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Abstract—In the need to improve the energy efficiency on an 
induction motor, the control strategy constitutes an essential 
element by adapting the flux, according to the operating 
conditions, to reach the desired goal. The purpose of this paper is 
to present an energy-efficient field-oriented control structure for 
a squirrel-cage induction motor (IM), with improved energy 
efficiency while taking into consideration the effect of the core 
losses. Optimal flux is computed in off-line calculations based on 
an improved dynamic model of the IM including core losses. The 
optimal values are stored in a torque-speed table used to provide 
the flux reference of the control structure. Simulation results 
validate the proposed optimized field-oriented control (FOC) 
showing the improved energy efficiency and the reduction in 
power losses. Results are also experimentally validated on a 
5.5kW IM test bench. 

 

I. INTRODUCTION 

The energy efficiency improvement of electrical systems is 
the main goal of several recent studies. Indeed, the European 
Climate & Energy package, has set itself a 20% energy savings 
target by 2020, and motor standards IE2 and IE3 were 
established to classify high and premium efficiency motors, 
setting a goal for all produced motors to be compliant with IE3 
by 2017. Furthermore, the project targets were increased for 
2030 to ensure continuous improvement. 

Therefore, several control structures aiming to improve the 
energy efficiency of the IM are discussed in literature. These 
methods adapt the flux in the motor according to the operating 
conditions to reach the best efficiency point. The proposed 
techniques [1] differ however in the way of reaching the 
objective. 

In a first approach, the Search Control (SC) is an optimization 
technique that tracks the lowest possible power of the motor by 
continuously measuring the input power, comparing it to its 
previous state, and varying the flux accordingly [2]-[3]. By 
doing so, the system converges to the best efficiency point, yet 
an average delay of 15 to 20 seconds is introduced to reach the 
optimal operating point. In addition, oscillations around the 
optimal flux value are observed when the control reaches the 
steady state. Therefore, some other versions of the basic SC are 

established to improve its performance. For instance, artificial 
intelligence is used in several works [4]-[6] to enhance the 
search process through training a fuzzy logic controller, to reach 
the optimal operating point with reduced delays. Results show 
that the efficiency increases at reduced flux values while 
operating at low load torque. 

Another optimization approach is the loss minimization 
control (LMC) [7]-[8], which computes the flux value 
corresponding to the minimum losses. Thus, the global losses 
derivative function is computed, and its zero gives the required 
optimal flux. Some works proposed enhancements to improve 
the performance in transient phases [9], and others proposed 
hybrid controllers using SC and LMC [10]-[11] to join the 
advantages of both structures. Results show that the LMC 
optimization algorithm increases the efficiency especially in the 
cases of reduced load torques. However, core losses are either 
neglected, or estimated using an approximate model, to 
simplify the calculations, thus, the obtained value of optimal 
flux is not always the most accurate possible. 

Moreover, the best efficiency point tracking can be done 
through the Maximum Torque Per Ampere (MTPA) 
algorithm [12]-[13], which is also known as Minimum Current 
Per Torque (MCPT). It is based on curves computed to ensure 
the minimal value of current per torque, then the corresponding 
flux is applied to the motor. Some works [14] combine the 
MTPA strategy and the intelligent SC in a hybrid controller to 
join the advantages of both structures. Simulation and 
experimental results show efficiency increase and losses 
decrease using the MTPA. However, the approach can lack 
accuracy because of the approximate estimation of core losses 
or their neglection, especially since these losses are known to 
increase when copper losses decrease with higher level of flux 
needed to obtain currents reduction. 

Eventually, the effect of core losses is either omitted or taken 
into consideration through an approximate approach, in the 
proposed improvement methods. In this paper, an improved 
method of tracking the best efficiency point is applied to the 
indirect field-oriented control. It is based on a dynamic model 
of the induction motor including variable core losses. Optimal 
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flux values corresponding to the best efficiency are computed 
and stored in a torque-speed table used to optimize the control 
structure. 

