-line, which

mainly used deterministic or fuzzy logic and artificial

intelligence [6–8].

The high-level fuel cell vehicle supervision strategies and

more precisely, the power split management between the fuel

cell and the associated electrical energy storage element,

remain less considered in literature. Nevertheless, different

strategies applied in a conventional hybrid vehicle can be
blished by Elsevier Ltd. All rights reserved.
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easily adapted to a fuel cell vehicle [9]. In this context, the

application of a real time control strategy for fuel cell vehicles

based on optimal control theory [10] or based on the minimi-

zation of a specifically defined equivalent consumption [11]

can be mentioned.

When the entire power demand profile is well known, the

optimal-path can be found from the end to the beginning

using for example the dynamic programming algorithm. Such

solution is of course off-line, due to the necessity to compute

the optimal solution from ending conditions to initial ones.

The cost function is minimized off-line and the dynamic

programming delivers the best solution for this given profile.

Initial and ending energy levels of the storage element are

classically given and lot of non-linear constraints have to be

introduced to take into account the power limitations of each

source and the minimal and maximal states of charge of the

storage elements. The computation time is thus obviously

increased.

In [13], the instantaneous power delivered by the battery is

chosen as an index, it is based on the power demand and the

state of charge of that battery. This study uses a statistical

method based on the results first obtained by the dynamic

programming algorithm. As exposed before, the dynamic

programming should only be used off-line to compute the

optimum solution as a reference, and the quality of on-line

algorithms can be evaluated if the result obtained is closed or

not to this optimum. Instead of computing off-line the global

optimum, a real problem exists in dealing with optimization

in real time. Studying a multiple power sources system and

trying to respect dimensioning constraints leads commonly to

establish logic-rules to follow. Expanding these rules to fuzzy

rules can help the controller to select the power repartition

depending on the power demand, the Fuel Cell best possible

efficiency if the battery is full (SOCmax) or empty (SOCmin)

etc. This approach leads to a fuzzy system which is more likely

a decision system (supervisor) based on fuzzy rules than

a fuzzy controller [12]. Of course, rules and membership

functions’ shapes reveal numerous degrees of freedom

impacting on the global powertrain energy consumption. The

on-line management strategy presented in this paper is based

on a fuzzy inference system optimized by means of a genetic

algorithm and is compared to off-line dynamic programming.

In a first step (part 2), the powertrain is detailed showing all

efficiencies and losses taken into account in this study (fuel

cell behaviour, air compressor, inverter and supercapacitor

losses.). In part 3.1, the fuzzy inference system is built by

choosing the appropriate system input and output member-

ship functions and a set of fuzzy rules. To obtain an optimal

set of parameters, a genetic algorithm is then used and pre-

sented in 3.2. In part 4, comparisons using two different actual

profiles are done to evaluate the on-line performances of the

proposed algorithm. The proposed solution underlines a high

robustness due to the accurate fuzzy management of the

stored energy.
Storage
Element

Fig. 1 – FCHV basic topology.
2. Powertrain characterization

The considered FCHV is a series architecture hybrid vehicle

[14,15]. The core of the FCHV is a hybrid powertrain based on
a fuel cell (FC) stack and an electrical energy storage element

(SE). The basic structure of the FCHV is shown in Fig. 1.

A standard model of the powertrain is considered in this

study [15]. The electrical structure of this powertrain (Fig. 2), is

composed of the fuel cell system connected to the DC bus by

means of a boost DC converter and a supercapacitor bank is

also connected to the same DC bus by means of a current

buck/boost converter. The electric motor driving the wheels is

connected to the DC bus through a voltage inverter and is

considered demanding the instantaneous power Pdem. Of

course, more complex powertrains could be considered, but

here the study is focusing on the on-line power flows

management. The proposed strategies can be easily extrapo-

lated on more complex powertrain topologies.

