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Abstract - The multicell converters are very interesting in high voltage power conversion since
the switching voltages are reduced considerably and the harmonic spectrum of the output

signals are improved.

For closed-loop control purposes, measurements of statc variables are required but are
expensive to obtain directly especially when the cells number increase.
In order to avoid the voltage sensors in these converters, a full-order observer using the load

current measurement, is presented here. Design of the observer is done for a three-cell chopper
and is based on an exact discrete-time model.

Keywords: Mutticell converter, Power electronics, Luenberger observer, Discrete-time model,

Ackermann's formula.

1. INTRODUCTION

In the field of high voltage power conversion, a new
multilevel topology has been introduced in the nineties :
the multicell converters [1]. These converters are very
interesting since they enable to reach high power / high
voltage applications. With a phase-shift of 2n/p
between the control signals and a switching frequency
fd4, we obtain an output?signal with harmonics at

multiple of pxfy if the capacitor voltage vc,

(k=1...p=1) are stabilized to kE/ p (p is the number

of cells). The switched voltage in the cells is thus reduced
to E/p.

With this low switching voltage, the switches have lower
conduction losses and can switch at higher frequency.

In p-cell converter, a closed loop control of the p-1
capacitor voltages may be used to maintain them to their
optimal value kE/p when a fluctuation in the input

voltage source appear.

Syntheses of different control laws have been proposed
by several authors (see [2][3] for PWM control and [4]
for a sliding mode approach) and require the state
measurements,

In PWM control strategy, the control input given by the

duty-cycle vector o= (al.az.a3)T , is set at the
beginning of the switching period and remains constant
until the beginning of the next switching period. In other
words, the duty cycle is a discrete time variable. Then, it

is natural to think that the system itself is a discrete-time
system.

Therefore, the first step in our procedure is to obtain a
discrete time system that exactly reproduces the output of
the continuous-time system at sampling time instants.

In order to reduce the sensors and the cost of these
converters a state observer using the load current
measurement is presented here. The design of this
observer is based on a linear approach (Luenberger
observer) and uses an exact discrete-time model.

It is also advisable to note that the average model of the
three-cell converter is not observable when only the load
current is measured [2].

2. THE DISCRETE-TIME MODEL

In this section, an exact discrete-time model for a three-
cell chopper (figure 1) is obtained, assuming a fixed
sampling time Ty (where Ty is the switching period)
and a phase-shift of 27w /3 between the control signals.

Dead times are neglected and the switches are assumed to
be perfect.
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Figure 1. Structure of a three-cell buck chopper.
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The instantaneous model of the chopper in the state space
has the following description:

X = A(u) - x+Bu)-E )
y=C-x
where:
- i
0 o £274
C 0
Alu)=| 0 0o B%21 puy=|o|
C U3
ul—uz uz—u3 _5 —E
L L L |

C=[001] x=(ve,veg.iL )T'

E the input voltage source and u=(u1,u2,u3)T the

control signal vector. The subscript T indicates the
transpose of the associated vector.

In the following, we assume that the duty-cycles
1
o; =T— ju,-dt and the voltage source E are constants

0
during the time interval [0,T4].

It is possible to obtain the exact discrete-time model that
relates the state vector at time (k+1)-T4 to the one at
time k-7, .

In order to achieve this purpose, we have to solve the
differential equation (1) and find the relation between
x(tj41) and x(tj) for each sequence j (j=1...7)
(figure 2).
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Figure 2. Control signals for a given duty-cycle vector

This relation is given by:

x(tje1)=Fj-x(tj)+G;-E ()
where:

( =
Fj =-eA(u )-Alj

' R .
Gy=| [ AENUN T e

! j

By definition, during each sequence j, the control signal

vector u = (ul, u2, u3)T remains constant and is noted

Z/. For a given duty-cycle vector o =(aj, a3, a3 )T,
one can determine the duration At j=tj+1—tj and the

control signal vector &/ for each sequence.

Thus, the matrix F; and the vector G j depend only on

the duty-cycle vector , which is known at the beginning
of each period T .

Using the notation:
I Fiy Flyy - Fy L 20
L7, =
j=h

and defining:

I3 Wy =1 -1

( 7
F)=]]F;
j=!