In section II, the optimization strategy is presented, based on 
the improved dynamic model of the IM which is used to 
compute the optimal rotor flux table. The latter is included in 
the control structure in section III, and simulation results are 
presented showing efficiency improvement and losses 
reduction. Experimental results are shown in section IV to 
validate the predicted improvement and the feasibility of the 
optimized control. Finally, conclusions are drawn. 

 

II. OPTIMIZATION STRATEGY 

A. Improved dynamic model of the IM 
The classic dynamic model of the squirrel-cage induction 

motor is based on electrical, flux and mechanical equations, 
modeling the performances of the motor in different operating 
states and conditions. This model takes into account the effect 
of the copper and mechanical losses, but neglects the effect of 
the core losses to simplify the calculations. However, an 
accurate optimization study must consider the effect of the main 
losses. Thus, an improved IM model taking into account core 
losses through an equivalent resistor was developed and 
detailed in [15]. In the following, a brief summary describes the 
methodology used as well as the model obtained. 

Indeed, core losses  vary with the magnetic field and the 
voltage frequency, according to the Bertotti model [16]-[17] as 
presented in (1).  and  represent respectively the 
maximal amplitude and the kth harmonic amplitude of the 
magnetic field,  the voltage frequency, and ,  and  the 
core losses model coefficients representing respectively the 
Hysteresis effect, the Eddy Currents effect, and the excess core 
losses. = 	 	 		 . . .  

(1)

For the rest of the study, the following parameters need to be 
known: 

 resistance of a stator phase winding 
 rotor resistance 
 self-inductance of a stator phase winding 
 rotor self-inductance 

 stator-rotor mutual inductance 

 motor dispersion coefficient = 1 	  

Thus, using the computed losses, and the motor parameters, 
the core losses equivalent resistor  is computed as in (2) to be 
used in the dynamic model of the IM.  represent the stator 
voltages and  the stator currents, with = ,  the stationary 
reference frame axes. 

= 1
 

(2)

The equivalent resistor is included in the dynamic model of 
the IM in a parallel branch [18] as presented in Fig. 1. Thus, the 
obtained currents shown in (3) are used in the flux equations of 
the model, which are written as in (4)-(7). ∅ represents the flux 
variable and  and  the stator and rotor subscripts. It should be 
noted that the voltage and mechanical equations of the classic 
model are kept unchanged. 

 = 	 1 ∅
= 	 1 ∅  (3)

∅ = ∅
 (4)

∅ = ∅
 (5)

∅ = 	 ∅
 (6)

∅ = 	 ∅
 (7)

 
Consequently, the obtained model includes the effect of core 

losses varying with the magnetic field and voltage frequency. 
Simulation and experimental results performed in [15] validate 
the improved dynamic model which shall be used in the rest of 
the study for optimal flux calculations. 
 

B. Optimal flux 
An accurate knowledge of the motor optimal flux in steady 

state, is a preliminary step to reach the best energy efficiency 
operating point. Therefore, the improved model of the IM is 
used to compute energy efficiency accurately for a given 
operating point in terms of flux, speed and torque. 

 

 
 

Fig. 1. Improved dynamic model representation including core losses. 
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In a second stage, the optimal flux values are computed for a 
series of operating points in the torque-speed plane, so that they 
could be used to optimize the control structures by imposing the 
suitable flux reference for each operating point. Thus, a 
calculation file is built to compute the optimal flux for each 
possible operating torque-speed point, by systematically 
scanning the possible flux values and storing the value that 
corresponds to the best computed efficiency. Then, the optimal 
flux values are stored in a torque-speed table.  

This process should be done for each motor, since the optimal 
flux values are subject to magnetic circuit characteristics 
differences. In this study, rotor optimal flux values are 
computed for a 5.5kW IE2 Leroy-Somer IM, and a sample of 
the obtained look-up table is presented in TABLE I in per unit 
values. Results are also presented in Fig. 2 in the torque-speed 
plane for a clearer image of the optimal flux isocurves.  