Each electric energy source defines an energy path repre-

senting a given power flow. Primary path is formed by the Fuel

Cell (including ancillaries) with its associated converter. A

second energy flow path is defined by the Storage Element and

its reversible converter to allow energy delivery and braking

energy recovery. The connexion of these two energy paths

forms a virtual electric node supplying the requested power to

the wheels.

Therefore, the power demand Pdem is obtained using the

sum of the net power delivered by the fuel cell system PFCFCbus

and by the storage element PSCbus to the DC bus. It is obvious

that a part of the power delivered by both sources is lost along

the path. It is therefore necessary to identify the system

energy balance highlighting the main power losses across

these paths.

In this study, to be as closed as possible to reality, upon

a real lightweight transport application case, the different

powertrain elements sizing was defined. Sizing consider-

ations impose limitations on the maximal and minimal power

delivered by the fuel cell, respectively PFC_max and PFC_min, on

the supercapacitors delivered and absorbed power, respec-

tively PSE_max and PSE_min and finally on the maximal and

minimal energy charged of the storage element SOEmax and

SOEmin (State Of Charge – SOC is generally used for battery and

in percent, nevertheless to be more general a state of energy –

SOE is used and if SOE is max classical SOC ¼ 100%, SOEmin

means SOC ¼ 25%). All of these practical values are given in

Table 1. In order to avoid to deal with hybridization rate, mass

influence on power demand and other ‘systemic-level’

considerations [16,17], the power demand is here analysed

and a FC power is chosen to be able to furnish solely the max

power demand. Quite the same power levels are chosen for SE

and FC elements leading to a full hybrid vehicle. This a priori
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sizing of the FCHV also allows to find all possible solutions in

power splitting (from no use of the FC stack to no use of SE) to

satisfy Pdem.

2.1. Fuel cell system losses

The fuel cell system energy balance is given in Fig. 3. The

considered total losses of this fuel cell system, LFCS given in eq.

(1) and is the sum of the fuel cell internal losses LFC (activation

losses, ohmic losses and gas transport losses), the power

converter losses due to the conduction and commutation

losses of the converter semiconductors Lconv, and finally the

electric energy losses across the fuel cell ancillaries (here

considered mainly located in the air compressor) Lcomp.

LFCSðPFC busÞ ¼ LFCðPFC busÞ þ LconvðPFC busÞ þ LcompðPFC busÞ (1)

Ancillaries (mainly the air compressor) are power

consuming, hence reducing the delivered net energy. The total

fuel cell system efficiency hFCS, given in eq. (2), is therefore the

product of the efficiencies of the fuel cell hFC, the converter

hconv, and the compressor hcomp.

hFCS ¼ hFC$hconv$hcomp (2)

In the following paragraphs, different models are briefly

exposed and used to identify the efficiencies of each element

and thus the total fuel cell system efficiency as a function of

delivered power.

2.1.1. Fuel cell efficiency
The energy efficiency of the fuel cell is proportional to its

voltage as given in the following equation, where Ncell
Table 1 – System power and energy constraints.

Symbol Quantity Value

PSEmin �60 kW

PSEmax 60 kW

SOEmin 400 kW s

SOEmax 1600 kW s

PFCmin 0 kW

PFCmax 70 kW
represents the number of elementary cells forming the fuel

cell stack and is expressed referred to the Higher heating

Value (HHV) of hydrogen:

hFCðPFCÞ ¼
VFCðPFCÞ
1:48$Ncell

ð%HHVÞ (3)

It is therefore necessary to develop a model in order to

predict the fuel cell voltage response VFC to a given power

request. The model used in this study is based on the quasi-

static model of Amphlett [18] initially designed for an

elementary cell which expresses the fuel cell voltage VFC in eq.

