TORQUE CO NTROL OF A SYNCHRONOUS MOT08

WITH Based on this idea, we propose modern regulation techniques for the control of the electromagnetic torque of a synchronous motor.

From the state-space representation of systems, we propose the decomposition of the process dynamic into two time scales, in order to give a reduced-order action model of the device. This reduced state-model will be the basis for the construction of a flux observer, with a structure being simple enough to be implemented, in real time, in the control loop of the motor. At last, we develope a modal control system, which allows the control of the transient-state evolution of state variables in the speed drive.

The problem of model reduction has regained interest during the recent years, undoutedly due to a more systematic utilisation of the modelling. Actually, due t o the availability of powerful1 computation material, the tendency is towards the modelling of the observed phenomena as accurately a s possible. This approach usually leads t o representations of large dimensions, which are not easy t o analyse and make difficult the design of a controller. On the other hand, the time constants encountered in electrical machines are relatively small, and it is necessary to simplify the obtained representations before proceeding t o the imlementation of the corregponding controls on the microprocessor. In order to reduce the model, the system dynamic can be analysed so that the existance of dominant modes is revealed. The system can then be decomposed into two time scales:

a first scale where the state variables have slow variations, -a second scale where the other variables are the superposition of fast transients and quasi-steady slow movements. The first scale offers a slow reduced-model, which gives in our case a satisfactory approximation of the dynamic behaviour of the motor. Generally, the state-space representation of wound-rotor synchronous machines is obtained by the linearisation of equations around an operating point represented by w,, 8, and Vso. The following form is then obtained: The dynamic study of this system reveals the existence of a pair of dominant complex conjugate poles and one real simple pole. This particularity allows the separatiOn into two time scales.

1.a -Decommsition into two time scales ;

By considering the equation of the system defined above, we have to identify, in a first step, the slow components x and the fast components z, so that the system can be represented under the following form :
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The parameter E allows the normalisation of the terms in the state matrix and can be defined as E = t I z , where z and t are the time scales of the slow and fast variables respectively. The movement of x is essentially slow whereas z is the sum of fast variations and a slow movement.

The identification of slow and fast variables cannot be done by only determining the eigenvalues of matrix A, since this does not reveal the component 1abels.The method based on d r a w i n g GERSHGORINE circles, allows the localisation of dynamic modes in the complex plane, along with the association of the corresponding state variables. The application of this method [ 1 ] leads to the circles of Figure ( 1). These circles show clearly the different zones associated with the eigenvalues. In this way it is possible to distinguish the rapidity of the mode associated with Qsq (circle R2) with respect to those associated with Osd and CDrq. The ratio p, which characterises the mode separation, is defined by :
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It should be noted that the smaller the value of m with respect t o unity, the better is the separation. This ratio shows the rapidity of the mode associated with @q with respect t o a d and G-q, for the speed varying from zero to 4 / 5 of the nominal speed.
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This model reduction is therefore more accurate for lower speeds. This is precisely the speed range for which classical control laws are not quite exactes and i t is very important that the model reduction is accurate in this zone.

D -Ehm-fBs ion of reduced-o rder model ;

Once the slow variable xt = (Osd, @q)t and the fast variable z = Qsq are identified, the system described by equation ( 2) can be expressed by:
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When the fast variable Osq attains its quasi-steady state, we have : e.; = 0 , [31. Then :
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The state equation of the slow part is written in following form: We can then write:
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For the reduced-order model to represent faithfully the system, one should be sure that the control phasor U varies slowly in the considered time interval.

The analytical expression of the slow part of the system leads to the following equations :

The set of equations ( 8) and (9) represents therefore the original system (1) by considering that the contribution of the fast component of flux Qsq is rather negligeable with respect t o that of slow components a d and a q . We are going now t o validate this result by comparing the two equation systems.

f reduce0 rder model ;

1.c -Vahdltv 0 . .

We have just shown that the initial third order system, represented by equation (11, can be approximated by the second order state equation, expressed by ( 8 ) and (9). It should be noted that the simplified model contains a direct transition matrix D1. This particularity introduces a current discontinuity, especially during the starting. In order to limit this effect, inherent t o this type of reduction, it is necessary to have a period which is small compared with the smallest electrical time constant in the system. Figure (2) illustrates the comparison between the evolution of quantities in the complete and reduced models.

