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Abstract—This paper presents a sensorless control method 
for permanent magnet synchronous motors (PMSMs) based on 
the reconstruction of the speed and position of the rotor using 
the traditional method of the back-EMF with the addition of an 
innovative observation speed. The gains of the observer are a 
function of the speed and here a simple adaptation law that 
avoids the calculation in real time of the gains is proposed. 
Furthermore the speed is calculated from the back-EMF which 
induces a velocity oscillation due to the observation errors 
inherent to the sinusoidal forms. To overcome this difficulty, the 
direct derivation of the position is proposed taking into account 
the discontinuity of the position due to the modulo function. 
Simulation and experimental results validate the proposed 
method. 
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Control 

I. INTRODUCTION 
     PMSM actuators are widely used in today's industries 
where speed adjustment is required. In fact, the PMSMs are 
characterized by a possibility of adjusting the speed and the 
position of very high quality with an important dynamic. To 
achieve such a result a vector control that ensures the rigorous 
adjustment of the torque is developed. This vector control 
requires knowledge of the position of the rotor and thus the 
machines are equipped with a resolver type position or 
absolute optical encoder. This sensor is usually expensive and 
results in an increased probability of failure. Moreover, its 
presence is not desirable in several types of application 
because of the constraints it imposes on the mechanical or 
electrical. From there, a number of manufacturers have been 
interested in removing this sensor and trying to achieve 
sensorless control. 

The sensorless control of synchronous machines is 
therefore an old theme that has given rise to numerous 
publications [1], [2], [3], [4]. There are several principles 
depending on the required performance, the type of 
application.  

In this paper, an observer based on the reconstruction of 
electromotive forces is developed and a simple solution 
improving the estimated velocity is developed.  

The usual methods consist in reconstructing the back-emf 
with the aid of a Luenberger observer, then in determining the 
operating speed by combination of the two back-emf. This 
solution is characterized by speed ripple inherent to the EMF 
reconstruction and affects the amplitude. In this paper a 
procedure of direct derivation of the position taking into 
account the discontinuity is developed in order to keep the 
response as smooth as possible. The proposed solution 
provides a results closer to the actual speed which improves 

the overall control. Simulation and experimental results are 
presented, and validate the proposed method. 

II. FIELD ORIENTED CONTROL 

A. Field oriented control concept 
 The basic idea of the vector control algorithm is to 
decompose a stator current into two components: A magnetic 
field generating-part and a torque-generating part [5], [6]. 
Both components can be controlled separately once 
decoupled. In this paper, effort is carried on the torque 
generation to reach the required objective. The machine being 
smooth pole, the maximum torque is obtained for a given 
current by imposing a zero current on the axis d. 

B. Control system 
 Park transformation is used to transform the 3-phase time-
domain stator currents from a stationary phase coordinate 
(abc) to a rotating coordinate system (dq). The d-axis current 
(image of the magnetic flux) and the q-axis current (image of 
the torque) are controlled by PI regulators. The reference for 
the d-axis current is set to 0 and the q-axis reference is 
generated by a speed PI regulator. A voltage inverter with 
three legs connected to the three phases of the PMSM is used. 
Each leg has two switches each consisting of an IGBT and an 
antiparallel diode controlled by the space vector modulation 
(SVM). 

C. Position and speed sensing 
The control system needs the rotor’s position and speed 

feedback which are usually provided by a mechanical sensor. 
The paper objective is to replace this sensor by a system that 
estimates the position and the speed of the motor and then 
feeding the control with the estimated data. The system that 
will be presented uses the equations of the PMSM and the 
electromotive forces induced in the stator windings and is 
known by “Back-EMF based observer” [7], [8], [9]. 

III. BACK-EMF BASED OBSERVER 
Different types of observers can be found in the literature 

[3], [9], [10]. There is the Phased Locked Loop (PLL) type 
and the state-space observers. Among these observers, there is 
two families, the Kalman filter and the Luenberger observer. 
The latter observer (Back-EMF) will be developed for it is less 
expensive in term of calculations compared to the Kalman 
filter. The dynamics of the machine being a function of the 
speed, the gains of the observer also depend on the speed. To 
avoid the real-time calculation it is possible to adapt the gains 
directly after an offline study. 
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A. Mathematical model of a PMSM for Back-EMF 
estimation 
To set up a state-space observer, the state-space equations 

associated to the state-space variables are written. For the 
PMSM, the currents in the stator windings are found as state-
space variables and the electromotive forces are included 
since these are the variables that need to be observed. The 
state-space equations will be written down in the  domain 
to get a useful estimation of the electromotive forces. In order 
to build the model, a sinusoidal distribution for the 
magnetomotive force is taken into consideration and the 
saturation  phenomena  in  the  iron  is  neglected.  Thus,  the  
electrical behavior of the motor is defined by:  

