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Representing	 belief:	 beyond	 probability	
and	logic	
 Didier Dubois and Henri Prade 
 

	Abstract	
This chapter surveys recent approaches to the representation of belief. There is a clash 
between the notion of degree of belief in the subjective probability tradition and the idea of 
certainty as accepted belief often couched in the language of logic, and especially modal 
logic. The attempt to consider degrees of certainty finds its origin in the works of Francis 
Bacon often opposed to the one of Pascal. However, by reviewing some more recent trends in 
the representation of uncertainty, such as possibility theory, ranking theory, evidence theory 
and imprecise probability, one may argue that these novel approaches try to bridge the gap 
between the two traditions, even if dropping some favourite properties on the way, such as the 
additivity of degrees of belief and the adjunction law for accepted beliefs. 

	1.	Introduction	
There are two traditions for representing belief, one based on probability, one based on modal 
logic. The probability tradition goes back to Pascal and other scientists of his time, who tried 
to measure our confidence in events (today we also speak of propositions in the logical sense). 
In those times, a distinction was made between so-called chances, and probabilities (Shafer, 
1978). The notion of chance was dedicated to repeatable events and measured via a 
combinatorial count of the frequencies of occurrence assuming elementary events had equal 
chances to occur. The notion of probability was understood as a subjective notion, typically 
the confidence to be granted to a testimony. The latter notion is still prevalent in important 
texts from the XVIIIth century such as D'Alembert and Diderot's encyclopaedia1. The notion 
of subjective probability was to be caught up again in the XXth century by scholars like 
Ramsey (1926) and de Finetti (1937). They tried to justify why degrees of belief should be 
additive. However, additivity can only be obtained by introducing severe restrictions on the 
model of graded belief, namely, it essentially prevents to capture the notion of ignorance. The 
reader is referred to the rather recent compilation by Huber and Schmidt-Petri (2009) for a 
survey of approaches to degrees of belief.  
 
In contrast, the modal logic tradition was developed in the XXth century, even if modal logic 
per se goes back to middle-ages philosophy, and even to ancient Greek philosophy. Hintikka 
(1962) proposed a so-called epistemic logic that tried to define a rational logical framework 
for the idea of knowledge, and its articulation with an all-or-nothing notion of belief. Namely 
knowledge is essentially true belief, while a simply believed proposition is not supposed to be 
actually true. In this setting, modeling ignorance is obvious as you just express that you 
believe neither a proposition nor its negation. Besides, one essential feature of this approach is 
that when you know that each of two propositions is true, you also know that their 

                                                
1 See the entry "Probabilité'', accredited to Benjamin de Langes de Lubières (1714-1790), 
Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. D. Diderot and J. 
Le Rond d'Alembert. http://enccre.academie-sciences.fr/encyclopedie/page/v13-p403 



conjunction is true, which is sometimes called the adjunction axiom (Kyburg, 1997). This 
axiom is also supposed to hold for beliefs, with the understanding that modal beliefs 
represents accepted beliefs, that is, propositions taken for granted to the point of reasoning 
with them as if they were true.  
 
There is a clash of intuitions between the two views, because for them to match, one needs to 
explain the connection between graded belief and belief simpliciter. One way is to add a 
threshold to graded beliefs and retain propositions above this threshold, but it is then almost 
impossible to preserve the adjunction axiom, if we model graded beliefs by probabilities. This 
is the point made by the Lottery Paradox (Kyburg, 1961), discussed later in this paper.  
 
The aim of this chapter is to provide an overview of belief representations that relate and go 
beyond subjective probability and epistemic logic, in the sense that some of them are graded 
versions of the epistemic logic approach and all of them give up the additivity assumption of 
probability theory. Most of these approaches have been developed only since the middle of 
the XXth century with a sudden acceleration from 1975 on. This chapter should be of 
particular interest to psychologists, because they often stick to the alternative logic vs. 
probability, and are not always aware of the fact that there is a large area beyond. 

	2.	Rationality	axioms	for	set	functions	representing	belief	
In this section, we survey mathematical models of belief and axioms that have been proposed 
to represent them. We consider the most general approaches and show that accepting the rule 
of adjunction considerably narrows the expressive power of graded belief representations. 

	2.1	Degrees	of	belief	
We assume throughout the paper that belief qualifies propositions, represented by subsets A, 
B, C ... of a set S of possible worlds or states of affairs. More precisely, A stands for the 
proposition that event A occurs, or equivalently that some entity of interest, say x, lies in A. 
We do not distinguish between logically equivalent propositions. Quantifying (the possible 
lack of) belief is one instance of expressing uncertainty for an agent. 
 
The most usual representation of uncertainty consists in assigning, to each proposition or 
event A, a number g(A) in the unit interval. It evaluates the confidence (we deliberately use a 
more general term than ''belief'' or "plausibility") of the agent in the truth of proposition x ∈ 
A. This proposition can only be true or false by convention, even if the agent may ignore this 
truth-value. The following requirements sound natural: 
  

g(∅) = 0; g(S) = 1  
 
as you cannot have confidence in contradictions, and you should believe in tautologies. Also 
natural is the monotonicity with respect to inclusion:  
  

If A ⊆ B then g(A) ≤ g(B). 
 