The obtained results show that the flux is optimized for low 
loads as for instance for values less than 0.65p.u. at base speed, 
and 0.33p.u. at 0.1p.u. speed. Above these values, the flux is 
optimal at 1p.u. Thus, it can be concluded that the efficiency 
optimization process only affects the cases of operation at low 
torque loads, since above the values shown in the results, the 
best efficiency is reached at rated flux, which is the case of the 
classic control strategy.  

It should be noted that optimal stator flux values can be 
required in other cases according to the control structure. The 
obtained results are then similar to the rotor flux ones which is 
normal since the slight difference is due to the flux leakage. 
 

III. OPTIMIZED FIELD-ORIENTED CONTROL 

A. Optimal control structure 
Control systems are the main structures which affect the 

motor performance to reach the required operating conditions. 
Several types of control systems are developed in literature, 
they differ in the control logic used or in the controlled variable. 
The optimization process can be therefore applied on the 
existing controls through the references, as it is the case of the 
proposed efficiency optimization using the optimal flux. 

Indeed, a similar study detailed in [19] was performed on the 
classic scalar control, using the computed stator flux optimal 
values for control flux reference. 

The studied control structure in this section is the classic 
indirect FOC based on the rotor flux vector orientation 
according to the -axis of the rotating reference frame. This 
type of control aims to obtain the optimal possible torque 
through this orientation, and to obtain a separately controllable 
system where the flux and torque can be regulated by different 
control variables. These goals can be reached through the model 
of this control structure [20] written in the  rotating 
reference frame, and obtained from the dynamic model of the 
IM. 

The rotor flux vector should be oriented with the -axis 
according to this control structure [21], which corresponds to ∅ = ∅ , thus ∅ = 0. Hence, in order to simplify the flux 
controller calculation, the rotor flux is represented by a rotor 
magnetizing current noted  as in (8). ∅ =  (8)

Consequently, the control model is obtained in (9)-(13), 
where = /  is the rotor time constant,  the angular 
speed of the  rotating reference frame, and  the electrical 
speed of the rotor. = 1

 
(9)

= 1
 

(10)

=  (11)

= 1
 (12)

=  (13)

 
 

Fig. 2. Optimal flux isocurves.  

TABLE I 
OPTIMAL FLUX TABLE IN P.U. 

     
  

.  .  .  .   .  0.51 0.48 0.46 0.43 0.43 .  0.73 0.67 0.62 0.62 0.56 .  0.86 0.81 0.76 0.7 0.67 .  1 0.95 0.89 0.84 0.78 .  1 1 0.97 0.92 0.86 .  1 1 1 1 0.95 .  1 1 1 1 1 

 1 1 1 1 1 
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The Park transform is performed using the  angle which is 
estimated by integrating the angular speed of the frame . 
The overall control structure is summarized in Fig. 3. The -

axis stator current  is the variable affecting the flux variation, 

and the electromagnetic torque is controlled by .  
Furthermore, the control structure delivers to the inverter the 

computed voltage references  and  in (9) and (10) 

containing both  and  variables. Thus, these voltage 

equations are divided into a compensation factor ,  and 

a controlling voltage , . The latter are used to compute 
the PI flux and torque controllers. 

The proposed energy efficiency optimization of the FOC is 
based on the optimal rotor flux look-up table presented in 
section II, used to define the flux reference. It is introduced in 
the control system through the flux reference generator. It needs 
the actual speed and load torque values to continuously generate 
the rotor flux reference. These values are obtained through the 
speed sensor, and a Luenberger torque observer as shown in 
Fig. 3. 

It is important to note that the described control structure is 
based on the classic dynamic model of the IM which does not 
include the effect of core losses. Thus, in order not to change 
the model equations, a compromise is made to introduce the 
effect of core losses. Indeed, since the voltage drop inside the 
stator resistor is not significant, the schematic representation of 
the IM in Fig. 1 can be transformed as in Fig. 4 to simplify the 
calculations. By doing so, the input currents become as in (14). 

2 =  (14)

B. Simulation Results 
At this point, the improved dynamic model of the IM 

presented in section II is simulated for the IE2 5.5kW studied 
motor with the optimized FOC detailed in this section. 

