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Abstract: This paper presents a Modeling approach to control the PEM fuel cell auxiliaries and the design of control
laws. In a second time, we present the structure specification of an electrical power train with fuel cell for high power
transport applications. This work shows that we can characterize and adjust the system control on an operating cycle
with the simulation tools. Copyright © 2003 LEEI INPT, UMR 5828, CNRS.
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1- INTRODUCTION.
The use of fuel cell is now envisaged to supply

electric energy in high power rail transport applications.
So we realize a study to control the structure of the fuel
cell system and the electrical chopper which composed
the electric power train.

In a first time, we present the fuel cell model and its
auxiliaries used to design the controllers. Then we
explain the control strategy of these auxiliaries, only for
air compressor and valve pressure.

In a second time, we detail the power train structure
as well as the control scheme of each electrical chopper
and first results of energy management.

2- GLOSSARY.

Fi Molar flow.
N Number of cells bystack.
F Faradays constant 96485 C/mol.
I Current in A.

02Hλ Hydration rate of the membrane.

20X Molar fraction of 02 in air =21%

StO2 Stochiometry rate of oxygen.
R Molar gas constant. 8.13 J/K/mol.

Vcath Cathodic Volume in m3

Tfc Temperature in Kelvin.
Pi Pressure in Pascal.

Cyl Compressor capacity in m3.
ω Rotation speed in rad/s.
γ Polytropic exponent, for air γ=1.4.

M Molar masse of air.
3- FUEL CELL SYSTEM.

The fuel cell system is composed by the fuel cell
core associated with all the necessary auxiliaries for an
embedded fuel cell system.

This schema represents all the functions present in a
fuel cell system:
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Fig 1. : Fuel cell system.

The Modeling process consists in writing the
variations of the species concentrations, then in
calculating the pressure in each compartment. After this
step we use a quasi-static model to establish the voltage
variation of the fuel cell [1] [2].

The nominal point of the system is:
PaPoutlet

5101= ; PaPinlet
5106.1= ; KT fc °= 15.353 ;

6.1StO 2 = ; kWnomPower 400_ = ; VUnom 375min =

4- FUEL CELL MODELING.
4.1- Cathodic species schedule.

These equations describe the variations of the
gaseous species concentrations in the cathodic
compartment.

The balance of oxygen and nitrogen allows us to
write the following equation:
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With :



− Fin inlet molar flow of the compressor.
− Fvalve outlet molar flow of the valve.
− Xi molar fraction of i species .
− FO2c oxygen molar flow consumed by the fuel cell.
4.2- Anodic species schedule.

In the anodic compartment, we can write the same
type of balance.

valveHcHinH FFF
dt

dnH
222

2 −−=
F

NI
F fc

cH 22
= (2)

With :
− FH2in inlet molar flow of the Reducing valve.
− FH2c hydrogen molar flow consumed by the fuel cell.
− FH2valve outlet molar flow of the valve.
4.3- Pressure calculation.

We use the perfect law gases hypothesis to calculate
the pressure:
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The dynamic model of the pressure variation is:
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With:
valveconsOd FFF += 2

We can also calculate the partial pressures:
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P = (5)

4.4- Voltage calculation.
The voltage variations of the fuel cell are computed

with a quasi-static model, because the chemical reaction
dynamic is faster than the system dynamics.

This voltage depends on the current density in the
fuel cell, the partial pressures (of hydrogen and oxygen),
the temperature of the reaction, and the hydration of the
membrane. ),,,,( 022 2HfcTPHPOIfUfc λ=

Hypothesis of the model:
− Insignificant Anodic activation voltage.
− Uniform current density.
− Uniform temperature.

The voltage expression is:
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With :
− α= symmetry factor (0,5).
− jo = current exchange.j0=[10-7A/cm2;10-5A/cm2].
− Rmem=f(T fc,λH2O) membrane resistance (0,162

Ω/cm2).
− jmax=2.5A/cm2 maximum current.
− c=0.471 coefficient due to simplification.
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Fig 2. : Polarisation curve.