Indeed if A is more specific than B in the wide sense (in other words, A implies B), a rational 
agent should not be more confident in A than in B: all things being equal, the more imprecise 
a proposition, the more certain it is. Under these properties, the function g is sometimes called 
a capacity (after Choquet (1953)), sometimes a fuzzy measure (after Sugeno (1977)). In order 
to stick to the uncertainty framework, it was also called a confidence measure (Dubois & 



Prade, 1988). Such a set function represents the epistemic state of an agent, i.e., what an agent 
knows, or thinks he or she knows (irrespectively of whether it is true or not)2. 
 
An important particular case of confidence measure is the probability measure g = P which 
satisfies the additivity property  
  

If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B). 
 
Probability measures have been very often used to represent degrees of belief, hence with a 
subjective flavour, as opposed to limits of frequencies of repeatable events, that account for 
random phenomena. Contrary to frequencies, belief may be attached to unique events. 
However, the additivity axiom sounds much more natural when modeling frequencies than for 
degrees of belief. Actually, in pioneering works of Bernoulli and Lambert, they were not 
supposed to be additive (Shafer, 1978).  
 
 To recover additivity, scientists of the mid-XXth century such as de Finetti (1937) 
have interpreted P(A) as the amount of money the agent is ready to pay for buying a lottery 
that earns 1$ if the proposition A is true. Moreover it is assumed that the price is fair, namely 
the agent would accept to sell this ticket in the same conditions for the same price, and wants 
to avoid sure loss. The additivity axiom follows from this interpretation of degrees of belief. 
Hence probability measures should be used to represent degrees of belief. Such probabilities 
are said to be subjective (see chapter 1 of this section by Hájek & Staffel). Bayesian 
probabilists consider non-additive degrees of belief to be irrational since incurring sure money 
loss. 
 
Remark: Supplying precise degrees of beliefs sounds cognitively very demanding. It seems 
more natural to only represent the relative strength of confidence of an agent between various 
propositions expressing his/her knowledge rather than trying to force him/her to deliver 
numerical evaluations. It is indeed easier to assert that a proposition is more credible than 
another, rather than assessing a degree of belief (whose meaning is not always simple to 
grasp), or even to guess a frequency for each of them. The idea of representing uncertainty by 
means of partial order relations over a set of events dates back to  (Ramsey, 1926), (de Finetti, 
1937), (Koopman, 1940). They tried to find an ordinal counterpart to subjective probabilities. 
Later, philosophers of logic such as David Lewis (1973) have considered other types of 
relations, including comparative possibilities in the framework of modal logic. We omit 
discussing this literature for the sake of brevity. 

2.2	Accepted	belief	
Alternatively to measuring degrees of belief, one may want to consider propositions as beliefs 
accepted by an agent, if the latter is ready to reason as if such believed propositions were true. 
In particular if A and B are beliefs, the conjunction A ∩ B is also a belief (a debated issue). 
But the empty set should not be a belief. Moreover if A is a belief and A ⊆ B then B is a 
belief. In other words, a set of beliefs should be consistent and deductively closed. 
 
Consider a Boolean-valued set-function N from 2S to {0, 1} such that N(A) = 1 if A is believed 
and 0 otherwise. It is clear that N is a confidence measure (monotonic under inclusion) that 
satisfies the law of minitivity: 
                                                
2 Halpern (2003) calls plausibility measures set-functions of this kind, not even assuming a total order on events 
(replacing [0, 1] by a partially ordered set). However this terminology may lead to confusion with Shafer's older 
plausibility functions (see Section 4.2). 



N(A∩B) = min(N(A), N(B)). 
 
This function is a special case of necessity measures (Dubois & Prade, 1988). It models the 
idea of certainty. It is easy to check that in the finite case there exists a non-empty subset E = 
∩{A: N(A) = 1} and that N(A) = 1 if and only if E ⊆ A. The set E contains all states the agent 
does not consider impossible, given his or her beliefs, which is the simplest representation of 
an agent's epistemic state3. In other words, function N describes propositions that can be 
proved from the epistemic state E.  

2.3	Extracting	beliefs	from	confidence	measures	
In order to relate accepted beliefs to graded beliefs, one should extract accepted beliefs from a 
confidence function g. A natural way of proceeding is to define a belief as a proposition in 
which an agent has enough confidence. So we should define a positive belief threshold β such 
that A is a belief if and only if g(A) ≥ β > 0. However the closure of accepted beliefs under 
conjunction leads to endorse the following property 
 

Accepted belief postulate: If g(A) ≥ β and g(B) ≥ β then g(A∩B) ≥ β 
 
This requirement is very strong. As the set of accepted beliefs should not include the empty 
set, it is clear that one should have that min(g(A), g(B)) < β if A ∩ B = ∅. Worse, if the 
postulate holds for any positive threshold β, then it is clear that g(A∩B) ≥ min(g(A), g(B)), but 
as g is monotonic under inclusion, it enforces the equality, which comes down to the 
statement that a capacity represents accepted beliefs if and only if g(A∩B) = min(g(A), g(B)), 
that is g is a graded necessity measure, still denoted by N. Letting ι from S to [0, 1] be the 
function defined by ι(s) = N(S \ {s}) (the degree of belief that the actual state of affairs is not 
s), it is clear that N(A) = min s ∉A ι(s). The value 1 − ι(s) can be interpreted as the degree of 
plausibility π(s) of state s, where π is the membership function of a fuzzy epistemic state, 
usually called a possibility distribution (Zadeh, 1978). The set function Π from 2S to [0, 1] 
such that 

Π(A) = 1 − N(Ac) = max s ∈ A π(s) 
 

represents the degree of plausibility of A, measuring to what extent A is not totally ruled out 
by the agent. This setting is the one of possibility theory (Dubois & Prade, 1988). This means 
that possibility theory accounts for the notion of accepted belief. 
 