JI -DYNAMIC FLUX OBSERVES

The flux evolution in the machine is represented by the second order state equation (8,9). Based on this model, we propose the definition of a controller, which improves the transient-state behaviour, by algebraic return of states. This correction method necessitates the knowledge of states Qsd and @rq a t each instant. Since these states are not measurable, we have to conceive a dynamic observer which is able t o estimate its components. In view of reducing the number of used sensors, we choose the construction of this observer from the measurements of the rotor current and the knowledge of the voltage phasor( magnitude, frequency,phase). The general structure of this observer is illustrated in figure (3).
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Here the device operates with constant Vf and we suppose a piecewise linear system, i.e. the quantities Bo and WO are constant betweet the two sampling periods. Under these conditions, the excitation current ( J = Irq is expressed at each instant by the following relationship : This current is not a state variable but it can be expressed by a linear combination of flux and the control, as defined by the following relationship
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The noted observed phasor (Qsd, Orq) is a linear function of r and w, so that we have :
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The conditions for the existance of T, and the fundamental relationships of the LUENBERGER observer give the following solution : 
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The necessity of forcing E towards zero as fast as possible, is in contradiction with a good noise immunity. Consequently the choice of the observer dynamic f should be the result of a compromise. In any case, the observer time constant should be less than the smallest time constant in the process.

The choice of a good dynamic, capable of operating adequately at the nominal speed, risks to increase the observer sensitivity at lower speeds. This fact conducts us to choose f = -50. The observation of the slow flux components is performed by integrating the relatonship (13) of the known dynamic.

Figure (4) shows the real and observed values of the flux durig a starting. It can be seen that the observer restores correctly the slow flux components except for the very beginning of the starting, where the assumption of slow control signals is not quite respected. On the other hand, when the steady-state is established, the excitation current J suffers a perturbation. As expected by the theory, the observer converges towards the real values with its own dynamic, independently of the real flux. This is the principal characteristic of the LUENBERGER dynamic observer. 

I11 -STATE -SPACE CO MPENSATION

The dynamic observer, constructed in the previous section, allows the reconstitution of the slow components of the flux. From this point on, we can think of an adequate control, in order to accelerate the flux establishment in the machine. An efficient method for realising this consists in imposing the system poles a t each instant. To achieve this we propose t o implement a modal control ,which ensures the poles placing as a reaction to the input of the observed states. The regulating quantity is the internal displacement angle El ,whereas Vf stays constant and equal t o its nominal value.The variation of the amplitude of the supply voltage is related to the speed. The schematic diagram of figure (5) describes this regulation system.

figure ( 5 ) 7000- U- I 1 1 -------- N(v m n ) .dFT7. r T - - (

JI1.a -C o w n s a t i o n matrix calcu lation

In order to realize the objectives defined above, we should implement a control law of the type :

The closed-loop system is represented by the equation From now on t h e dynamic matrix is represented by the quantity A' = (Al -Kt -Bl). The correct choice of vector K allows t o impose the eigenvalues of A , i.e. the poles of the closed-loop system. The calculation of this matrix is done by specifying the damping factor 5 that we wish to obtain. The compensation gains will then be : The different terms used here are related t o equation (18). A compensation of this type allows the improvement of the transient flux quality in the machine. In contrast, the steady-state values are not fixed any more, since they depend on K. It is therefore necessary to add an integral corrector to this system, which will allow to fix an appropriate pattern in the steady-state. This is taken into consideration in the speed loop.

n7 -SPEED FEEDBACK LOOP

The aim of this process is to keep the speed constant and it seems interesting to introduce the integral action i n the speed loop, a s shown in the block-diagram of figure ( 5 ) . In this way we obtain a cotroller which controls the transient-state by its compensator, and it limits the speed fluctuations through its integral action.In order to verify the proper operation of the whole assembly, we have simulated the motor starting, and studied the influence of the compensation loop. Figure (6) illustrates the results of a test with a reference speed of 1500 rpm for a resistant torque of 5 Nm. We can observe a satisfactory behaviour of the speed feedback, i n paticular with a correct flux control.

V -CONCLUSION

The application of the reduced-model technique, based on the GERSHGORINE circles, has been found to be very interesting for the control of wound-rotor synchronous motors. Its implementation simplifies considerably the inclusion of the flux observer. Actually, all the principal flux components can be restored by using a unique current sensor. This reduction has conducted to the consideration of a first-order observer which, owing to its proper dynamic, allows to attenuate the imperfections and/or disturbances which affect the measurements. Moreover, this reduction leads to the implementation of a second-order state-space control, which facilitates considerably the calculation of the compensation gains.This control law improves the drive behaviour, in particular for lower speeds, by controlling the flux in the machine in a satisfactory manner.
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