In the polarisation curve, we can see three zones:
• Cathodic activation (zone one) :
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• Ohmic loss (zone two) :Rmem j.
• Diffusion limitation (zone three) : 2

max )/( jjcj .

The Nernst law is valid on all the voltage range.
This law represents the voltage of the oxidation-reduction
reaction :
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5- COMPRESSOR MODELING.
After Modeling the PEM core, we must study the

air supply process to obtain the dynamics of the voltage
developed by the fuel cell.

The air supply system of the fuel cell is composed
by a screw type compressor. We choose this type of
compressor to avoid the flow oscillations and the
lubrication. The rotation is made by a synchronous drives
with permanent magnets.
NB: we work here on a low-pressure fuel cell system.
5.1- Outlet flow compressor.

The outlet flow is detailed in [3] and is:

v
outlet

outlet
molar Cyl

RT
P

q η
π

ω
2

= (8)

The volumetric efficiency 
vη  allows us to include

several phenomena in the model:
§ The total mechanical clearances between rotor and

compressor casing .
§ Compression rate.
§ Rotor peripheral speed.
§ Flow density.

The volumetric efficiency depends on the rotor
speed and compressor rate (

inlet

outlet

P
P

tx = ) as seen on fig 3.
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Fig 3. : Volumetric efficiency.
5.2- Flow simplification modeling.

The association of the synchronous machine (with
speed control) and the compressor can be represented by
the following diagram:

Ms + control
Compressor

wwref

Pcath
Fcomp

Fig 4. : Synchronous machine and compressor.

From this functional diagram we can write the
evolution law of the compressing flow ‘Fcomp’. We
place upstream speed reference an inverse model of the
compressor in order to have a linear relation between the
variable of entry 'e' and the flow of the compressor
'Fcomp'.



The inverse model is representing by the following
maps on Matlab:
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Fig 5. : compressor inverse model.

Therefore, we can write the following diagram:
Ms + control

Compressor

wwref

Pcath

Fcomp1),( −
cathcomp Pwf

e

Fig 6. : flow modeling.
The synchronous engine and its controller are

equivalent to a first order system. So the exit flow of the
compressor is represented by:
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6- VALVES MODELING.

The molar flow of the valves is expressed in
function of the opening section, the temperature, and the
outlet and inlet pressures [4]:
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This valve models is linearized around the nominal
point. So the new model is: 

valveopenvalve KSF =

7- AUXILIARY CONTROL STRATEGY

7.1- Steady state modeling.
Therefore, the modelisation of the fuel cell system

result in a two states model [2][5]where:
tFcomp][Pcath X =
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In this modelisation the pressure is in bar.
The nonlinear model is linearized around the

nominal point. So we can write :
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7.2- Feedback Control Design.
The system controller is implemented in digital so

we numerize the steady state. The sampling frequency is
equal to: Hzfe 166=

The new steady state is:
)()()1( kuBkXAkX dd +=+ and )()( kXCkY d=

The control structure schema is:
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Fig 7. : Pressure and flow control.
In order to create uncoupling of the two states

variables we write:
)()()( 0

11 kXkvku ∆∆−∆= −− (12)
With:

dB=∆ and 
dA=∆0

with this steady state feedback the new system is
simplified as: 2

1
1

1 vzFandvzP compcath
−− == .

After uncoupling the system we implement RST
regulator in order to control the two variables with
different dynamics.

The regulator structure is:

1
v1

1/z

T

R(z) 2
Pcath

1
Pref

S(z)

Fig 8. : Pressure and flow regulator.

Where:
11 1)( −− −= zzS ; 1

10
1)( −− += zrrzR ; )1(RT = (13)

The polynomial regulator coefficients are calculated
by the pole placement. The chosen characteristic
polynomial of the close loop is.

