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Abstract— High speed permanent magnet synchronous motor 

(PMSM) are increasingly used in the field of electric traction due 

to their high mass and power density. Usually the motor is 

piloted by a vector control associated with a flux-weakening 

algorithm which regulates the voltage norm. If the critical point 

is located within the current limit then it is discerning at very 

high speed to drive the motor with a Maximum Torque Per Volt 

(MTPV) strategy. In this article we propose to achieve a unified 

control algorithm to drive the motor theoretically whatever its 

speed by giving a torque closest to the desired torque while 

respecting the current and voltage limits and minimizing the 

current used. Consequently at high speed at full flux-weakening 

MTPV strategy is applied which comes to modify the saturation 

of the current reference magnitude given by the torque reference 

associated with flux weakening strategy. It enables us to have no 

switch of algorithms, nor look-up-tables (LUT) which are 

realized by experiments and depend on the motor, and to not add 

additional observers or regulators, while being precise and more 

robust to parameter variation than a direct calculation 

algorithm. The performance of this method is analyzed through a 

simulation.  

Keywords—Flux weakening, MTPV, vector control, high speed 

permanent magnet synchronous motor. 

I.  INTRODUCTION  

Permanent magnet synchronous motors (PMSM) are 
commonly used in the field of the electrical traction for their 
high mass power and volume power. Electric cars’ motor are 
characterized by a high starting torque and a wide speed range 
at constant power. The volume and the weight of a PMSM are 
directly proportional to the maximum torque of the machine. 
Thus with a concern of autonomy and congestion we choose a 
lower torque at start motor but that can turn at much higher 
speed while maintaining the same power. We retrieve 
characteristic required for the car by adjusting the motor output 
gear. So the high speed PMSM has a better power density and 
mass density and so we use this motor.  

Usually the control of a PMSM can be summarized in three 

major blocs shown in Fig. 1 where ref is the reference speed, 
Idref and Iqref  are the current references in the d-q frame, Vdref 
and Vqref the voltages references in the q-d frame and u the 
PWM control with the indexes a,b,c for the three phases and h 
for the IGBT high and l for the IGBT low This study focuses 
on improving the calculation of the current references (bloc 1, 
Fig 1). The calculation of voltage references from current 
references (bloc 2, Fig1) is performed by vector current control 

in d-q frame. Two polynomial regulators with discrete 
decoupling are used. Current variation and electrical angle 
variation between the moment of their measures and the 
moment of the application of the new voltage vector by the 
inverter in medium on the switching period, is also taken into 
account [1]. 

By Lenz’s law, high speed involves a large electromotive 
force (EMF). From a certain speed that EMF exceeds a 
maximum voltage related to the maximum voltage that can 
provide the battery and the pulse width modulation (PWM). To 
keep increasing the speed and generating torque it is required 
to release a part of the voltage by flux-weakening, i.e. by 
adding negative current Id to generate a flux which opposes the 
one of the magnet and thereby decreasing the rotor flux 
perceived by the stator.  

Several flux-weakening strategies are exposed in the 
literature [2 to 23]. [2,3,4] present states of the art of flux-
weakening techniques. We suggest to classify these techniques 
as follows: analytical direct calculation method [5,6], direct 
open loop algorithm with experimental LUT [7,8,9,10], Single 
Current Regulator (SCR) method [11,12,13,3], torque and flux 
control (TFC) method with LUT [14,15], Unified Direct Flux 
Vector Control (UDFVC) in the stator flux frame [16,17], and 
Vector Current Control (VCC) [14, 18 to 24]. This last method 
is divided into: regulation on the voltage magnitude 
[18,19,20,21,14], regulation on the voltage error [14,22,3], 
regulation on the current error [14,23], regulation on the cyclic 
ratio [14,24]. By taking these different methods the following 
remarks can be made. Open loop direct calculation from the 
machine equations is very sensitive to parameter variations. 
The use of open loop control with LUT or closed loop with 
TFC enables in particular to easily take into account the 
magnetic saturation effect, but these approaches are dependent 
on the motor and requires to carry on a set of experiments. The 
SCR method avoids the conflict between the two regulators of 
the d-axis and q-axis when the voltage operates in voltage 
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Fig. 1. General scheme of a PMSM control.  

