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The deployment of renewable energies requires power electronic converters to produce sinusoidal voltages of appropriate magnitude and frequency. In the case of isolated microgrids, unbalanced loads can result in off-nominal voltages on the loads. A solution to this problem consists in replacing the conventional three-leg converter by a four-leg converter with neutral wire. Four-leg converters have not been studied as extensively as three-leg converters, and existing approaches to control them are based on geometric properties that become difficult to extend to converters with a higher number of levels/switches. The objective of the paper is to show that an approach developed in the context of flight control can be applied to this problem with great advantages. Specifically, control allocation methods are shown to be applicable to a four-leg two-level three-phase inverter. The method offers a single generic control scheme regardless on the number of switches. In addition, the approach might offer the injection of interesting converter properties, such as the switching (or conduction) losses minimization, or even the reconfiguration of the inverter in the event of a fault detected on a switch, if redundancies allow it.

I. INTRODUCTION

Concerns about the environment and the depletion of fossil fuels motivate the development of alternative energy technologies. This situation has encouraged the use of renewable, standalone sources which sometimes feed critical systems, as well as diversifying the energy production and improving electricity coverage [START_REF] Kroposki | Benefits of Power Electronic Interfaces for Distributed Energy Systems[END_REF]. In this context the requirements are important supply facilities such as efficiency, power quality, reliability, availability, etc. The growing power demand results in serialization of components to increase voltage and parallelization to amplify current. Thus, structures of conversion have an increasing number of control variables for which new control laws need to be developed. This family of converters includes multi-leg structures [START_REF] Ryan | Modeling of Multileg Sine-Wave Inverters: A Geometric Approach[END_REF], [START_REF] Jaskulski | Multi-Leg Voltage Source Converter for Grid Connected Wind Turbines[END_REF], which can also be multi-level [START_REF] Lai | Multilevel Converters-A New Breed of Power Converters[END_REF], [START_REF] Rodriguez | Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives[END_REF].

The work presented here focuses on a four-leg inverter which is useful to feed unbalanced loads in localized grids. The four-leg inverter allows one to control the neutral point voltage and, therefore, enables the independent control of the voltages on the three phases regardless of any unbalance in the loads. Existing solutions [START_REF] Yaramasu | Model Predictive Current Control of Two-Level Four-Leg Inverters-Part I: Concept, Algorithm and Simulation Analysis[END_REF]- [START_REF] Ojo | Concise Modulation Strategies for Four-Leg Voltage Source Inverters[END_REF] can be classified into two main categories: Pulse-Width Modulation (PWM) and Space Vector Modulation (SVM). The classic SVM scheme for the Abdelkader Bouarfa and Maurice Fadel are with LAboratoire PLAsma et Conversion d'Energie -LAPLACE, UMR 5213, CNRS, INPT, UPS: 2 rue Camichel BP7122 -31071 Toulouse, France ; CNRS; LAPLACE; F-31062 Toulouse, France ({fadel, bouarfa}@laplace.univ-tlse.fr).

three-leg inverter [START_REF] Van Der Broeck | Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors[END_REF] (2D-SVM) has been extended to three dimensions [START_REF] Zhang | Three-Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters[END_REF] (3D-SVM) to the four-leg inverter, with further work reported in [START_REF] Perales | Three-Dimensional Space Vector Modulation in abc Coordinates for Four-Leg Voltage Source Converters[END_REF]- [START_REF] Kouzou | The Space Vector Modulation PWM Control Methods Applied on Four Leg Inverters, Electric Machines and Drives[END_REF]. However, these techniques remain very dependent on the topology of the converters. In this paper, we develop a completely different approach aiming to solve a class of problems regardless of the number of switches. We rely on an observation that the problem is largely similar to the problem of flight control in three dimensions using redundant control surfaces, a problem that has been studied extensively under the name of control allocation [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF]. It was found that control allocation problems could be solved reliably using standard linear programming algorithms. A benefit of the approach applied to the problem under consideration is that the control of the inverter is derived from a simple and generic formulation that can be extended to converters having a larger number of commutation cells. In addition, this approach seems to lend itself particularly well to reconfiguration in the event of a faulty switch in theory, suggesting the possibility of a new class of converters tolerant of some degree of failure in its components, but this will be addressed in a future work.