Possibility theory was proposed by L. A. Zadeh (1978) in the late 1970's for representing 
uncertain pieces of information expressed by fuzzy linguistic statements, and later developed 
in an artificial intelligence perspective (Dubois & Prade, 1988, 1998). Formally speaking, the 
proposal is quite similar to the one made almost thirty years before by the economist G. L. S. 
Shackle (1949), who advocated and developed a non-probabilistic view of uncertainty based 
on the idea of degree of potential surprise. The degree of potential surprise attached to 
proposition A can be modelled as N(Ac), namely the more you believe Ac, the more surprising 
you find the occurrence of A.  
 
A necessity-like function was explicitly used by L. J. Cohen (1977) under the name 
"Baconian probability''. It is related to the English philosopher Francis Bacon, while 

                                                
3 or doxastic state: we do not make the difference in this chapter. 



probability was investigated by Pascal and followers, as pointed out by Cohen (1980). It is 
devoted to the idea of provability in contrast with probability, and it perfectly fits necessity 
measures. Especially if you can prove A with some confidence, you cannot at the same time 
claim you can prove its negation, which makes condition min(g(A), g(Ac)) = 0 natural. It is 
satisfied by necessity measures. So, condition N(A) > 0 expresses that A is an accepted belief, 
the absolute value of N(A) expressing the strength of acceptance. Such Baconian probabilities, 
viewed as shades of certainty, are claimed to be more natural than probabilities for use in 
legal matters for instance. Deciding whether someone is guilty cannot be done using statistics, 
nor be based on betting probabilities: you must prove guilt using convincing dedicated 
arguments.  
 
About a decade later, in the late 1980's, W. Spohn (1988) introduced the notion of ordinal 
conditional functions, now called ranking functions, as a basis for a dynamic theory of 
epistemic states. Ranking functions κ are a variant of potential surprize taking values on the 
non-negative integers, that is Nκ(Ac) = 2-κ(A) is a degree of potential surprise. The theory of 
ranking functions (see Chapter 5.3 by Spohn et al. of this volume) and possibility theory can 
be developed in parallel4, even if they were independently devised. 
 
Subjective probability has been justified by Savage (1954) from first principles in the setting 
of decision under uncertainty. This result has been very important to popularize probability as 
the natural way of representing degrees of belief. As it turns out, a similar approach has been 
carried out for possibility theory in the same act-based setting as Savage, albeit assuming a 
finite state space S. See (Dubois, Prade, & Sabbadin, 2001) for a detailed account. The 
approach leads to qualitative counterparts of expected utility and extends the Wald pessimistic 
and optimistic criteria to possibility distributions. They may be considered not enough 
discriminant and can be refined using special forms of expected utility that encode 
lexicographic refinements of min and max (leximin and leximax) (Fargier & Sabbadin, 2005). 
See (Dubois, Fargier, Prade, & Sabbadin, 2009) for a survey (see also Chapter 8.4 by Hill of 
this volume). 

2.4	Probability	and	accepted	beliefs	
It is clear that set functions representing accepted beliefs and probability measures supposed 
to capture rational degrees of belief are at odds with one another. If we apply the threshold 
method to a probability function in order to recover accepted beliefs, then we fail to satisfy 
conjunctive closure since however large the threshold β is: 
 

P(A) > β and P(B) > β do not imply P(A∩B) > β for all A, B. 
 
This state of fact has been especially pointed out by Kyburg (1961, 1997). He proposed the 
lottery paradox. If S contains the set of possible equiprobable outcomes of a chance game like 
buying a lottery ticket where only one wins, then, by making S big enough, we can make the 
probability of losing when betting on s, namely, (|S|-1)/|S|, as high as possible. But if you buy 
all tickets you are sure to win. This example questions the cogency of accepted belief 
understood as high enough degree of belief. As a consequence, Kyburg proposed to give up 
the idea that accepted beliefs are deductively closed and constructed a specific logic 
accounting for this standpoint (Kyburg & Teng, 2012).  
 

                                                
4 Up to the presence or not of technical assumptions like well-ordering in the infinite setting.  



Another way out of the lottery paradox is suggested in (Dubois, Fargier & Prade, 2004) by 
restricting the set of probabilities. We look for probability measures that respect the 
adjunction rule, namely for any context C,  
 

P(A|C) > P(Ac |C) and P(B|C) > P(Bc |C) imply P(A ∩ B|C) > P(Ac ∪ Bc |C) for all A, B. 
 

This is the adjunction rule for β = 0.5. Such probability functions do exist and they are so-
called big-stepped probabilities (Benferhat, Dubois & Prade, 1999) or yet atomic bound 
probabilities (Snow, 1999); see also Leitgeb (2014)'s stability theory. They have probability 
masses of the form p1 > p2 > ... > pn, where pi = P({si}), such that for all i < n, pi > 
pi+1+pi+2+...+pn, i.e., they are the discrete counterpart of exponential probability functions. 
The same kind of result can be obtained for any acceptance threshold. This result suggests 
that the notion of accepted belief is more consistent with probability theory for distributions 
that are strongly biased towards some specific outcome (the opposite of uniform distributions 
used in the lottery paradox), that is, those for which common sense beliefs can be entertained. 