(4) as a function of the current in the stack IFC, the partial

pressures of oxygen PO2
and hydrogen PH2

on the catalyst, the

temperature of the stack, TFC, and the hydration level of the

polymer membranelH2O:

VFC ¼ f
�
IFC;PO2

;PH2
;TFC; lH2O

�
(4)

The voltage of a single-cell is equal to the electrodynamics’

potential E (which is constant for such kind of electro-chem-

ical reaction), added by the activation voltage losses and the

ohmic losses. The gas transport losses are not considered

here; as they are predominant only at very high current

densities and the FC control will avoid all operation in this

area. The adaptation of this model to a Ncell cell stack is made

possible with a simple scaling factor, based on simplifying

assumptions [19,20].

The fuel cell model is implemented under Matlab/Simu-

link� environment. The model experimental validation is
0 1 2 3 4 5 6 7 8

x 10 4

0.4

0.5

0.6

Fuel Cell Power (W)

Fu
el

 C
el

Fig. 4 – Energetic efficiency of the fuel cell.
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done on a 20-cell stack (700 W max) test bench. The calibration

of the model requires the identification of the parameters

used in the voltage law. The principle of the identification

method is a multiple linear regression by the method of least

squares [19]. The obtained fuel cell energy efficiency versus

fuel cell power is given in Fig. 4.

2.1.2. Air compressor power consumption
The power absorbed by the air compressor Pcomp is given as

a function of the air flow entering the stack Fair_in (represent-

ing the air massic flow passing through the compressor).

Pcomp ¼
Cp$Te

hm$hc

 �
Pcath

Patm

�g�1
g

�1

!
� Fair in (5)

Where Te is the controlled air temperature, hm the motor drive

efficiency, hc the compressor efficiency, Pcath the pressure

inside the cathodic compartment of the FC stack, Patm the

atmospheric pressure, Cp the thermal capacitance of air and g

a specific coefficient equal to 1.4 for air compression.

The air flow derived in eq. (6) is expressed as a function of

delivered current IFC, using the well known Faraday’s law for

perfect gas conditions:

Fair in ¼ StO2
$Mair$

Ncell$IFC

4XO2
$F

(6)

where StO2
is the stoichiometric ratio, Mair the number of air

moles, XO2
the molar fraction of oxygen (21% in ambient air), F

the Faraday’s constant.

Finally, the power losses due to the compressor power

consumption as a function of the fuel cell delivered power are

thus given in Fig. 5.

2.1.3. Boost converter efficiency
These losses are identified using IGBT and diode datasheets

and the resulting efficiency is shown in Fig. 6 for two given

switching frequencies.

Total losses in the boost converter are equal to conduction

losses due to the presence of a non-zero saturation voltage in
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Fig. 5 – Air compressor power consumption.
the diode and IGBT when they are conducting and switching

losses in IGBT as current and voltage do not change

instantaneously.

2.1.4. Total fuel cell system efficiency
The total fuel cell system efficiency resulting from the product

of each of the elementary efficiencies previously identified is

given in Fig. 7 revealing a maximum efficiency point (about

46%) at a given fuel cell power of about 22 kW.

This curve is the first data to use in the optimization energy

management problem to minimize hydrogen consumption

and thus to increase FCHV autonomy.
2.2. Electrical storage element losses

The energy balance of the storage element LSE considers the

losses due to the internal resistance LSC and due to the current

reversible converter losses Lconv (cf. eq. (7)).

LSEðPSE busÞ ¼ LSCðPSE busÞ þ LconvðPSE busÞ (7)

LSC ¼ RSC$I2
SC eff (8)

Rsc is chosen to be constant here not only to simplify the

supercapacitor modelling but also to be able to maximise the
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Fig. 7 – Total fuel cell system efficiency.
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losses in this part as a first approximation. Moreover, in case

of this electrostatic storage, this model is more convenient

than in batteries (due to their different electro-chemical

storage behaviour) [20,21]. Finally, the global losses from the

growth power to the net power delivered to the DC bus are

shown in Fig. 8.
2.3. Powertrain representation

Having characterized the global efficiency of each energy

path, the problem can therefore be represented as in Fig. 9.