212
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1
1

1 ))exp(1(1)( TdzzpzpzP ω−−=++= −−−− (14)
with:

srad15=ω  for pressure loop.

srad50=ω  for flow compressor loop.
We obtain:

2110 1 prandpr =+= (15)

The flow reference is calculated with the Faradays
law:

20
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4 XF
StIN

F O
ref = (16)

7.3- Simulation results.
This simulation represents the evolution of pressure

and flow when power is requested on fuel cell. It is
realized with a very complete model on simulink.
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As we can see on this simulation the pressure is
remained constant despite the compressor flow variation.
We can also see that the compressor flow tracks the flow
reference.

8- TRACTION CHAIN.
8.1- Architecture.

The fuel cell is now, connected to the DC link with
an electronic chopper. The existing fuel cell sub-system
has to be designed for high power and does not exist for
the moment. That is why an Energy Storage System
(ESS) must be associated with the fuel cell. In addition
the ESS is able to absorb the braking energy of the
vehicle. The ESS technology chosen is supercaps. This
ESS is connected to the DC link by another electronic
chopper.

Both sources must give the power demand by the
propulsion motor and the auxiliaries of the vehicle. The
electrical choppers are connected by parallel structure as
shown on fig 11.

Full Chopper

FC Propulsion
motor

Energy Storage
System

DC Link

Energy management

Voltage control

Current control

Power ref

Current ref

Voltage ref

Switch control

Switch control

Boost Chopper

Fig 11. : Power Train and control structure.
The fuel cell chopper is a Boost because in the high

power rail transport applications the voltage of the Dc
link is high. This chopper is controlled for the DC link
voltage regulation. So a loop voltage regulation is used.

The supercaps full chopper is a Buck/Boost because
this chopper must be reversible in current. This chopper
is in current regulation control mode to manage the
charge and discharge of the ESS. The current reference is
computed in function of the ESS power reference which
is obtained by an energy strategy.
8.2- Boost Modeling and Control

VdcCf

L1

Fuel
Cell

IL Idc

Vfc
u

Fig 12. : Boost principle schema.
{ }mFCfandmHL 2.395.01 ==

The power switch is control by PWM with α duty
cycle. The constant frequency is fd=1/Td .With the PWM

control. Chopper is described by the following average
model.
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This chopper is controlled for the DC link voltage
regulation. In the aim to have good control of the voltage
we have realized two regulation loops : one on the current
and an other one on the voltage[6]. To obtain suitable
transfer function for control purpose, we realized a
linearization by an inverse model. So we write:
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VfcVL
α (18)

With this linearization the current model is:
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To implement a digital controller we numerize the
transfer function, the sampling frequency is equal to the
switch frequency.
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Finally we establish a classical sampled regulation
structure ( Fig. 13) with an RST regulator with these
polynomials corresponding to proportional and integrator
controller:

11 1)( −− −= zzS ; 1
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Fig 13. : Boost current loop.

The regulation coefficients are calculates by the
pole placement. The characteristic polynomials of the
closed loop is.
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with: sradfd 3142102 == πω .

We obtain:
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In order to avoid windup we have implemented an
anti-windup structure in the regulation loop.
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Fig 14. : Boost current loop implementation.
In the same way, to add a voltage control loop, we

realised a linearisation by an inverse model with:

)'( IdcIref
Vfc
VdcIref += (24)

So we can write the voltage model:
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We have here the same type of transfer than in the
voltage loop so we made the same digital controller with
also an anti-windup.

The structure of this controller is show in fig 15:
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Fig 15. : Boost voltage loop.
The coefficient of the regulation are.
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Here we have the same characteristic polynomials
with: sradfd 3141002 == πω .
8.3- Buck/Boost Modeling and Control.
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Fig 16. : Buck/Boost principle schema.
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This chopper is described by the following average
model which allows us to establish the equation in the
two working phases[7].