3.	Qualitative	possibility	theory:	reasoning	with	defeasible	accepted	
beliefs	
As mentioned before, there are two different traditions for doxastic reasoning: modal logic 
that captures accepted beliefs by modalities, and set-functions that use probability. The fact 
that there is a class of set-functions that also captures accepted beliefs suggests a bridge 
between the two traditions. Let us also mention a third tradition that models partial ignorance 
using a truth-functional many-valued logic, e.g., Kleene logic that expresses partial 
knowledge about atomic propositions only. It severely limits its representation power (Ciucci 
& Dubois, 2013). We claim that qualitative possibility and necessity functions, valued in a 
bounded chain, offer a unified framework for these traditions. In particular, in this approach, 
accepted beliefs are defeasible, and it has close connections with non-monotonic reasoning, 
counterfactual reasoning and belief revision (see chapters 5.2 by Rott, and 6.1 by Starr). 

3.1	Boolean	set-functions	and	modalities:	a	simple	epistemic	logic	
Consider a propositional language L where well-formed formulas p, q, ... encode 
propositions. In artificial intelligence, a set of formulas in propositional logic is often called a 
belief base, and when deductively closed, a belief set. In the syntax of propositional logic, you 
can express the fact that a proposition is believed, but there is no way to express that it is not 
believed. All you can express is that its negation is believed. Introducing a belief modality ! 
in front of p improves the situation as we can now distinguish between ¬!p (p is not 
believed) and !¬p (its negation is believed). The standard approach to model accepted 
beliefs is indeed modal logic, after (Hintikka, 1962). Note that the meaning of modality ! is 
described by the axioms ruling the logic. It can range from a very loose interpretation ("the 
agent has received information that p is true") to a very strong one ("the agent knows that p, 
in the sense of true belief").  
 
The usual axioms of doxastic logic are those of the KD45 modal logic (see Chapter 5.1 by van 
Ditmarsch in this volume), which presupposes a modal language M that extends L and 
allows for nested modalities (the symbol ⇒ represents material implication): 
 
(PL) All axioms of propositional logics for M-formulas. 
(K)] !(p ⇒q) ⇒ (!p ⇒!q)  



(D) !p⇒ ¬!¬p 
(S4) !p ⇒ !!p 
(S5) ¬!p ⇒ !¬!p 
 
Inference rules are modus ponens and necessitation (if p is a theorem, deduce !p). The 
semantics is in terms of accessibility relations R ⊆ S x S. The satisfaction of !p at a state s 
based on relation R is defined by sR ⊆ [p] where sR = {s': (s, s') ∈ R} and [p] denotes the set 
of states where p is true. 
 
This approach can be simplified in order to relate doxastic logic with the representation of 
accepted belief in the previous section:  
 - KD45 uses a complex language, while we can restrict it by putting modality ! only in front 
of propositions in L. 
 - Axioms S4 and S5, which are often called positive and negative introspection, seem to be 
there basically to make complex formulas of the language M equivalent to simpler ones 
without nested modalities (even if they have a philosophical meaning). 
 - It may sound counterintuitive to evaluate doxastic formulas on a real state of affairs; it is 
more natural to do it on epistemic or doxastic states (non-empty subsets of S). 
 
The propositional language L!, whose atomic variables are of the form !p, p ∈ L, is the 
simplest language for an epistemic or doxastic logic. Note that it is disjoint from L in the 
sense that it cannot express objective formulas. Then we only keep axioms K, D, and 
necessitation is modelled by an axiom saying that !p is valid whenever p is a tautology of the 
propositional calculus. This system is called MEL (minimal epistemic logic) (Banerjee & 
Dubois, 2014). 
 
The semantics of MEL is in terms of simple epistemic states E ⊆ S, and the satisfaction of !p 
by E is then expressed by E ⊆ [p], i.e., p is true in all states that are not considered impossible 
for the agent, or alternatively p is believed, i.e., N([p]) = 1 for the Boolean necessity measure 
equivalent to E. Indeed axiom K ensures that !(p∧q) is logically equivalent to !p∧!q, 
which is the axiom of necessity measures. Axiom (D) expresses that N(A) = 1 implies Π(A) = 
1. It ensures consistency (models of MEL are then non-empty subsets of S). 
 
In other words the logic MEL bridges the gap between epistemic logic (dropping the idea of 
introspection) and the representation of belief by means of set functions, identifying the latter 
with modalities. Especially the modality  ◊p = ¬!¬p corresponds to possibility measures. 

	3.2	The	logic	of	graded	acceptance	
The logic of acceptance MEL can be extended to graded necessity functions N using a simple 
multimodal logic. If L is a finite totally ordered scale of necessity degrees (understood as 
describing a gradation in accepted beliefs), we can expand the modal language of the MEL 

logic to allow for several belief modalities denoted by !λ, for λ ∈ L, λ ≠ 0, where the 

sentence !λp encodes the statement N([p]) ≥ λ, and the ! modality in MEL corresponds to 
!1 (expressing full belief). The language of this logic is thus a propositional language LL

! 

where atoms are of the form !λp, p ∈ L, for λ >0 ∈ L. Note that the formula ¬!λp stands 
for N([p]) < λ, which, due to the assumed finiteness of L can be expressed as Π([¬p]) ≥ 1 − 
s(λ), which is encoded as ◊s(λ)¬p, for the lower value s(λ) next to λ in the scale L. 