II. FOUR-LEG TWO-LEVEL INVERTER

A. Three-leg inverter

Figure 1 shows the classic three-phase three-leg two-level inverter. The two switches of each leg are required to have complementary states. The binary states SA, SB, SC (1 for on, 0 for off) of the upper switches produce line-to-ground voltages VAG, VBG, VCG
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Figure 1. Representation of a three-leg two-level inverter connected to a three-phase load Thus, the three-leg inverter can generate three independent line-to-ground output voltages. The three switching states result in 2 3 possible configurations, or output voltage vectors, given in Table I 

V0 V1 V2 V3 V4 V5 V6 V7 SA 0 1 1 0 0 0 1 1 SB 0 0 1 1 1 0 0 1 SC 0 0 0 0 1 1 1 1
The Y-connected load forces a relationship between the line-to-N voltages

 0    C CN B BN A AN Z V Z V Z V  
Therefore, a three-phase three-leg inverter feeding a Y-connected three-phase load can only generate two independent line-to-N load voltages. In the case of a balanced load, this is expressed by the non-invertible matrix M S3,2 in (3)
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 

Indices "3" and "2" of MS3,2 correspond respectively to the number of legs and the number of levels of the inverter. The transformation (3) leads to the well-known diagram of Figure 2, where the eight vectors correspond to the eight states of Table I, and the corresponding voltages VAN, VBN, VCN can be obtained by projecting the vectors on the axes labeled a, b, and c. V0 and V7 generate zero vectors, and V1 to V6 generate active vectors that can produce a reference voltage vector. 

B. Addition of a fourth leg

The additional leg in the four-leg inverter enables the control of the neutral point voltage of a three-phase load and, as a result, the independent control of the three phase voltages. Thus, it is assumed in this paper that the common point of the load is accessible. A schematic representation of the four-leg two-level inverter is given in Figure 3. Here the load is considered as an arbitrary three-phase load with line impedances ZA, ZB, ZC. From now, index "N" is reserved for the added fourth leg, and index "O" correspond to the common point of the load, as shown on Figure 3. The impedance ZN is included for generality. If nonzero, the common point (O) voltage of the load and the neutral point (N) voltage on the fourth leg of the inverter are not necessary equal. The fourth leg is added for unbalanced or nonlinear scenarios. The relationship between the switching states SA, SB, SC, SN and the line-to-neutral voltages is given by [START_REF] Lai | Multilevel Converters-A New Breed of Power Converters[END_REF]. 
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In the rest of this paper, the symbol <U> for mean value of U will be omitted. The presence of duty cycles in equations will assume that reference voltages are considered and generated in mean value. The matrix MS4,3 that links the four switching states (or duty cycles with (5)) to the three desired output voltages is of rank 3. Thus, the four-leg two-level inverter can generate voltage vectors in the three-dimensional space regardless of the load. This is also illustrated by the linear relationship (6) between the relative switching states SKN = SK -SN, and the line-to-neutral voltages VKN, K{A,B,C}.
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As there are four switching binary states, the inverter can produces 2 4 voltage vectors, given in Table II and illustrated in Figure 4 where the phase voltages are the axes of a Cartesian three-dimensional space. Achievable vectors join the origin to the corners of two opposite cubes. V0 and V15 are zero vectors, and vectors from V1 to V14 are active vectors. The upside cube is obtained when SN = 1, and the downside cube when SN = 0. With modulation, all the reachable voltage space vectors are contained between these two cubes (them included). The switching state vector being of dimension 4, this means that for a given reference vector, there are redundant corresponding configurations. For example, with (5), (1 1 1 0.5) T and (0.5 0.5 0.5 0) T both give (0.5EDC 0.5EDC 0.5EDC) T through MS4,3. This redundancy (for a given reference vector) is a degree of freedom that could be used for other purposes, including harmonic distortion or inverter losses minimization, etc.; yet, it complicates the control of the inverter. 