 



saturation. However when operating at PMSM low speed this 
method requires switching on another algorithm for example a 
Maximum Torque Per Ampere (MTPA) strategy. The UDFVC 
is an algorithm compatible for all alternative current machines 
but requires a flux observer and requires to find experimentally 
the maximum load torque making it dependent on the motor. 
VCC is the most conventional approach. However in the 
current error regulation the low pass filter (LPF) affects the 
dynamics of the regulation. The regulations of voltage error 
and cyclic ratios use the over modulation which increases the 
maximum voltage available at the expense of additional current 
harmonics and also uses a LPF that affects the dynamic 
performances. Finally regulating the voltage norm is the usual 
strategy that requests to set a voltage limit allowing or not to 
over modulate. We choose this VCC approach with regulation 
on the voltage norm for flux-weakening. However, if the 
critical point, i.e. the current Id for total flux-weakening, is 
located inside the current limit circle then this strategy is not 
enough to drive the motor at very high speed. This requires 
using a deep-flux-weakening strategy.  

The literature offers some methods for deep-flux-
weakening [3 to 6, 11 to 13, 16 and 25 to 29]. Analytical direct 
open loop calculation method [6,25,26], direct open loop 
experimental LUT [27,3,4,5,6], SCR method [11,12,13] and 
UDFVC [16] enables to do deep-flux-weakening but all with 
the same limitations as set out above. The use of a VCC 
strategy associated with a maximum torque per volt (MTPV) 
strategy is proposed [28,29] but uses an algorithm switching. In 
this article we suggest to use a voltage norm regulation 
associated with a MTPV strategy in one unified regulator 
scheme for flux-weakening.  

First the principle of flux-weakening will be presented with 
current references that theatrically achieve maximum torque 
with a minimum current while respecting the current and 
voltage limits regardless of the speed. Secondly our deep-flux-
weakening strategy will be explained. The current saturation is 
modified by the MTPV strategy. Finally the efficiency of the 
method is analyzed trough a simulation.  

II. FLUX WEAKNEING PRINCIPLE 

The equations of the electrical model of the PMSM 
are described in (1), (2) and (3).  
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Where Vd, Vq and Id, Iq are respectively the voltage and 
currents in the d-q frame, Ld and Lq the d-axis and q-axis 

armature winding inductances,  the electrical rotation speedy, 

R the resistance of the armature winding, f the flux linkage of 
the permanent magnet, T the electromagnetic torque. 

There are two electrical limits: a current and a voltage limit. 
The current limit (4) is related to the motor’s cooling capacity. 
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where Imax is the maximum current. 

The voltage limit (5) is related to the maximum voltage of 
the battery and the selected PWM strategy. 
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VDC is the maximum voltage of the battery and the selected 
PWM strategy is space vector modulation (SVM) of inverter. 

 Usually the resistance R is negligible at high speed 
operation and the derivate of the currents is zero in steady state, 
thus (7) is obtained. 
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The voltage and current limits in the Id-Iq frame are shown 
on Fig. 2. The current limit (4) is a circle centered on the origin 
of the frame and of radius the norm of the maximum current. 
The current limit is an ellipse (7) centered on the critical point 

(-f/Ld, 0) and whose size decreases with the increase of the 
speed. On Fig. 2 it is also represented the path traveled by the 
current references during de ramp-up of the speed in order to 
minimize the torque error from the desired torque, minimizing 
the norm of the current used and respecting the current and 
voltage limits.   

At low speed the current references are within the current 
and voltage limits. For a given required torque, that point (“A” 
on Fig. 2) of current references is located on the MTPA 
trajectory. This MTPA trajectory can be calculated by (8) in 
steady state that gives (9) and (10). 
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Fig. 2. Representation in the (Id, Iq) frame of the current limit (red), the voltage 

limit (green) and the path traveled by the current reference when the speed 

increases (arrow dashed). Example of a non-salient poles PMSM on the left, and 

a salient poles PMSM on the right.  
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 Note: for a non-salient poles PMSM the MTPA references 
become (11) and (12). 