 
The sub-logic obtained by fixing value λ, is a copy of the logic MEL (it satisfies axiom K, D 

and necessitation axiom). There is also the weakening axiom: !λp ⇒ !µp if µ ≤ λ, and 

axiom (D) is valid in a stronger form !λp ⇒ ◊1p. The semantics is in terms of L-valued 

possibility distributions π representing gradual epistemic states, and π satisfies !λp if and 
only if N([p]) ≥ λ where N is based on π. Soundness and completeness of this logic, called 
GPL (generalized possibilistic logic), has been proved (Dubois, Prade & Schockaert, 2017).  
 
This logic is very expressive and enables to reason about ignorance and defeasible beliefs. It 
can encode several non-monotonic formalisms especially: 
 
 - The older standard possibilistic logic (Dubois, Lang & Prade, 1994) is obtained by 

restricting the language LL
! to using only conjunctions of atomic epistemic statements !λp, 

which are written (p, λ) in the original syntax. This logic is non-monotonic (Dubois & Prade, 
1998). 
 - Conditional logics with statements of relative belief of the form N(p) > N(q) can be 

encoded by GPL formulas of the form ∨{λ ≠ 0} !
λp ∧¬!λq. 

- System P of Kraus, Lehmann and Magidor (1990) where conditional statements express the 
plausible inference of q from p are modelled by the constraint N(p⇒ q) > N(p⇒ ¬q).  
 - Answer set programs can be expressed in GPL using a three-valued scale L = {1 >λ > 0}, 

i.e., two necessity modalities: a strong one !1 and a weak one !λ.  
 
In summary, GPL can be viewed as the logic of qualitative Baconian probabilities. 

4.	Non-adjunctive	settings	for	rational	degrees	of	belief	
If we consider that belief should come in degrees, and if, like Kyburg, we reject the 
adjunction rule, we are left with non-classical logics where deduction is not closed under 
conjunction, like for instance the logic of risky knowledge (Kyburg and Teng, 2012). Or we 
give up the Boolean framework of logic altogether, and concentrate on the properties of set 
functions that can model degrees of belief. The natural question is then whether degrees of 
belief should be additive at all. Fifty years ago, the answer was yes, of course. Since then, a 
number of proposals have emerged, from which it follows that such additivity should not be 
taken for granted. This section discusses some reasons for questioning additive beliefs and 
focuses on some approaches to graded belief that are deliberately non-additive. 

4.1	Can	a	single	probability	distribution	capture	any	epistemic	state?	
The so-called Bayesian approach to subjective probability theory posits a uniqueness 
principle as a preamble to any kind of uncertainty modelling: any state of knowledge is 
representable by a single probability distribution (see for instance (Lindley, 1982)). Note that 
indeed, if, following the fair bet procedure of de Finetti, an agent decides to directly assign 
subjective probabilities via buying prices to all possible outcomes in some game of chance, 
the coherence principle forces this agent to define a unique probability distribution in this 
case.  
 



Yet another mathematical attempt to justify probability theory as the only reasonable belief 
measure is the one of R. T. Cox (1946). He relied on the Boolean structure of the set of events 
and a number of postulates, considered compelling. Let g(A|B) ∈ [0,1] be a conditional 
degree of belief, A, B being events in a Boolean algebra, with B ≠ ∅:  
 
 i) g(A ∩ C|B) = F(g(A|C ∩ B), g(C|B)) (if C ∩ B ≠ ∅); 
 ii) g(Ac|B) = n(g(A|B)), B ≠ ∅, where Ac is the complement of A; 
 iii) The function F is supposed to be twice differentiable, with a continuous second 
derivative, while function n is twice differentiable. 
  
 On such a basis, Cox claimed that g(A|B) must be isomorphic to a conditional probability 
measure.  
  
 This result has been repeated ad nauseam in the literature of artificial intelligence to justify 
probability and Bayes rule as the only reasonable approach to represent and revise numerical 
degrees of beliefs (Horvitz, Heckerman & Langlotz, 1986) (Cheeseman, 1988) (Jaynes, 
2003). However some reservations must be made. First, the original proof by Cox turned out 
to be faulty - see (Paris, 1994) for another version of this proof, based on a weaker condition 
(iii): it is enough that F be strictly monotonically increasing in each place. Moreover, Halpern 
(1999) has shown that the result does not hold on finite spaces, and needs an additional 
technical condition in the infinite setting. Independently of these technical issues, it should be 
noticed that postulate (i) sounds natural only if one takes Bayes conditioning for granted; the 
second postulate requires self-duality, which forbids the representation of uncertainty due to 
partial ignorance as seen later on. The above comments seriously weaken the alleged 
universality of Cox results.  
 
Applying the Bayesian credo as recalled above, justified via the avoidance of Dutch books or 
by obedience to Cox axioms, forces the agent to use a single probability measure as the 
universal tool for representing uncertainty whatever its source. This stance leads to serious 
representation difficulties already pointed more than forty years ago (Shafer, 1976). For one, 
it means we give up making any difference between uncertainty due to incomplete 
information or ignorance, and uncertainty due to a purely random process, the next outcome 
of which cannot be predicted. One may indeed admit that additive degrees of beliefs are 
justified if they reflect extensive statistical evidence. But what if this information is not 
available?  
 
Take the example of die tossing. The uniform probability assignment models the assumption 
that the die is fair. But if the agent assigns equal prices to bets assigned to all facets of the die, 
how can we interpret it? Is it because the agent is sure that the die is fair and its outcomes are 
driven by pure randomness (because, say, (s)he could test it hundreds of times prior to placing 
the bets, or from counting cases)? Or is it because the agent who is given this die, has just no 
idea whether the die is fair or not, so has no reason to put more money on one facet than on 
another one? Clearly the epistemic state of the agent is not the same in the first situation and 
in the second one. But the uniformly distributed probability function is mute about this issue 
and handles the two situations in the same way.  
 