TABLE II. FOUR-LEG INVERTER VOLTAGE VECTORS RSS a Voltage vector V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 SAN 0 1 0 1 0 1 0 1 -1 0 -1 0 -1 0 -1 0 SBN 0 0 1 1 0 0 1 1 -1 -1 0 0 -1 -1 0 0 SCN 0 0 0 0 1 1 1 1 -1 -1 -1 -1 0 0 0 0 a. RSS: Relative Switching State a b c V 2 (0100) V 3 (1100) V 4 (0010) V 5 (1010) V 6 (0110) V 7 (1110) V 9 (1001) V 10 (0101) V 12 (0011) V 13 (1011) V 14 (0111) V 8 (0001) V 0 (0000) V 15 (1111) V 11 (1101) V x (S A S B S C S N ) V 1 (1000)

C. Control Problem Formulation

Denote MV4,2 the matrix that contains all the 14 active voltage vectors and DV the vector of duty cycles of the voltage vector Vi, i=1:14, so that

   T V V D D D M 14 1 2 , 4 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1                           
For the generation of a desired vector of line-to-neutral voltages Vref=(VAN VBN VCN) T , the objective is to find DV such that
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Because the matrix MV4,2 is of rank 3, a solution can generally be found where only three components of DV are active, and the others do not participate in the generation of the reference voltage vector.

III. SPACE VECTOR MODULATION

The Space Vector Modulation (SVM) approach considers any combination of switching states as a feasible voltage vector. Compared with classic carrier-based pulse width modulation, this results in a gain of 15% on the output voltages [START_REF] Houldsworth | The Use of Harmonic Distortion to Increase the Output Voltage of a Three-Phase PWM Inverter[END_REF]. SVM uses the available basis voltage vectors of Figure 4 over a modulation period Ts to synthesize the reference voltage vector. The SVM scheme only considers a minimum set of active components of DV instead of all 14 components.

To make this possible, the first step consists in finding a set of basis vectors appropriate for generating the reference. For the three-leg two-level inverter, a set of two voltage vectors is sufficient. With the four-leg version, three vectors are needed. The achievable set of space vectors is partitioned as the union of a set of tetrahedrons, each of which is determined by a set of three vectors, as shown in Figure 5. Vectors defining a tetrahedron are distinguishable by a single switching state and are called adjacent vectors. In order to minimize output harmonic distortion, a sequence of adjacent active vectors with nearest from the reference is chosen, see Figure 5.

In a second step, duty cycles of each selected vectors are calculated to achieve the reference vector. Finally, the duty cycle of each switch is determined from the duty cycles per vector. In dimension two, there are six triangles defined by two pairs of adjacent vectors (see Figure 2) and it is quite simple to determine the adequate sector. In dimension three, the problem becomes more difficult. It turns out that there are 24 tetrahedrons formed by sets of three adjacent (active) vectors. The identification of the reference tetrahedron has attracted much attention and several efficient methods have been presented [START_REF] Li | Analysis and Simplification of Three-Dimensional Space Vector PWM for Three-Phase Four-Leg Inverters[END_REF], [START_REF] Kouzou | The Space Vector Modulation PWM Control Methods Applied on Four Leg Inverters, Electric Machines and Drives[END_REF]. In an arbitrary case, denote Vref a reference line-to-N voltage vector. Once the tetrahedron described by the adjacent active vectors Vx, Vy and Vz is identified, the 3D-SVM approach finds duty cycles Dx, Dy and Dz in order to obtain values resulting in a voltage vector with mean value Vref over a modulation period Ts
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Naturally, (9) has a solution if and only if the reference vector Vref is reachable, i.e. if Vref is inside the tetrahedron. Otherwise, a possibility is to divide the resulting duty cycles by their sum, thus giving priority to the direction of the output vector. Then, in classic symmetrical SVM, both zero vectors V0 and V15 are equally used in addition to active vectors to synthesize the reference with minimal output distortion. The sum of their duty cycles D0 is determined by
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Finally, in order to determine DS, the vector of duty cycles per switch, from the duty cycles per vector Dx, Dy, Dz and D0, let MS be the matrix of size 4×14 whose columns are the vectors describing the vectors V1 to V14 with the four switching states SA, SB, SC and SN
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Define MSx,y,z the matrix whose columns are the x, y, and z columns of MS. Then, the vector containing the duty cycles associated with the four switching states SA, SB, SC and SN is given by
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shows an example of switching patterns over a modulation period Ts. A difficulty with the SVM approach is the identification of the applicable tetrahedron and, therefore, of the set of three basis vectors to be used. Although the process is relatively straightforward in the example presented here, it becomes much more difficult in cases involving multi-level or multileg converters and, therefore, many more possible switching patterns. In previous work, look-up tables were derived to make the computations tractable, but there is no known way to produce these tables automatically. The process is complicated and prone to errors.
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The objective of the paper is to show that an optimization approach to the problem yields an alternative solution with equivalent results. Advantages of this approach are the possible generalization to more complex problems with minor modifications to the algorithm, and the potential reconfiguration of the switching strategy in the presence of failures in the switches.