Differentials equations in Buck case :
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Differentials equations in Boost case :
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In order to simulate this chopper we write:

BoostBuckVdcBoostBuckVdcVpwm /)1(/ 21 αα −+= (29)

Where Buck/Boost binary variable represents the
type of the chopper operation. This chopper control is of
course a current regulation to manage the charge and
discharge of the ESS. In order to have one model and one
regulator we write that the control in the boost mode is
the complement of the control in the Buck mode. In this
case the Boost model can be wrote as a Buck model. But
in the control loop we must compute the complement
value of the rate cycle when the Boost operation is
activated. The current transfer function is:
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The DC link voltage is constant because this
voltage is control by the Boost chopper.

To implement a digital controller we numerize the
transfer function, the sampling frequency is equal to the
switch frequency.
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We establish a sampled regulation structure as on
fig 17. We compute an RST regulator with these
polynomials:
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Fig 17. : Buck/Boost current loop.
The function in the f(u) bloc is the implemented

function to calculate the complement value of the α rate
cycle when the Boost operation is activated. So we write:

BoostBuckuBoostBuckualpha /)1(/ −+= (33)
The type of the chopper operation variable

(Buck/Boost) is calculated by:

Power_ref

Buck/Boost

0

1

ε-ε

Fig 18. : Buck/Boost operation.

This is simulated by a relay because the zeros value
of the current must be in the two modes because the
chopper can make a current with a zero average value. So
we have:

Buck mode when Buck/Boost=1.
Boost mode when Buck/Boost=0.
The balance point of this converter is for the

average current equal to zero. When the chopper is in one
mode we have an intermittent flow for little value of the
current. The first solution in order to control the chopper
is to hold the mode to the last active mode and to filter
the current. The second solution is to switch between the
both mode when we have zero current. We have decided
to implement the first solution so we filter the supercaps
current by a numerical Butterworth (5 orders)
filter )F(z-1 . The regulation coefficient are calculated by
the pole placement.
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The characteristic polynomials is:
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Where: sradfil 150010 == ωω  and filω is the

angular frequency cutting of the filter.
Due to current overshoot when the chopper

operation changed, we must initialised the duty cycle at
each changed to set the current to zero.

The initialised value is: VdcVscinit =α
The implementation structure of the loop regulation

with initialisation and anti-windup is:
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Fig 19. : Current regulation implementation.
The initialization is computed by the structure seen

on fig 16:
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Fig 20. : Initialization computed.

The initialization structure detect the mode
modification and put the control variable to the init value.
The current reference is calculated in function of the ESS
power reference and the loses estimation of the chopper.
The power reference is provided by an energy strategy.

In Buck case :
)1()()( −−= kLosseskrefPowerkrefpowerESS (36)

In Boost case :
)1()()( −+= kLosseskrefPowerkrefpowerESS (37)
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Power_ref

Fig 21. : Current reference.
The current reference is also managed by a logical

function in order to limit the supercaps voltage (in max
and min value). The losses of the chopper are estimated
in average value by a value plant[8][9].
8.4- Simulation results.

The aim of this simulation in average value is to
view some responses of  the main system variables. Data
used for the power reference are taken from ADVISOR
(NREL software) simulation.
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We can see that the first converter has a voltage
regulation and this voltage remained constant despite the
power request on the DC link.
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The simulation shows also that the second chopper
has a current regulation and the current in the supercaps
tracks the current reference. We can also see that this
chopper is reversible in current.
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Fig 24. : power traction on an operating cycle.
As we can see on this simulation, the power of the

propulsion motor and auxiliaries is separated between the
fuel cell and the supercaps following the energy
management chosen. The quasi-static model seems to be
sufficient for the power train simulation but, we are now
testing if we must develop a dynamic model of the fuel
cell.

9- CONCLUSION.
In order to control the fuel cell system we develop

the fuel cell model, the air compressor model, and the
valves model. We have only developed in this paper the
control structure of the air supply system and pressure
valves. But in the fuel cell system, there are other
auxiliaries to control, like the cooling system. So we must
continue the study on the control structure.
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