 0dI  


normq II   

As rotation speed increases the voltage saturation (7) tends 
to the critical point. From a certain speed the EMF becomes too 
large comparted to the voltage Vmax and it is necessary to add 
negative current Id to respect the voltage limit at high speed. 
The trajectory of the current references goes on Fig. 2 form 
point “A” to “B”. It’s the flux-weakening: a flux is created 
which is opposed to the rotor magnet flux and reduces the rotor 
flux perceived by the stator. To maintain the torque to the 
reference torque the Iq reference is modified following (3). It is 
noticed that for a smooth poles machine Iq remains constant in 
this area.  

When increasing the current norm the current limit is 
reached (point “B” on Fig. 2). From there it is necessary to 
reduce the current Iq to continue to add negative current Id for 
flux-weakening (4). The current reference is thus the 
intersection between the current limit and voltage limit. If the 
critical point is outside the current saturation then the speed is 
electrically limited when the intersection between the current 
limit and the voltage limit no longer exists and the torque is 
zero. If the critical point is within the current saturation then it 
is possible to do a total flux-weakening of the magnet. This 
deep-flux-weakening makes that the whole voltage is used to 
generate the torque and it is preferable to move on a maximum 
torque per volt (MTPV) strategy from point “C” on Fig. 2 to 
the critical point. The MTPV trajectory can be calculated with 
(13) in steady state that gives (14) and (15). 
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 Note: for a non-salient poles PMSM the MTPV references 
become (18) and (19). 
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In the case where the critical point is located within the 
current limit, at very high speed current saturation has no more 
real impact and the torque is limited by the voltage saturation. 
From an electrical point of view is theoretically possible to 
drive the motor when the speed tends towards infinity, the 
current reference tends to the critical point.  
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Fig.3. Scheme of the PMSM control with calculation of the current references by the VCC flux-weakening methode with voltage norm regulation. Where AW is 

an anti-windup structure.  

 



III. DEEP FLUX WEAKENING WITH MTPV CURRENT LIMITATION 

 This part presents a method to generate the current 
references following the path described in §II because it can 
get the nearest torque to the reference torque while minimizing 
the current norm and with respect to the current limit and the 
voltage limit.  

This article’s introduction presents a brief state of the art of 
flux weakening techniques. The voltage norm regulation is 
conventionally used and is shown schematically on Fig. 3. This 
Fig. 3 resumes Fig. 1 detailing the bloc 1. The blocs 2 and 3 are 
the same as for FIG. 1 i.e. a vector control followed by SVM.  

 At low speed this control strategy follows the MTPA 
trajectory (9) and (10). When the voltage saturation is reached 
the regulation on the voltage norm generates a negative current 
Id for flux-weakening. If the added current Id is lower than the 
total current norm initially required by the speed regulation 
then the control decreases the Iq reference current with a 
variable saturation in order to maintain the current norm 
initially required by the speed regulation. Otherwise the Id 

reference current is fixed at zero and all the Id reference current 
required by the flux-weakening is applied with respect to the 
current limit. The speed control will increase the current norm 
if it’s necessary to generate torque. So when the current limit is 
reached the torque drops and the current reference is the 
intersection between the current limit and the voltage limit until 
there is no more torque. However this algorithm limits the 
upshifting of the speed if the critical point is located within the 
current limit. In that case it is necessary to switch on a MTPV 
strategy as described in §II.  

To avoid switching between algorithms problems between 
a flux-weakening algorithm and a MTPV algorithm we 
propose to replace the current saturations located after the 

speed regulation and after the voltage norm regulation Fig. 3 
by variable saturations which depend on the MTPV strategy  

Fig. 4. The current norm is saturation to the minimum value 
between the fixed current norm limit related to the electrical 
losses and the maximum current norm required by the MTPV 
strategy (14) and (15). The MTPV trajectory corresponds now 
to the intersection between the voltage limit and the new virtual 
current limit, which previous flux-weakening algorithm can 
follow. Thus in the case where the critical point is within the 
current saturation this new flux-weakening method can 
generate the current references regardless of the speed, and 
otherwise to the maximum speed, in order to be nearest to the 
asked torque, while minimizing the current norm used and 
respecting the current limit and voltage limit.  