 = + .  
   (1) 

 The flux of the motor  is composed of the flux of the 
permanent magnet adding to it the flux created by the currents 
in the stator windings.  is given by: 
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  The motor’s equations are now written in the  frame. 
After applying the Clarke transform on the equations (1) and 
(2), the following relationships appear:  

 = + .   (3) 

 = + .  (4) 

 
= cos( ) . + .
= sin( ) . + .   (5) 

Where: 

  stator voltages in the stationary abc frame 

 stator flux in the stationary abc frame  

  stator resistance  

 stator currents in the stationary abc frame  

,  stator voltages in the stationary  frame 

,  stator flux in the stationary  frame 

,  stator currents in the stationary  frame 

  permanent magnet flux linkage 

  stator inductance  

  rotor’s electrical position 

B. Mathematical model of the state-space observer 
In order to write the state-space equations, in (3) and (4). 

This will lead to 

 
= . +

1
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Where: 

 rotor’s electrical velocity  
 
The equations of the electromotive forces in the  domain 
are identified in (6) and can be written in the following form: 

 
= . . sin( )
= . . cos( )    (7) 

Where: 
,  electromotive forces in the stationary  domain 

 
 Equation (6) can now be written in this form:  
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      The objective is to observe the electromotive forces. The 
state-space vector will be    . Therefore, the 
derivatives of the EMFs need to be calculated in order to 
write the system in a matrix form. Deriving (7) leads to: 

 
= . . cos( ) = .

= . . sin( ) = .
  (9) 

The system can now be written in this form: 
 = . + .

= .
  (10) 

Where U is the input vector (  and ) and Y is the output 
vector (  and ). By considering X the state-space vector 
mentioned above, (10) can be developed in order to have:   
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      Using (11) and (12) the matrixes A, B and C can be easily 
identified and will be useful later on. Manipulating the 
equations in (7) leads to: 
 
 

 = tan ( )  (13) 
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1
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Where: 



 estimated position given by the observer 
 estimated speed given by the observer 

 
Thus,  by  observing  the  EMFs  along  the   and   axis,  it  is  
possible to determine the position and the speed via (13) and 
(14) respectively. 
 
      In order to have a good estimation, the currents  and  
calculated by the observer need to be regulated so that they 
converge towards the real currents of the motor. 
 

 
 

Fig. 1.   Principle of the state-space observer  

The observer relies on the comparison between the real 
measurements of the matrix Y (which are the currents  and 

 obtained from the phase currents ,  and  measured) 
and the estimated measurements of the matrix  (the currents 
estimated by the observer in the  frame). The error obtained 
is sent in a matrix called G in Fig. 1. This matrix has for role 
to converge the error towards 0 (like a normal regulator). 
Using Fig.2 the system’s state-space equation in closed loop 
can be written down: 

 = ( . ). + . + .   (15) 

 As for a normal regulator, the dynamics of the system in 
closed loop should be placed. Therefore, G needs to be 
computed in order to place the eigenvalues of the matrix (
. ). 4 poles need to be calculated for a 4th order system. This 

can be done by solving this equation: 

 
det . ( . ) = ( ) 

. ( ). ( ). ( ) 
(16) 

Here: , , ,  are the desired poles 

 To simplify the problem, assumptions were taken into 
consideration : =  (conjugate) and the poles were chosen 
to be double and purely reals. That leads to =   and =

. Combining = + .  with the assumptions made 
leads  to  having   = = = =  (4 identical real 
poles). The constant  must be chosen carefully for this is the 
parameter that will control the dynamics of the observer.  
must have a negative value to ensure the stability of the 
closed-loop system, plus taking into consideration that the 
observer must calculate the estimated speed faster than the 
calculations made by the regulator of the speed loop in order 
to have a good and reliable estimation. To satisfy these 
requirements, the biggest pole of the speed loop transfer 
function is multiplied by a number (based on the speed needed 
for the observer in term of calculations). If the pole is complex 
real part of it is taken. This number have a limit based on the 
speed of the IGBTs in the inverter.  