IV. A NEW APPROACH-CONTROL ALLOCATION TECHNIQUES

Control allocation methods were developed in flight control applications to obtain control systems that could automatically distribute acceleration requirements to individual control surfaces. A challenge of the problem is that the range of motion of control surfaces is limited. While the flight control application may appear completely different from the inverter application, it turns out that a common problem formulation can be used. As a result, algorithms used for control allocation in flight control can be applied to power electronic converters as well.

For an arbitrary over-actuated system [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF], let B be the effectiveness matrix that relates an input vector u to an output vector a through

 u B a    
B has more columns than rows, and it is assumed that the rows are linearly independent, i.e., that B is full row rank. For a desired output ad, the control allocation problem is to find a control input u such

 d a u B    
Obtaining u from ( 14) requires solving a system of linear equations with more unknowns than equations [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF]. The problem becomes non-trivial when the elements of the vector are constrained by upper and lower limits. The four-leg two-level inverter fits the control allocation formulation if one lets the effectiveness matrix B, the control input u and the reference ad be, respectively,
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The vector u is constrained by

 1 0 max min     V D u u u  
In this equation, inequalities are interpreted element-wise. Redundancy and constraints imply that an exact solution might not exist or might not be unique. To address that difficulty, an approach consists in finding a control input that fits [START_REF] Kouzou | The Space Vector Modulation PWM Control Methods Applied on Four Leg Inverters, Electric Machines and Drives[END_REF] in some optimal manner, while at the same time satisfying a secondary optimization objective when the solution is not unique. Towards that objective, one defines up, a preferred input vector that respects [START_REF] Houldsworth | The Use of Harmonic Distortion to Increase the Output Voltage of a Three-Phase PWM Inverter[END_REF]. The objectives of minimizing the control error while keeping the control vector u near up can be combined in a mixed optimization criterion through the use of a small parameter  [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF]. Its formulation for the four-leg inverter is:

   1 0 0 0         u u u u a u B J T p p d    
where || || is an arbitrary vector norm. As for the SWM approach, the solution of the control allocation formulation is DV the vector of duty cycles per active vector. The vector of duty cycles per switch, DS, can be computed from DV as follows. Using MS of ( 11), the product MS•DV gives the duty cycles per switch with only the participation of the non-zero active vectors. In order to minimize output distortion, both zero vectors V0 and V15 are used equally to fill any remaining portion of time in the period Ts. Their common duty cycle is 1(1 … 1)•DV and DS, the vector of duty cycles per switch, is then
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The control allocation scheme is illustrated on Figure 7. Figure 7. Note that MV4,2 of ( 7), up and ε could be reconfigured at any time. This allows interesting properties and even the reconfiguration of the inverter to handle failures under certain conditions, but this will be studied in a future paper.

Current

Reg. The solution of the optimization problem can be obtained numerically using linear programming algorithms if the l1 norm || ||1 is selected in [START_REF] Luenberger | Introduction to Linear Programming[END_REF] [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF]. A linear programming problem (LP) in standard form consists in finding a vector x that minimizes
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subject to:

 max 0 x x b x A      
In [START_REF] Bodson | Evaluation of Optimization Methods for Control Allocation[END_REF], it was shown that the control allocation problem could be converted into a standard LP problem, and then solved effectively using one of the algorithms available, including the well-established simplex algorithm, which is efficient, easy to code and guaranteed to find an optimal solution in a finite pe-riod of time. Simulations results in section VV prove the performance of the algorithm for the computation of the duty cycles.