Next, the choice of a set of mutually exclusive outcomes depends on the chosen language, 
e.g., the one used by the information source. However, several languages or points of view 
can co-exist in the same problem. As there are several possible representations of the state 
space, the probability assignment by an agent will be language-dependent, especially in the 



case of ignorance: a uniform probability on one representation of the state space may conflict 
with a uniform one on another encoding of the same state space for the same problem, while 
in case of ignorance this is the only available model. Shafer (1976) gives the following 
example. Consider the question of the existence of extra-terrestrial life, about which the agent 
has no idea. If the variable v refers to the claim that life exists outside our planet (v = li), or 
not (v = ¬li), then the agent proposes P1(li) = P1(¬li) = 1/2 on S1 = {li, ¬li}. However, it 
makes sense to distinguish between animal life (ali), and vegetal life only (vli), which leads to 
the state space S2 = {ali, vli, ¬li}. The ignorant Bayesian agent is then bound to propose 
P2(ali) = P2(vli) = P2(¬li) = 1/3. As "li" is the disjunction of "ali" and "vli", the distributions 
P1 and P2 are not compatible with each other, while they are supposed to represent ignorance. 
Another example comes from noticing that expressing ignorance about a real-valued quantity 
by means of a uniform distribution for x ∈ [a, b], a positive interval, is not compatible with a 
uniform distribution on y = log(x) ∈ [log(a), log(b)], while the agent has the same                                                          
level of ignorance about x and y.  
 
Finally, Ellsberg (1961)’s paradox (see Chapter 8.2 by Peterson, in this volume) showed quite 
early that when expressing preferences between gambles consisting of drawing balls from an 
urn, the content of which is ill-known, many experiments have shown that people tend to 
systematically violate Savage axioms (especially the sure thing principle), because they tend 
to be pessimistic about rewarding events of unknown probability. One way of accounting for 
the results of these experiments is to give up additive beliefs. 
 
The above limitations of expressive power of single probability distributions have motivated 
the emergence of other approaches to uncertainty representations. Some of them, as seen 
above, give up the numerical setting of degrees of belief and use ordinal or qualitative 
structures, like qualitative possibility theory. Another option is to tolerate incomplete 
information in the probabilistic approach, which leads to different mathematical models of 
various levels of generality. They are reviewed in the rest of this chapter.  

	4.2	Shafer	belief	functions	and	the	merging	of	uncertain	testimonies	
The theory of evidence by Shafer (1976) can be viewed as a specific interpretation of 
Dempster (1967)'s upper and lower probability framework for handling imprecise statistical 
information, or as the revival of the concept of probability (as opposed to chance) invented in 
the XVIIth century by Bernoulli and later by Lambert, around the problem of representing 
and merging unreliable testimonies (Shafer, 1978). Shafer's book is clearly in the latter trend.  
 
The main issue is first to model an unreliable testimony. Suppose that a witness claims that 
proposition E is true but the receiver only partially believes this statement, considering that 
the witness is reliable with probability p. So p can be viewed as the degree of belief of the 
receiver in proposition E due to the unreliability of the witness. The additivity issue is raised 
by the question: to what proposition should the complementary weight 1 − p be assigned? The 
regular probabilist would assign it to the opposite proposition Ec. But if the testimony E is 
interpreted as Ec it means that the witness lies, i.e., says E when knowing it is false. There is 
another option: namely due to the incompetence of the witness, there is a probability 1 − p 
that the testimony is just useless. In the latter case, the probability 1 − p is assigned not to Ec, 
but to the whole of S, i.e., to the state of ignorance. Namely, with probability p the receiver 
knows that E is true, and he/she knows nothing with probability 1 − p, which is modelled by a 
basic assignment m from the power set 2S to [0, 1] such that m(E) = p and m(S) = 1 − p.  A 
belief function that models such a simple unreliable testimony E is called a simple support 
function. 



 
More generally, consider a process whose outcomes are set-valued (i.e., imprecise), and 
uncertain (there is a probability value attached to each outcome). This is modelled by a more 
general basic assignment m from 2S to [0, 1], such that m(∅) = 0, and ∑E ⊆ S m(E) = 1. 
Epistemic states E with m(E) > 0 are called focal sets. The degree of belief in a proposition A, 
and its dual plausibility degree are then defined by 
 

Bel(A) = ∑{m(E): E ⊆ A, E ≠ ∅};    Pl(A) = ∑{m(E): E ∩ A ≠ ∅} (3) 
 
It is clear that the belief function Bel is non-additive, e.g., Bel(A) + Bel(Ac) ≤ 1, and the 
degree of plausibility is Pl(A) = 1 − Bel(Ac). In the case of a simple support function, observe 
that when A ≠ S, Bel(A) = p if E ⊆ A, and Bel(A) = 0 otherwise. 
 
It is important to point out that belief functions generalize probabilities (recovered when ∀E, 
m(E) > 0 implies that E is a singleton), Boolean necessity measures, (recovered when m(E) = 
1 for some epistemic state E) and also graded necessity measures (recovered focal sets are all 
nested, e.g., a simple support function). A degree of belief Bel(A) clearly evaluates the 
probability of proving A from the available information. A plausibility degree Pl(A) evaluates 
the probability that A is not logically incompatible with the available information. To use 
Cohen (1977) terminology, belief functions join the probable and the provable, or put Pascal 
and Bacon together. But doing so, belief functions are no longer additive, nor do they respect 
adjunction. 
 