The primary power source is therefore represented by its

useful power at the electric node, PFC, and an efficiency value

hFC, allowing us to estimate the real hydrogen consumed

energy. Furthermore, the storage system is also represented

by its delivered power PSE and a global efficiency hSE, allowing

computing the effective quantity of energy actually stored in

the supercapacitors and thus their actual state of charge

variation.(Fig. 10).
3. Energy management formulation

The energy management problem is formulated here as

a global dynamic optimization problem under constraints.

The hydrogen consumption is quantified as a cost function to

be minimized. The system’s dynamic equation is:

_EðtÞ ¼ �PSðtÞ (9)

where the energy level stored E, is the state variable and the

power Ps the control variable.

The cost function to minimize eq. (10) is the ‘‘total

consumed energy’’ of hydrogen EH2 over a given period of time

[tf � ti].
Fig. 9 – Fuel cell vehicle schematic model.
EH2
¼
Z t

i

PFCðtÞ
hFCðPFCðtÞÞ

dt (10)

Using the previously defined efficiency, the cost criterion is

thus:

g ¼ PFCðtÞ
hFCðPFCðtÞÞ

(11)

The system is subject to non-linear constraints of inequality

related to the constraints linked to the design of the stack eq.

(12) and the storage element power eq. (13) and state of energy

eq. (14):

PSE min � PSEðtÞ � PSE max (12)

PFC min � PFCðtÞ � PFC max (13)

Emin � EðtÞ � Emax (14)

Moreover, satisfying the power demand imposes an

equality constraint:

PSE þ PFC � Pdem ¼ 0 (15)

An additional condition eq. (16) is imposed artificially in

order to ensure that the state of energy is maintained at the

end of the cycle to facilitate the optimization procedure and

cycling the power demand without any more consideration

from an energy management point of view.

E
�
tf

�
¼ EðtiÞ (16)

Solving such problem in real time uses discrete algorithms,

allowing to compute and refresh the power splitting with

respect to the sampling period; meaning:

- Sampling the time and the state of charge space.

- Finding the optimal trajectory that starts from the initial

energy at instant k ¼ 0 to the same final energy at instant

k ¼ N.

- Finding the value of the storage element optimal power at

each time step by applying the following equation:

Pj1;j2
S ¼

Ej2 � Ej1

Dt
(17)
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3.1. Fuzzy logic (FL) based decision system

Knowing the whole driving cycle and thus the power demand,

and running off-line, Dynamic Programming software allows

for example a global optimization [24]. Results correspond to

a sequence at each sampling time fixing PFCk and PSEk which

can only be replayed in real time if the actual driving cycle is

the same. Results obtained off-line are used as a reference but

the program cannot be used in real time. To avoid this

important assumption and to derive a real time energy

management for this kind of system, fuzzy rules can be

established to manage both fuel cell power and state of energy

of the storage element.

The fuzzy approach [22] is here preferred to neural

networks [23] in order to avoid to deal with ‘how to learn’

problems and to have a continuity from local behaviour to

global one. Fuzzy rules also keep a minimum human analyse

possible in the optimization phase. The implemented fuzzy

decision system uses here two input variables (that are the

state of energy of the storage component SOE and the required

propulsion power Pdem), the output variable being the fuel cell

delivered power PFC. The universe of discourse of each of these

variables is defined by the power and energy size constraints.

Each of these spaces is divided into a defined number of

subsets describing a general state of the designated variable.

The state of energy of the storage element can therefore be

considered as ‘‘very low’’ (VL), ‘‘low’’ (L), ‘‘average’’ (A), or

‘‘high’’ (H). Similarly, the required power can be considered as

‘‘negative’’ (N), ‘‘very low’’, ‘‘low’’, ‘‘average’’, or ‘‘high’’.

Finally, the fuel cell delivered power can be ‘‘Null’’ (N), ‘‘very

low’’, ‘‘low’’, ‘‘average’’, or ‘‘high’’. All this linguistic values are

resumed in Table 2 (a linguistic ‘‘OR’’ is supposed to be

existing between the different rules).