An interesting property of the specific LP problem is that, typically, all but three elements of the optimal control vector are equal to zero. Therefore, the simplex algorithm recovers in a numerical manner the solution obtained geometrically using the SVM approach in earlier work. Control allocation brings a new algebraic solution to the control of power electronics converters by solving directly the formulation (8), or An advantage of this new approach is that it can easily be extended to arbitrary multi-leg and/or multi-level converters.
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V. SIMULATION RESULTS

The control allocation method with simplex algorithm was evaluated in the MATLAB/Simulink environment. The parameters used in the simulations are summarized in Table III. A three-phase RL load is fed by a four-leg two-level inverter. The load can be balanced or unbalanced. A current loop tracks a reference current specified by the user. The maximum output voltage reachable in linear mode is EDC/ 3 = 213 V. As the maximum resistance value is 10 Ω, the maximum current value that can be reached in linear mode is 23 A. The following figures show the load voltages and currents for 15 A (linear mode) and 32 A (saturated mode) and for balanced and unbalanced loads. For readability, switching effects were not taken into account and the duty cycles were directly applied through the gain EDC. Thus, only the main harmonics are visible on the following figures.

Figure 9 and Figure 10 show simulation results for a balanced load, respectively for 15 A (linear mode) and 32 A (saturated mode). In the first case, resulting voltages are balanced and three-phase, and no current circulates in the neutral line. In the second case, voltages are still balanced but third harmonics appear due to saturation. Figure 11 and Figure 12 show the duty cycles per switch for a balanced load, for 15 A and for 32 A, respectively. In the first case, we observe recover the same waveforms as for Space Vector Modulation, with a third harmonic that enables the increase of the output voltage. The saturated case presents over-modulation because of the voltage saturation. 14 show results for an unbalanced load. At 15 A, line voltages are still three-phase sinusoidal voltages but no more balanced. The unbalance results in a neutral current at the fundamental frequency. In the saturated case at 32 A, a third harmonic distortion is added to the voltages, as well as on the neutral current. These results are similar to what was found earlier with 3D-SVM, and show that the control of the four-leg inverter can be achieved without any understanding of the geometric properties of the system. The determination of tetrahedron is underlying in the solution of the optimization problem (17) using the simplex algorithm. Most importantly, the implementation of the algorithm does not require the derivation of a look-up table for the identification of the applicable tetrahedron, a problem whose solution is relatively easy to obtain in this example, but becomes very complicated in problems with more switches.

VI. CONCLUSION

The control allocation approach constitutes a new and powerful solution for the control of power electronic converters. Its application to the four-leg two-level inverter results in performances equivalent to 3D-SVM control in simulation. Bypassing the requirement of a method for the identification of the minimal set of space vectors, the control allocation method formulates a single generic optimization problem whose solution can be applied to many different converters. In addition, the systematic method might allow a reconfiguration of the converter in the event of failure on a component under certain conditions, and this promising property will be addressed in a future work. 
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 2 Figure 2. Representation of the voltage vectors for a three-leg inverter in the abc frame of a three-phase balanced load
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 3 Figure 3. Representation of a four-leg two-level inverter connected to a four-wire load Consider the case where pulse width modulation (PWM) is used with duty cycle DK for switch K, K{A,B,C,N}. With U T denoting the transpose of a vector U, equation (5) gives the mean values <VKN> of VKN, K{A,B,C,N}
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 4 Figure 4. Representation of the voltage vectors for a four-leg inverter in the abc frame of the three-phase load
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 5 Figure 5. Illustration of the generation of the reference voltage vector with adjacent vectors. (a) 2D-SVM. (b) 3D-SVM.
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 6 Figure 6. Illustration of possible switching states over a modulation period Ts with the SVM scheme
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 37 Figure 7. Diagram of control allocation scheme for the four-leg two-level inverter Iref: Vector of a, b, c line current references, Imeas: Vector of a, b, c line current measurements, up: Vector of preferred control values, ε: Weighing factor, MV: Matrix of available active vectors, DV: Vector of duty cycles per active vector, MS: Matrix of available active combinations of switching states, DS: Vector of duty cycles per switch, S: Vector of switching states.
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 8 Figure 8. Illustration of an arbitrary case of switching states over a modulation period Ts with the control allocation method
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 910 Figure 9. Line voltages and line currents with control allocation for balanced load and balanced references at 15 A
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 1112 Figure 11. Duty cycles with control allocation for balanced load and balanced references at 15 A
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 13 Figure 13. Line voltages and currents with control allocation for unbalanced load and balanced references at 15 A
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 14 Figure 14. Line voltages and currents with control allocation for unbalanced load and balanced references at 32 A