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Abstract: The increasing development of edible insect flours as alternative sources of proteins
added to food and feed products for improving their nutritional value, necessitates an accurate
evaluation of their possible adverse side-effects, especially for individuals suffering from food
allergies. Using a proteomic- and bioinformatic-based approach, the diversity of proteins occurring
in currently consumed edible insects such as silkworm (Bombyx mori), cricket (Acheta domesticus),
African migratory locust (Locusta migratoria), yellow mealworm (Tenebrio molitor), red palm weevil
(Rhynchophorus ferrugineus), and giant milworm beetle (Zophobas atratus), was investigated. Most of
them consist of phylogenetically-related protein allergens widely distributed in the different groups
of arthropods (mites, insects, crustaceans) and mollusks. However, a few proteins belonging to
discrete protein families including the chemosensory protein, hexamerin, and the odorant-binding
protein, emerged as proteins highly specific for edible insects. To a lesser extent, other proteins such
as apolipophorin III, the larval cuticle protein, and the receptor for activated protein kinase, also
exhibited a rather good specificity for edible insects. These proteins, that are apparently missing or
much less represented in other groups of arthropods, mollusks and nematods, share well conserved
amino acid sequences and very similar three-dimensional structures. Owing to their ability to trigger
allergic responses in sensitized people, they should be used as probes for the specific detection of
insect proteins as food ingredients in various food products and thus, to assess their food safety,
especially for people allergic to edible insects.

Keywords: edible insect proteins; insect food allergens; food allergy; cricket; giant milworm;
migratory locust; silkworm; yellow mealworm; palm weevil; allergen structure diversity; structure-
function relationships; allergen detection

1. Introduction

The increasing use of insects as food ingredients, developed at the same time that
progress has been achieved in the factory farming of edible insects such as yellow meal-
worm (Tenebrio molitor), cricket (Acheta domesticus, Gryllus bimaculatus), or black soldier fly
(Hermetia illucens) [1–15]. However, besides their relevant nutritional properties, products
derived from edible insects may also exhibit some potential chemical safety risks due
to the persistence of heavy metals or hazardous organic pollutants in the ready-to-eat
insects [16–22], and microbiological and parasitological risks associated to the possible oc-
currence in edible insects of bacteria or parasites potentially pathogenic for humans [23–26].
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In addition, edible insects may also exhibit deleterious effects on people suffering from
allergic disease towards insects and, more broadly, towards arthropods (acari, crustaceans,
insects), mollusks and nematods [27]. Accordingly, facing the potential allergenic risk asso-
ciated to edible insect consumption, adapted methods of detection need to be developed
for probing food products containing insect flours, particularly potential insect protein
allergens.

Allergic responses associated to entomophagy, i.e., the consumption of edible insects,
has been known for a long time and has been recently reviewed in details [28–33]. More re-
cently, an anaphylactic reaction was reported after consumption of yellow mealworm [34],
and silkworm pupae [35]. Most of the insect allergens identified as IgE-binding allergens,
cross-react with shellfish, mollusk and nematod allergens and thus correspond to IgE-
binding cross-reacting pan-allergens, widely distributed in various animal phyla [36–44].
Among these cross-reacting allergens, alpha-actin, arginine-kinase (AK), enolase, fructose-
1,6-biphosphate aldolase (FPA), glyceraldehyde-3-phopho-deshydrogenase (GAPDH), and
tropomyosin, consist of the frequently identified IgE-binding cross-reacting allergens [33].
Other widely distributed proteins such as alpha-amylase, glutathione S-transferase (GST),
myosin, paramyosin, triose-phosphate isomerase (TPI), and troponin, also occur as IgE-
binding cross-reacting allergens in insects, crustaceans and mollusks [36,39]. Besides
pan-allergens, insects might contain much more specific allergens, which could be used as
specific probes for the detection of insect flour added either intentionally as a food ingredi-
ent or involuntarily as hidden allergens, to food products. Such a detection approach, based
on the occurrence of allergens specific for edible insects in food products, could be used as
a complementary approach for the genomic detection of insect species/flour/proteins in
foods, using e.g., a multiplex polymerase chain reactions (PCR) [45].

The present work was aimed at identifying potential allergens that are more specifi-
cally distributed in edible insects, while lacking or weakly represented in other arthropods,
mollusks and nematods, to dispose of more specific probes to detect the addition of insect
flour to food products.