77
G =3 ([Fj)G
1=l j=l+]

\

the discrete-time model of the three-cell chopper can be
written as:

{x(k+1) = F(a)- x(k)+G(a) - E(k) )
y(k)=C-x(k)

To calculate F(a) and G(c) at the beginning of each

period, for any’ (@;)i=1...3, all possible configurations
must be considered.

In the case where the duty-cycles are equals
(0 =0 =3 ), only three different configurations exist
(figure 3). However, in the closed loop control, the duty-
cycles are different in the transient and can take any value
between O and 1. The number of the different
configurations to be treated increases then considerably.
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The validation of this model is shown in figure 4. The
calculation of F(x) and G(a) was computed using
MATLAB. The converter is simulated by SIMULINK

(instantaneous model) using a linear state feedback
decoupling control [3].
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Figure 3. The different configurations of the control signals
over one period when the duty-cycles are equals,
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Figure 4. Validation of the discrete-time model.
Instantaneous model. (b) Discrete-time model.

(a)

The converter parameters are:
Jd =16kHz,C; =Cy =40 uF, L=15mH,R=10Q)
and E=1800V . The control test is:

* At=0,  startconverter with of the if, . =80 A
* Att=6ms step of the current reference of ~60 A

o Att=8ms step of the current reference of +60 A
e Att=10ms step of the input voltage of ~300V

3. OBSERVABILITY OF THE THREE-CELL
CHOPPER

Referring to the discrete-time mode! of the converter 3),
where the duty-cycles are known at each time instant, we
see that the system is linear and time varying. Thus, we
determine  observability by _checking  that the
observability Grammian [5] of the system representation
is positive definite.

For any particular trajectory, this could be difficult to
calculate, but for periodic steady-state operation we can
easily check observability over one period.

Indeed, in the steady-state case, the duty-cycles are
equals and constants. The system (3) is then stationary
and the Kalman observability test can be used {6).

From figure 5, we see that the observability matrix
C

C-F(@)
C-F(a)

O<a<1. The system is then observable in this domain.

Qobs = is non-singular for any duty-cycle
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Figure 5. Determinant of the observability matrix when the
duty-cycles are equals.

Note also that the determinant value of the observability
matrix is very weak. This must cause a sensitivity
problem like we will see in the next section.

4. OBSERVER DESIGN

When all parameter values are known, the first step in
constructing a state observer for the system (3) is to
construct a system that exactly copies the dynamics of
this system.

Such a system would take the form:

x(k+1)= F(a)- 3(k)+G(ex)- E(k) 4
where the vector X is an estimate of the state vector x .

[t is essential that the observer state % converge to the
system state x. In order to study this behavior, one needs
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to examine the error dynamics that govern the error
e=x-%,ie. e(k+1)=F(a) e(k).

In order to improve the observation error dynamics,
observer theory leads one to incorporate a prediction
error term formed from the difference between the
measurement y of the output in (3) and the predicted
output §=C-X. The observer is then completed by

injecting a signal proportional to the prediction error into
the right-hand side of (4) yielding the observer system

X(k+1) = F(a)- 2(k)+G(a)- Ek)+ L(k)-[y - C- 2(k))
&)

with the associated error dynamics:
e(k+1) = [F (@)~ L(k)-C] e(k) (6)

In the linear case (¢ constant), the Luenberger observer
[6][7] can be used and the gain L is constant. Since the
system output y(k) is a scalar, the calculation of the
observer gain L can be solved by the Ackermann's
formula [6]:

-1

A 3 C 0
L=[H(F(a)—z,'13)]- C-Fl)y | -0 M
i=] C-F¥() |

where (z;);=]...3 are the desired discrete-pole locations
of the observer and /3 denote the 3x3 identity matrix.

In figure 6, actual and observed states are shown in the

open loop and steady-state case with o) =0y =a3 =0.4
and 73 =29 =23 =0.716.
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Figure 6. Actual and observed states in the steady-state case.

The converter parameters are the same as those given in
section 2. The initial conditions of the observer are:
Ve1(Q) =100V, ¥¢2(0)=1000V , i; (0)=0A.

Note that in steady-state operation, the capacitor voltages
vcy and vc, are balanced to E/3 and 2E/3

respectively. The switching voltage in each cell is then
reducedto E/3.