Each linguistic value is designated by a membership

function, which assigns to each value of that variable

a membership degree. Here, trapezoidal-type membership

functions have been chosen over the universe of discourse.

Fig. 11 represents the trapezoidal membership functions of

the Storage Element state of energy, between SOEmax and

SOEmin. The trapezoidal-type membership functions are

chosen for their simplicity and their real time implementation

facility. The number of these membership functions remains

an arbitrary choice based on a human expertise; nevertheless,

it can be said that there’s no interest in using too much

membership functions. Figs. 12 and 13 represent respectively

the chosen membership functions for the DC bus requested

power and the fuel cell delivered power.
Table 2 – Fuzzy logic based decision system inference
matrix: PFC level depending on SOE and Pdem.

PFC Pdem

VL L A H N

SOE VL A H H H N

L L A A A N

A VL VL L L N

H VL VL VL L N
The inference system is composed by a number of 20

rules linked by an OR operator. Each rule presents a condi-

tion introduced by the IF symbol and a conclusion, or action

introduced by THEN symbol. An example of the system

rules is:

IF Pdem is ‘‘very low’’ AND SOE is ‘‘low’’ THEN PFC is ‘‘low’’.

The general idea behind these rules is that the fuel cell

stack delivers as much power as the requested power is high

and/or the state of charge of the storage element is low. In

addition, the fuel cell delivers as low power as the requested

power is low or the state of charge of the storage element is

high enough to provide this power.

3.2. Membership functions optimization using a genetic
algorithm (GAFL)

The choice of the membership function parameters (xi, yi, zi

on Figs. 11–13) is usually made by trial and error and a time

consuming experimental procedure is necessary to obtain the

proper set of parameters directly linked to the possible mini-

mization of the global hydrogen consumption on the FCHV

[22]. To overcome this problem, a genetic algorithm [25] is here

used to find the optimal set which minimizes a certain crite-

rion [26]. The classical genetic algorithm optimization method

follows different steps, consisting of selecting specific indi-

viduals regarding their fitness function to which are applied

the mutation and crossover operators. The new created indi-

viduals are again evaluated to maintain the best individuals or

the individuals that better adapt to the imposed criterion [25].
1

0 z1 z2 z3 z4 z5 z6 z7 z8 70
FCP

N VL L A H

Fig. 12 – Fuel Cell Power output variable membership

function.
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The algorithm stops when the stop criterion is met. The stop

criterion chosen in this study is the reach of a fixed number of

generations Ngen.

The individual contains all the needed data which is, in this

case, the requested parameters allowing the membership

functions identification. Taking into consideration previous

hypotheses made on the shape and type of the membership

functions, a chromosome of 22 parameters is sufficient to

represent the membership functions and thus the fuzzy

system. These parameters are the different xi, yi and zi, the

chromosome thus formed by the concatenation of these

parameters is shown in Fig. 14.

Another important issue is the definition of the fitness

function which evaluates the performance of each individual.

In our case, the target is the minimization of the hydrogen

consumption while ensuring the power required along the

entire vehicle driving cycle. Maximizing the evaluation func-

tion Feval eq. (18) consists in minimizing an optimization

criterion Copt as given in eq. (19). This criterion takes into

consideration the total consumed hydrogen energy (in kW s)

on a fixed time interval of the driving cycle EH2 , as given in eq.

(20), and a value quantifying the mean quadratic error equadr

measured between the required power and the power actually

provided.

Feval ¼
1

Copt
(18)

Copt ¼
EH2

k
þ equadr (19)

EH2
¼
X

i

PFCðiÞ$Dt
hFCðPFCðiÞÞ

(20)

where ePdem
is the instantaneous power error between the

required power, Pdem, and the actually provided power Pprov:

ePdem
ðiÞ ¼ PdemðiÞ � PprovðiÞ (21)

To be noticed, the dynamic programming solution respects

the profile Pdem(t) but this real time solution should sometimes
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Fig. 14 – ESKISEHIR: Power profile of a tram on the line of

ESKISEHIR.
not respect it, but eq. (21) ensures that not furnishing Pdem is

prohibitive (but not excluded).