The simulation is run with base speed reference, and 0.15p.u. 
torque load. The following results are presented in the steady-
state zone, knowing that the IM is fed with rated flux at start-
up. The optimization is then launched at time t=3s. 

As a first result, the rotor flux variations obtained with the 
classic FOC presented in Fig. 5-a show that the control strategy 
is well verified, with the -axis rotor flux equal to the rated 
reference value, and the -axis flux equal to zero throughout the 
operation. Moreover, the optimization process shows the flux 
reduction corresponding to the operating torque-speed point. 

Furthermore, the mechanical variables shown in Fig. 5-b are 
proven to stay unchanged despite the flux variation, which 
guarantees the required operating conditions to the load, with a 
slight disturbance at the beginning of the optimization process. 

 
 

Fig. 3. Optimized field-oriented control structure. 
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Fig. 4. Approximate IM schematic representation. 
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The goal of this study remains in the energy efficiency 
optimization which is presented in Fig. 6 showing the decrease 
of the input power and the losses when varying the rotor flux. 
Indeed, core losses are the image of the flux which explains 
their decrease, and copper losses are affected by the currents 
which also decrease in that case with the flux reduction to reach 
the necessary current for the low load. However, cases of higher 
load torque are not similar, and losses reductions are not always 
that significant, since an excessive flux decrease is 
accompanied by currents increase.  

Consequently, as a result of input power decrease while 
keeping on the mechanical variables unchanged for the load 
requirements, the energy efficiency of the system is proved to 
increase as shown in Fig. 6-d. An efficiency improvement of 
8% is obtained with a satisfactory error of 0.1% compared to 
the theoretically computed value. 

Finally, the simulation of the proposed FOC optimization 
process has proven to increase the energy efficiency of the 
studied motor. Thus, to prove the validity of this approach, 
experimental test results are presented in section IV. 
 

IV. EXPERIMENTAL VALIDATION 

The simulated optimized FOC is tested on an experimental 
test bench constituted of the studied 5.5kW IM, fed by an 
inverter and controlled by a dSpace structure, using suitable 
electrical and mechanical sensors to implement the control 
strategy.  

Hence, tests are performed and presented in this section, to 
validate the optimized FOC proposed technique. Indeed, tests 
were carried at several operating points on the motor by 
applying the classic FOC using rated flux reference, then 
launching the optimization which adapts the flux to the 
operating conditions. Power and efficiency results for 0.5p.u. 
speed and 0.25p.u. torque operating point are shown in Fig. 7. 
Steady-state is established at the beginning with the classic 
FOC, then optimization is launched at t=3s.  

The effect of the optimization process is shown in the 
decrease of the input power by 19.4% and the increase of the 
energy efficiency by 5% with satisfactory errors between the 
simulation and the tests of 1.7% for the input power and 1% 
error for energy efficiency. These tests, also carried for several 
other operating points, validate the proposed optimized FOC. 

 

V. CONCLUSION  

The work presented in this paper proves the effectiveness of 
the proposed optimization technique for field-oriented 
controlled IM, improving the energy efficiency and reducing 
the losses and input power. 

The best efficiency point is tracked for a range of operating 
points of the motor, based on an improved dynamic model of 
the IM which includes core losses. Then, the corresponding 
optimal rotor flux values are stored in a look-up table, to be 
applied to the control scheme as flux reference. Simulation 

Fig. 5. Operating conditions. a- rotor flux, b- speed and torque.   
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results confirm the increase in energy efficiency of the motor, 
as well as the decrease of input power and losses. Experimental 
tests are also carried, validating the proposed approach. 

In future works, further tests will be conducted in order to 
validate the performances of the proposed technique especially 
for its use in industrial applications, and compare it to state-of-
art methods. 

 

VI. APPENDIX: MOTOR CHARACTERISTICS 

The characteristics of the 5.5kW Leroy Somer squirrel-cage 
induction motor used for the experiments are: = 400  = 11.9  = 1500  = 36.1 .  = 2 = 0.86Ω = 0.83Ω 

= 163  = 163  = 157  = 0.0157	 .  = 0.002928 . .  = 0.2471 .  
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