In E)E.c-:bntrolled system, the duty-cycles are time varying
in the transient. The matrix F(&) and G(a) are thus
time varying and will be noted F(k) and G(k) in the

rest of the manuscript. The gain vector L must also be
time varying in order to guarantee the stability of the
system.

Denoting Fj (k) = F(k)~L(k)- C, the observer equation
(5) can be rewritten in the form:

)?(k+l)=Fb(k)-i(k)+G(k)-E(k)+L(k)-y(k) (8)
To calculate the gain vector L(k), we use the following
method:

At the beginning (k=0) the gain vector is calculated using
the Ackermann's formula to impose the dynamics of
Fp(0):

-1

3 c 0
L(0)= {H F(0)- z,l;;} C-FO) | |0
= c.Fio] [1

At time k, the gain is calculated in order to stabilize the
system represented by the equation between X(0) and
%(k+1). In other words, the calculation of L(k) is done
in order to impose the dynamics of F (k)= Fp(KWF (k-1)
k
where F (k)= H Fy (1)
=0

Fyp(k)=Fk)-Lk)-C and denoting
F(k)y=F(k)-F (k-1) and C(k)=C-F (k-1), the
matrix F (k) can be rewritten as:

Since

F (k)= F(k)=L(k) Ck) 9)

According to the Ackermann's formula the gain vector is
then:

3 Sy 17 1o
L(k)=|:H(_1':(k)—z,-k“l3)}- Ck)-Flky | o
i=l ) Fr| |1

(10)

Such observer was applied to a three-cell chopper using a
linear state feedback decoupling control [3].

Recall that with this control strategy, the system is

completely decoupled and behave like three first-order

subsystems (figure 7). In the current control loop, we

have added a PI regulator in order to avoid the static

errors in steady state and reduce the current overshoot in

transient [3]. The time-constants are chosen:
=79 =300 us and 73 =90 us.
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Figure 7. The equivalent system of the three-cell chopper
after state decoupling.

The dynamics chosen for the observer must be higher
than the closed-loop dynamics in order to assure a fast
convergence. We choose: z; =25 =z3 =041.

The closed loop output using the estimated states, are
shown in figure (8).
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Figure 8. Actual and observed states in the three-cell chopper
with a closed-loop control.
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Figure 9. The maximum of the gain vector L(k).

The initial conditions of both observer and the system
are: 4

Ve (0)=100V, $¢, (0)=1000V, if,(0)=04,
vey (0)=300V, v, (0)=600V, i (0)=10A.

The converter parameters and the simulation tests are the

same as in section 2.

From figure 9, we see that the gain components are
important. This is due to the weak value of det(Qpps)
(see figure 5)

To improve the robustness of this observer via the noise

measurements, we propose the following observer (figure
10).

when / y(k) - 5(k)/ > € we use the gain given by (10).
when / y(k)— $(k)/ < € we use a null gain (predictor).

|4
three-cell Yyl (k)
X, L

" alt) buck
d. _::{_ control %r* chopper

o
A

N

Figure 10. structure of the observer

The results of the new simulations using this observation
algorithm are shown in figure 11.

In the measured current, we have added a Gaussian noise
with a standard deviation of 0=0.1 A. The converter

parameters are the same as in the last simulation and we
took €=0.5 A.

We see that the gain components are important when the

prediction error Ay =iy —iy is important and null when
Ay<05.

-
1300 10810
o / \ © s
T 1000 A
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% 6005 001 % 0.5 1
time (3) tme () (o

Figure 11. Simulation results using the observer of figure 10.
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Note that the choice of a null gain in steady state is done
in order to guarantee the stability of the observer, We can
of course choose a gain L # 0 but we must find this gain
so that the observer remains stable for all operating
points.

5. CONCLUSION

In this paper we have developed an observer for a three-
cell chopper based on a discrete-time model and using a
linear approach.

We saw, thus, that it is possible to observe the capacitor
voltages, measuring the load current one time in a period.
However, due to the small value of the observability
matrix determinant, the gain components are very
important and the robustness is deteriorated.

In order to improve the robustness in steady-state
operation, we annul the gain vector L when the prediction

error Ay = iL —iy, is small. Thus in transient, the
observer converge quickly and the robustness is improved
in steady state.

This observer strategy constitutes an intermediate
between the Luenberger observer and the Kalman filter.

Note, finally, that in our procedure, the knowledge of the
converter parameters is necessary.
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