The defined criterion is therefore given according to the eq.

(19) where k is a scaling factor between consumption and error

values. The choice of this factor also allows adjusting the

required accuracy since the more k is low, the more the

minimization of consumption versus error is made easier and

vice versa.

The actually provided power is the sum of the fuel cell

delivered power, PFC_cor, and of the power supplied or absor-

bed by the storage element PSE_cor (after correction of their

values by taking into consideration the saturations over these

power and state of charge values).

PprovðiÞ ¼ PFC corðiÞ þ PSE corðiÞ (22)

Furthermore, the fitness function will allow handling

further constraints imposed on the individual parameters by

using a penalty function that penalizes the non-feasible

solutions reducing their fitness function [26]. These further

constraints are given in eq. (23).

xi < xiþ1 i ¼ 1;.; 7
yi < yiþ1 i ¼ 1;.; 5
zi < ziþ1 i ¼ 1;.;7

(23)

Individual with parameters which do not verify these

conditions are penalized with a quite high criterion Copt. This

allows the genetic algorithm to progressively move away from

these non-feasible values.

To summarize, the genetic algorithm is used to optimize

the fuzzy logic decision system. This optimization is made off-

line using a specific mission power profile. The optimized

rules obtained can manage in real time the power demand

and split it accurately between the two available sources.
4. Results, robustness and comparison

This section presents all tests made to evaluate algorithms

and optimized fuzzy supervisor performances using two

different power demands. Each one corresponds to actual

measurements made on vehicles following a given path. The

use of both profiles is possible after having applied the

necessary scaling factor in order to adapt the power level to

our application size considerations. Fuzzy controller results

using GA optimization made (GAFL) are compared to results

obtained with Dynamics Programming (DP) or non-optimized

rules (FL). Finally, the fuzzy logic system is implemented

under Matlab� environment using the Fuzzy Logic Toolbox�.

OR and AND operators are represented by the ‘‘Min–Max’’

method while the defuzzification is made possible by

computing the centre of gravity of the resulting membership

function.
4.1. Mission profiles

Two actual mission profiles are used for validation: Fig. 16

named INRETS corresponds to a personal car in suburban area

[14], Fig. 15 named ESKISEHIR corresponds to a tramway line

in Turkey [15].
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Fig. 15 – INRETS: Power profile of a hybrid vehicle in urban

area.

Table 3 – Energy storage improvement.

D.P. F.C. alone Gain

INRETS 9189.7 kW s 14891 kW s 38.28%

ESKISEHIR 31826 kW s 48043 kW s 33.75%

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 5 ( 2 0 1 0 ) 2 1 3 4 – 2 1 4 3 2141
4.2. Simulation – results

To prove the necessity of an energy storage management,

Table 3, shows the gain (% of consumption reduction) when

the fuel cell is used as the only source (F.C. alone with no

hybridization) and when a storage element is used and

managed by dynamic programming path (D.P.).

These results are given only to show the necessity to

charge and discharge a storage element during the profile and

show D.P. is able to found a path minimizing the criterion and

satisfying all constraints. But this optimal-path is computed

off-line and this path is optimal if and only if the power

demand did not change, which does not correspond to reality

and the goals of real time energy management.

Fuzzy supervisor is optimized off-line with INRETS profile

and manages on-line the power demand. Results are given

only in terms of consumption and compared in Table 4. GAFL

is the optimized rules and FL corresponds to the results of the

hand tuned fuzzy logic system (no ‘optimal’ optimization),

showing the clear improvement made with applying the

genetic algorithm. As explained before, the same sampling

time and energy are chosen (DE ¼ 1 kW s Dt ¼ 1 s).