 Now that the poles have been set, the matrix’s G elements 
can be calculated. G has the following form: 

 

11 12
21 22
31 32
41 42

  (17) 

Since only 4 poles have to be calculated, symmetries can be 
used to simplify the element’s calculations. The two matrixes 
I and J are introduced:  

  = 1 0
0 1  and = 0 1

1 0  (18) 

After using (18), the matrix G will have the following form: 

 = 1. + 2.
3. + 4.   (19) 

That leads to having: 11 = 22 = 1, 21 = 12 = 3, 
31 = 42 = 2 and 41 = 32 = 4 

Using the assumptions made earlier on the poles, (16) can be 
written in this form: 

 det . ( . ) = ( )   (20) 

Developing (20) will lead to: 

 
det . ( . )  

. 4 + . 6 . 4 +  
 (21) 

Equation (21) can be coded and solved using Matlab. Solving 
this equation gets the matrix’s elements shown in the 
following relations: 

This formulation makes it possible to adapt in real time the 
gains of the observer as a function of speed. 

 1 = 2   (22) 

 2 =   (23) 

 3 = . ( )  (24) 

 4 = 2   (25) 

C. Simulation results 
      After implementing the observer’s model on Simulink, 
tests were carried. An initial angle was given to the motor to 
see if the observer can catch up with the rotor’s actual position. 

 
Fig. 2.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) without load for an initial position of 50 degrees. 



 
Fig. 3.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) without load for an initial position of 50 degrees. 

 Fig. 3 shows that the observer’s estimated position starts 
at 0 and catch up with the actual motor’s position within 
0.008s which is compliant to the dynamics imposed (7.75/a1). 
Fig. 2 shows a steady-state error of 5% between the real and 
the estimated speed curves. To investigate this error, tests 
were done with a load of 0.2 Nm and for a speed reference of 
500 rpm (from 0 to 1s) and 1000 rpm (form 1 to 2s).  

 
Fig. 4.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) with a load of 0.2 Nm 

 
Fig. 5.   Real position of the machine (blue graph) versus the estimated positon 
(red graph) with a load of 0.2 Nm 

 Fig. 4 shows that the error on the speed curves increases 
with the speed imposed. For a 500 rpm speed reference the 
error is 1% while the error for the 1000 rpm speed reference 
is 6%. It is also noticeable that the error increases with the 
load. Fig. 2 shows an error of 5% without load while it 
increased to 6% after applying a resistive torque in Fig. 4. The 
position curves on the other hand are perfectly superposed for 
the two speed references as shown in Fig. 5. 

D.  Experimental results 
To verify the effectiveness of the analyses made on the 

Back-EMF observer, experiments were performed on a 1.4 

kW PMSM powered by a DC voltage source via a two-stage 
three-phase inverter (switching frequency of 7Khz) and 
coupled to an identical machine that will play the role of the 
load. This machine will run as a generator and will dissipate 
the energy produced in a resistor. It is driven by its own 
inverter to control the speed of the load and create an opposing 
torque on the motor. Fig. 5 is a photo showing the two coupled 
PMSMs. The real position of the motor (that will be compared 
to the estimated position of the observer) is measured using a 
synchro-resolver. The parameters of the PMSM are listed in 
Table I. 

 
Fig. 4. The tested PMSM (left) coupled to the load motor (right) 

TABLE I.  1.4-KW PMSM PARAMETERS   

 3.45. 10  Wb 

Ls 5.65 mH 

Rs 1.35  

Pair of poles 5 

DC source voltage 50 V 

Maximum speed 1600 rpm 

 

 The results were taken using the highest dynamics reached 
on the test bench (a1=50.pole). 

 
Fig. 6.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) for a speed reference of 1000 rpm (blue graph) without load 

 
Fig. 7.  Real position of the machine (blue graph) versus the estimated positon 
(red graph) for a speed reference of 1000 rpm without load 



 
Fig. 8.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) for a speed reference of 1000 rpm (blue graph) with a load of 
0.2 Nm 

 
Fig. 9.   Real position of the machine (blue graph) versus the estimated positon 
(red graph) for a speed reference of 1000 rpm with a load of 0.2 Nm 

It is possible to see that the experimental results are in 
agreement with the simulation ones. The steady-state error is 
clearly noticeable in Fig. 6 and Fig. 8. The positions in Fig .7 
and Fig. 9 are not affected by the error and the graphs are well 
superposed. Furthermore, the amplitude of the error increased 
compared to the simulation values. Without applying a 
resistive torque, Fig. 6 shows an error of 8.5% and for a 
resistive torque of 0.2 Nm Fig. 8 shows an error of 10%. 