 The major problem addressed by XVII and XVIIIth centuries pioneers is the merging of such 
testimonies. They proposed special cases of what is now known as Dempster’s rule of 
combination. Let m1 and m2 be two mass assignments coming from independent sources. The 
result of the combination is a mass assignment m1"m2 defined by: 
 

∀ A ⊆ S, m1!m2 (A) = ∑{m1(A1)·m2(A2) : A = A1∩ A2} /K 
 

where K = ∑{m1(A1)·m2(A2): A1∩ A2 ≠ ∅} and m1!m2 (∅) = 0.  
 
It consists in intersecting any two overlapping focal sets, each coming from a distinct source, 
computing the probability of obtaining each subset A via such an intersection, and 
renormalizing the obtained mass assignment as some pairs of focal sets may be conflicting. In 
the case of merging two simple support functions focusing on the same set E where Bel1(E) = 
m1(E) = p1 and Bel2(E) = m2(E) = p2, the resulting belief in E is Bel1!Bel2(E) = p1+p2 -p1p2, 
which operates a reinforcement of the belief in E, a result already suggested by pioneers of 
belief functions in the XVII-XVIIIth centuries. This combination rule assumes that sources of 
information are independent, which makes the reinforcement effect plausible. 
 
In the book of Shafer, a major question is whether all belief functions can be expressed as the 
result of merging independent simple testimonies in the form of simple support functions. It 
turns out that only a subclass of belief functions, called separable, can be generated in this 
way. Later on, Smets (1995) has tried to extend the notion of simple support function so that 
to cover all belief functions. An extensive presentation of the theory of evidence as a theory 
of rational belief is proposed by Haenni (2009).  
 



Finally, decision criteria under uncertainty, when the latter is described by a belief function, 
are studied by Smets and Kennes (1994) and Jaffray (1989). The former propose to define a 
so-called pignistic probability measure from a belief function (generalizing Laplace principle 
of insufficient reason), and apply the expected utility criterion. This probability measures 
coincides with the well-known Shapley value in game theory (Shapley, 1953), and, in some 
sense projects the provable on the probable. Jaffray (1989) proposes and axiomatizes an 
extension of Hurwicz criterion.  
	
	
4.3	Imprecise	Probabilities,	Desirability,	and	Generalized	Betting	Theory 
The alternative approach to the modelling of degrees of belief consists in revisiting de 
Finetti's approach to subjective probability, dropping the constraint that the price proposed by 
a gambler for buying a lottery ticket should be fair. This view was pioneered by C. Smith 
(1961), P.M. Williams (1975), R. Giles (1982), and more extensively developed by P. Walley 
(1991).  
 
In this approach, the agent offers buying prices of gambles. A gamble is a function f from S to 
the real line that expresses losses (f(s) < 0) or gains (f(s) > 0) according to what is the actual 
state of affairs s. The gamble associated to an event is its characteristic function. The agent is 
not committed to selling such gambles at the same prices as their buying prices. The approach 
relies on so-called desirable gambles (Walley, 1991) that the agent would agree to buy for a 
positive price. The set of desirable gambles contains at least all positive gambles. Moreover, 
the sum of two desirable gambles is considered desirable, and a desirable gamble remains 
desirable when multiplied by a positive constant. The maximal price at which the agent 
accepts to buy a gamble is the maximal value α such that f − α is desirable. It is called the 
lower prevision of a gamble f. It can be shown that given a set of gambles G and their lower 

previsions LP(f), there is a convex set of probabilities P
G

, called credal set, such that LP(fi)= 

inf{EP(fi): P ∈ P
G

} is the lower expectation of fi according to P
G

, for all fi ∈ G, where EP(f) 
is the expectation of f with respect to probability P. One important point is that any convex set 
of probabilities can be represented by lower previsions on some family of gambles.  
 
In this setting, the upper prevision UP(f) of a gamble f is provably equal to −LP(−f). The 
upper prevision UP(f) is thus the minimal selling price of f. If the credal set attached to a set 
of gambles and its lower previsions is empty, then the proposal is inconsistent and the agent 
incurs a sure loss after buying and resolving these gambles. Avoiding sure loss means that 
UP(f) ≥ LP(f) for all gambles f. 
 
Moreover, due to the interaction between gambles, it may be that the consistent buying prices 
proposed by the agent for gambles fi ∈ G are too low and could be raised without altering the 
credal set. A set of buying prices bp(fi), fi ∈ G is said to be coherent if and only if LP(fi) = 
bp(fi), ∀fi ∈ G. In other words, a set of buying prices for a set of gambles G is coherent if and 
only if for any fi ∈ G, it holds that  
 

inf{EP(fi): EP(fj) ≥ bp(fj), ∀fj ∈ G} = bp(fi). 
 



Under this approach the degree of belief in proposition A is a coherent lower probability P*(A) 
= inf{P(A): P ∈ P} = LP(1A), the lower prevision of its characteristic function, where P is the 
credal set induced by the lower prevision LP(f) on some gambles.  
 