In Table 5 results using Fuzzy Logic (FL) approach are

closed to the optimal consumption obtained with DP but

always higher. To be noticed in this rules-based solution, the

final constraint (initial energy equal to final energy for storage

element) is not imposed, but GAFL and FL reach quite the

same values and are comparable. If cycling capability is
Fig. 16 – Fuzzy system characteristic surfaces generated

with the genetic algorithm using both mission profile.
requested, the criterion to be minimized should include it in

order to tune optimally the fuzzy rules. Moreover in these

cases few Pdem(tk) are not satisfied, but may be included in

other consideration, the non-delivered power contributes to

the low consumption and can be used for an ‘eco-driving’

signal, and if the braking energy is not fully used for traction

that can be used for heating or comfort ancillaries in the

vehicle.

4.3. Robustness and optimization

After applying the genetic algorithm to the fuzzy logic system,

the optimized characteristic surface of this fuzzy system is

given in Fig. 16 for both mission profiles. The grey surface

represents the INRETS profile while the wired surface repre-

sents the ESKISEHIR profile. It is clear that these two surfaces

present slight differences related to the differences between

the two power demand profiles. Indeed, the ESKISEHIR profile

presents a higher mean power compared to the INRETS profile

which is translated by a higher demand on the fuel cell power

as shown on this figure.

The evolution of the state of energy of the storage element

along the driving cycle is shown in Fig. 17 for the INRETS

profile and in Fig. 18 for the ESKISEHIR profile.

As the optimization of the fuzzy logic system is made on

a specific mission profile, the obtained fuzzy system tends to

adapt on that specific profile while not presenting the same

performances when applied to other profiles.

Therefore, a further attention should be given to the study

of the robustness of this method. For this sake, tests are

conduced on the performance of the system optimized on the

INRETS profile and applied on the ESKISEHIR one and vice

versa.

Results of this crossing application are given in Table 5

where:
Table 4 – Comparison of the obtained results applying
different control strategies.

Profile Algorithm Consumption Improvement

INRETS F.L. 10 866 kW s 27%

G.A.F.L. 8359.9 kW s 43.8%

ESKISEHIR F.L. 33 358 kW s 30.5%

G.A.F.L. 29 802 kW s 37.9%

Table 5 – Robust results of GAFL supervisor.

Inr–Inr Esk–Inr Esk–esk Inr–Esk

Gain 43.8% 41.5% 37.5% 35.6%
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Fig. 17 – Supercapacitors state of energy along the INRETS

driving cycle.

Fig. 18 – Supercapacitors state of energy along the

ESKISEHIR driving cycle.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 5 ( 2 0 1 0 ) 2 1 3 4 – 2 1 4 32142
- Inr–Inr: System optimized on the INRETS profile and applied

on the INRETS profile.

- Esk–Inr: System optimized on the ESKISEHIR profile and

applied on the INRETS profile.

- Esk–Esk: System optimized on the ESKISEHIR profile and

applied on the ESKISEHIR profile.

- Inr–Esk: System optimized on the INRETS profile and

applied on the ESKISEHIR profile.

These results show that the algorithm performance

remains quite acceptable when differentiating the testing

profile from the optimization profile. We should, nevertheless,

notice that this performance is made possible since the two

considered power profiles do not present major differences in

terms of harmonic content.
5. Conclusion

A fuzzy logic based decision system is applied in order to

properly manage the power split between the power source

(fuel cell stack) and the electrical storage element (supercaps)

of the hybrid electric generator in a fuel cell vehicle. The fuzzy

system parameters are optimized using a genetic algorithm

aiming to reduce the hydrogen consumption over a given

actual driving cycle. The performance and robustness of the

optimized fuzzy system are tested on two different driving

cycles showing good results as compared to a dynamic
programming based algorithm (which needs to know the

driving cycle before tuning and cannot be considered for real

time applications). As future perspectives, a thorough study

will be made to define a quantitative relation between a given

driving cycle (class of profile) and the optimized parameters

obtained with the genetic algorithm in order to allow an easy

tuning and an adaptation of the fuzzy system without having

to repeat the optimization procedure.
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