 One way to find the origin of this steady-state error is to 
return to the estimated speed relation in (14). The speed 
depends on the square of the electromotive forces along the  
axis. A slight error on these variables can cause a large one on 
the estimated speed. can be compared to its theoretical 
value in (7) for a 1000 rpm speed reference using different 
dynamics (the results seen on  are images of those on  
since the latter is a cosinusoidal image of ). 

 
Fig. 10.   Electromotive forces along -axis calculated by the observer (blue 
graph) versus their theoretical value (red graph) for a1=50 

 
Fig. 11.   Electromotive force along -axis calculated by the observer (blue 
graph) versus its theoretical value (red graph) for a1=150 

 Fig. 10 shows that for slow dynamics a considerable phase 
shift and an amplitude offset appear between the curves. The 
difference between the electromotive forces obtained and their 
theoretical values will induce an offset between the estimated 
speed given by the observer and the real speed due to (14). 
Fig. 11 shows that increasing the dynamics of the observer 
tend to decrease the phase shift and the magnitude offset 
between the calculated EMFs and their theoretical values 
which will lead to a better precision. 

IV. BACK-EMF MODIFIED FOR BETTER PRECISION 
In order to eliminate the steady-state error on the speed 

without having to increase the dynamics of the observer, a 
simple modification is introduced on the system and tested in 
simulations. Experimental results will be available in the next 
paper when works on the test bench are done.  

A. Deriving the position 
According to the simulation and experimental results 

shown above, the estimated position is not affected by the 
errors on the electromotive forces and follows the real position 
of the machine for all the speed reference cases. The 
modification made consists in the reconstruction of the 
position only and then deduce the speed by deriving the 
position. 

As the position is calculated in “modulo 2 ”, the velocity 
is obtained by derivation of the position (using Euler’s 
method) ignoring the discontinuities (from 2  to 0). The code 
used for the implementation of the derivative function is 
shown  in  Fig.12.  The  speed  is  then  filtered  by  a  first-order  
filter in order to remove the unwanted frequency components 
coming from the infinite values calculated by the derivative 
function. Using a low frequency pass filter would introduce an 
undesirable phase shift into the control if its bandwidth is low, 
and would be useless if its bandwidth is high. A Kalman filter 
that estimates the time variables taking into account the 
measurement noise can also be used. The bandwidth of the 
first-order filter is set to 35 Hz. The schematic diagram of the 
modified system and the code used to create the derivative 
function is shown in Fig. 12. 



 
Fig. 12.   Schematic diagram of the modified system with the code used to 
create the derivative function 

In the first two lines of the code a simple test is used to 
eliminate the discontinuity from 0 to 2 . For the derivative 
part the Euler’s derivative method shown in the relation below 
is used: 

 
=

( ) ( 1)
 

                   = ( ) ( 1)  
(26) 

Where  is the sampling time and  the corresponding 
sampling frequency ( = ) which is equal to the cutting 
frequency of the inverter (7KHz). 

B. Simulation results after deriving the position 
To see the effectiveness of the modification made, the 

estimated and real velocity are plotted for the same speed 
references used in simulations with a resistive torque of 0.2 
Nm (which was the worst case in the simulation results).   

 
Fig. 13.   Real speed of the machine (red graph) versus the estimated speed 
(yellow graph) with a load of 0.2 Nm 

Fig.  13  shows  that  the  steady-state  error  between  the  
estimated speed graph and the real speed graph is entirely 
gone for the two speed references. The graphs now perfectly 
coincide at steady-state with an inconsiderable phase shift 
between them in the transient phase caused by the low-pass 
filter. Thus, deriving the position appears to be good method 
to improve the precision of the observer without having to go 
fast in the dynamics. 

V. CONCLUSION 
     

This article is dedicated to the mechanical sensorless 
control of a PMSM. More precisely, he wants to recreate the 
position and speed of rotation in a simple and efficient way. 
The solution is based on the electromotive forces and on the 
use of an arctangent function. The peculiarity lies in 2 
contributions. The first is related to an offline study which 
allowed to give a law of simple evolution of the parameters of 
the observer according to the speed. This avoids real-time 
quantization of the eigenvalues of a 4-dimensional matrix. 
The second is to determine the filtered bypass velocity of the 
position which makes it possible to eliminate the influence of 
the observation errors of the emfs in amplitude and in phase 
on the value of the speed. This solution has been validated by 
simulation and is currently undergoing an experimental 
verification that will be presented in the final version. 

This simple method is applicable to any type of 
synchronous machine. 
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