Some remarks are in order to position this approach with respect to other rational approaches 
to degrees of belief: 
 
- The epistemic state of the agent is here represented by a credal set P, but there is no ill-
known probability inside. In particular, the interval [P*(A), P*(A)], where P*(A)= 1 − P*(Ac) is 
not supposed to contain an ill-known subjective (nor objective) probability of A. Just as for 
belief functions, degrees of belief are precise and modeled by coherent lower probabilities. 
 - Mathematically, belief functions are a special case of coherent lower probabilities. They are 
super-additive set-functions at any order, while lower probabilities from any credal set only 
satisfy the inequality P*(A ∪ B) ≥ P*(A) + P*(B) when A and B are mutually exclusive. In 
particular, the mass function recomputed from P* instead of Bel in (3) (called the Moebius 
transform of P*) exists, is unique but not necessarily positive (Chateauneuf & Jaffray, 1989). 
 - An attempt to justify belief functions as the only rational approach to degrees of belief 
under a betting framework in the style of Walley (and not as unreliable testimonies) was 
recently published by Kerkvliet and Meester (2018). 
 
The gamble approach leads to a decision rule that is specific to the imprecise probability 
setting, namely a gamble f is preferred to a gamble g if and only the gamble h = f − g is 
desirable, i.e., if the lower expectation of this gamble with respect to the corresponding credal 
set P is positive. It gives a partial ordering on gambles. It implies that LP(f) ≥ LP(g). The 
latter inequality solves the Ellsberg paradox, in contrast with LP(f - g) ≥ 0.  

4.4	Quantitative	possibility	in	the	setting	of	imprecise	probability	
It is natural to reconsider graded possibility and necessity measures in the setting of belief 
functions and imprecise probabilities. In fact they are at the crossroads of all non-additive 
approaches to uncertainty and may be interpreted in various ways:  
 
 - Necessity measures are a special case of belief functions. Their characteristic property is to 
have nested focal sets. In other words, they model coherent arguments in favor or disfavor of 
propositions. They are the only family of belief functions that obey the adjunction rule. Note 
that the weaker Baconian condition min(Bel(A), Bel(Ac)) = 0 for all A ⊆ S corresponds to 
overlapping (consistent) focal sets.  
 - As a consequence, necessity measures also stand for coherent lower probabilities. However, 
they correspond to a very cautious type of betting behavior, such that if the buying price for 
gambling on A is positive, then the agent feels obliged to sell this gamble at the maximal 
price (Giles, 1982).  
 - One may borrow the operational semantics of the Bayesians to derive personal possibility 
and necessity degrees. If we adopt the framework of belief functions for representing an 
agent's knowledge and accept the idea that a belief function induces a pignistic probability for 
making decisions, then we may reverse this process. Given a subjective probability reflecting 
fair prices of random events, one may look for the least informative belief function that 
induces this subjective probability. It can be proved that it is always a necessity measure 
(Dubois, Prade & Smets, 2008).  
 - Necessity functions induced on the unit interval by a suitable transformation of a Spohn 
ranking function (see Chapter 5.3 by Spohn et al. of this volume) have nothing to do with 



lower probabilities. Basically, as shown in (Spohn, 1990) they are more related to powers of 
infinitesimal probabilities, for which the additivity axiom degenerates in the minitivity axiom.  
-  Yet another interpretation of possibility theory is in terms of likelihood. In statistical 
inference, given a parametric probabilistic model P(·|θ) where θ ∈ Θ is the parameter of the 
model, the probability P(R|θ) based on data set R is not the probability of θ based on R, only 
its likelihood. It represents a looser degree lik(θ) = P(R|θ) of confidence in θ for the observer 
having received evidence R. Advocates of the likelihood approach (Edwards, 1972) are 
completely reluctant to attach prior probabilities to values of θ basically because this quantity 
is not observable and is just a model artefact. Rather, it is natural to try and define the 
likelihood lik(A) for any A  ⊆ Θ, from the values lik(θ), θ ∈ A. It has been shown that the only 
meaningful definition is lik(A) = max{P(R|θ): θ ∈ A} (Dubois, Moral & Prade,  1997) 
(Dubois, 2006). Hence a likelihood function can interpreted as a possibility measure, in the 
absence of prior probabilities. However, this kind of possibility measure is defined only up to 
a multiplicative constant, a specific feature that make likelihood theory yet another kind of 
possibility theory.  

5.	Conclusion	
This chapter has proposed a survey of various approaches to the notion of belief reflecting the 
progress made in the recent 50 years. It seems that the frontal opposition between degrees of 
belief and accepted beliefs, i.e., Pascal and Bacon traditions, may be alleviated to some extent 
if we give up the requirement that degrees of belief should be additive. There is a range of 
mathematical models between probability and modal logics, some of which retain the 
adjunction rule of Baconian probabilities. Some approaches blend the two traditions, and are 
consistent with the requirement that you cannot accept beliefs in a proposition and beliefs in 
its contrary. The Baconian tradition also comes close to the issue of formal argumentation, on 
which there is an abundant literature to-day (see (Haenni, 2009) for its connection with Shafer 
belief functions). Argumentation can be viewed as a rational approach to handle inconsistency 
in reasoning, due to conflicting pieces of information. One may argue that Baconian 
probabilities (in the form of, e.g., necessity functions, ranking functions and the like) 
represent imprecise but conflict-free information, while probabilities capture precise but 
conflicting observations. The new theories of belief deal with both imprecise and conflicting 
information and seem to bridge the gap between the two traditions of belief representation. 
One may then consider belief in a more dynamical setting, where starting with more or less 
probable conflicting evidence, one proceeds towards the provable via a suitable deliberation 
process involving argumentation. 
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