IV. SIMUALTION RESULTS 

Simulations results permit to validate the effectiveness of 
the method. Table 1 gives are the parameters of a salient poles 
PMSM used for the simulations. The voltage of the battery is 
200V and the current limit at 8A. On Fig. 5 is plotted in blue 
circles the desired current reference trajectory in the Id-Iq 
frame, explained in §II, which the current references follow 
when the speed increases. This trajectory is calculated using 
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Fig.4. Scheme of the PMSM control with calculation of the current references by the VCC flux-weakening methode with voltage norm regulation and with 

varibale current norm limit saturation with consideration of the MTPV trajectory. The two red frame show what is modified from classical fux-weakening Fig. 3. 

TABLE I.  SIMULATION IPMSM PARAMETERS 

Simulation Motor Parameters 

Ld 5,77 mH 

Lq 8,08 mH 

R 0.97  

 3.45*10-2 Wb 

P, number of pair of poles 5  

Power 1.4 kW 

 



(3), (4) and (7). On Fig. 5 is shown in red triangles in the Id-Iq 
frame the current trajectory obtained by the classic flux-
weakening strategy (Fig. 3 algorithm). It is observed that from 
7krpm the current are not satisfying because they continue to 
follow the trajectory of the current limit rather than switching 
on the MTPV trajectory. 

 Fig. 6 shows the desired current reference trajectory 
(plotted in blue) and calculated analytically in the Id-Iq frame. 
The current reference trajectory (plotted in red) obtained with 
the new flux-weakening strategy with modification of the 
current saturation by MTPV (Fig. 4 algorithm) is shown on the 
same Fig. 6. It is observed that the two paths coincide which 

validates the focus of our algorithm. So the very high speed 
PMSM drive with one unified algorithm is validated by 
simulation. 

 Fig. 7 shows the power transmitted between the common 
flux-weakening algorithm and the one with the variable current 
saturation with MTPV. It is observed that at high speed using 
the MTPV strategy can significantly increase the power 
transmitted. From 19krpm, for the classic flux-weakening, all 
the current is used for flux-weakening and the torque is zero. 
Above that speed the classic algorithm does not give current 
references respecting the voltage limit (7). At high speed 
MTPV strategy is a preferable solution. 

V. CONCLUSION 

This paper presents an algorithm to control a high speed 
PMSM whatever its speed if electrical limits allow it. It does 
not require prior experimental results as for the LUT strategy 
or switching between algorithms that could destabilize the 
system. The trajectory traveled by the current references when 
the speed increases enabling to obtain the closest torque to 
desired torque while minimizing the current magnitude and 
respecting de current limit and voltage limit is also presented. 
At high speed if the critical point is within de current limit then 
it is necessary to use a MTPV strategy to maximize the torque 
generated. To follow this trajectory a control algorithm is 
realized that is based on a classic flux-weakening strategy, with 
regulation of the voltage reference norm, which the current 
limit is modified by the current required by the MTPV strategy 
at high speed. The MTPV strategy is applied through a direct 
calculation so one can improve at high speed it’s robustness 
against parameter variation. Finally the performance of this 
method is observed through simulation results. 
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Fig.6. In the Id-Iq frame. In green the voltage limit for the following speeds 

4krpm, 10krpm and 30krpm. In orange the current limit. In blue circles the 
desired current reference trajectory analytically calculated. In red triangles the 

current reference trajectory obtained with the new flux-weakening method 

with modification of the current saturation by MTPV. 
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Fig.7. Power transmitted depending on the speed for the classic flux 

weakening strategy (blue stars) and for the flux-weakening with MTPV at high 

speed (red crosses).  
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Fig.5. In the Id-Iq frame. In green the voltage limit for the following speeds 

4krpm, 10krpm and 30krpm. In orange the current limit. In blue circles the 

desired current reference trajectory analytically calculated. In red triangles the 

current reference trajectory obtained with the classical flux-weakening. 
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