2. Materials and Methods
2.1. Materials
2.1.1. Insect Samples

Samples from commercially available ready-to-eat insects were used as starting ma-
terials, to ensure that our analyses would focus on samples of actually consumed insects.
Yellow mealworm larvae (Tenebrio molitor) and house cricket (Acheta domesticus) were a
gift from Micronutris (http://www.micronutris.com). Silkworm pupae (Bombyx mori),
giant worm (Zophobas morio) and palm worm (Rhynchophorus ferrugineus) larvae were pur-
chased from Next-Food (http://www.next-food.net). Edible insect flours were prepared
by carefull grinding of ready-to-eat insect samples previously frozen by soaking in liquid
nitrogen.

2.1.2. Chemicals

Acetonitrile Optima LC/MS grade (Fischer Scientific, Waltham, MA, USA), trifluo-
roacetic acid reagent plus (Sigma-Aldrich, St. Louis, MO, USA) and formic acid 98–100%
LC/MS (Sigma-Aldrich), were used for the nano-LC-MS/MS analyses.

2.2. Edible Insect Protein Extract

Insect protein extracts were prepared by two 40 s. grinding steps of insect flour
(150 mg) in Tris-HCl buffered saline, pH 7.4 (0.85 mL), in a Fast Prep-24 homogenizer
(MP Biomedicals, Illkirch, France). After a centrifugation step of 15,000× g for 15 min. at
4 ◦C, the collected supernatant was filtered (0.2 µm) and stored at −20 ◦C until used. The
bicinchoninic method kit (Pierce) [46] was used to measure the protein content in the insect
protein extracts, using bovine serum albumin (Sigma) as a calibration standard.

http://www.micronutris.com
http://www.next-food.net
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2.3. Digestion and Nano-LC-MS/MS Analysis

The procedure has been described in details in [47]. After reduction and alkylation in
dithiothreitol- and iodoacetamide-containing buffer, the proteome samples were loaded
on 12% SDS-polyacrylamide gels. After staining with Instant Blue (Invitrogen), excised
gel bands were digested in 60 µL of modified trypsin in 25 mM NH4HCO3 (10 ng/µL,
Promega, sequence grade). After overnight incubation at 37 ◦C, the peptide mixtures
were analyzed by nano-LC-MS/MS, using nanoRS UHPLC system (Dionex, Amsterdam,
The Netherlands) coupled to an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific). Samples (5 mL) were loaded on a C18 precolumn (300 mm Ø × 5 mm) at
20 mL/mn in 5% acetonitrile, 0.05% TFA. After desalting, switching of the precolum to the
analytical C18 colomn (75 mm Ø x 15 cm) equilibrated in 95% solvent A (5% acetonitrile,
0.2% formic acid) and 5% solvent B (80% acetonitrile, 0.2% formic acid) was performed and
peptides were eluted during 105 min using a 5–50% solvent B gradient at a flow rate of
300 nL min-1. Survey scan MS spectra were acquired in the Orbitrap in the 300–2000 m/z
range with resolution set to 60,000. For each survey scan, the 20 most intense ions were
selected for further CID (collision-induced dissociation) fragmentation, and analysis in the
linear trap. A dynamic exclusion within 60 s was used to avoid the repetitive selection of
the peptides.

Database search was performed in batch mode with on all the raw files acquired for
each sample, using Mascot Daemon version 2.5 (Matrix Science, London, UK). The Ex-
tract_msn.exe macro of Xcalibur (version 2.2 SP1.48, Thermo Fisher Scientific) was used to
extract peak lists from Wcalibur raw files, using the following set of parameters: (1) parent
ions in the 400–500 mass range, (2) no grouping of MS/MS scans, (3) threshold fixed at 1000.
A peak list was generated for each analyzed gel band and Mascot search was performed for
each band. Data were searched against all the entries of the Tenebrionidae 20,170,606 pro-
tein database and the genome assembly 130x_Tmol_Sep2019 (GenBank GCA_014282415.1)
for Tenebrio molitor, the genome assembly ASM15162v1 (RefSeq GCF_000151625.1) for
Bombyx mori, and the genome assembly LocusGenomeV1 (GenBank GCA_000516895.1)
for Locusta migratoria. Setings for Mascot search were as follow: (1) oxidation of Met and
carbamidomethylation of Cys were set as variable modifications, (2) cleavage after Lys or
Arg (except before Pro) for the specificity of trypsin digestion, and a single missed trypsin
cleavage was allowed, (3) mass tolerance in MS and MS/MS set to 5 ppm and O.8 Da,
respectively, (4) ESI-Trap specified as intrument stetting. Mascot results were validated
using the so-called “Proline” in-house software (ProFiProteomics, France) [48]. Using the
target-decoy database search to control and estimate the false positive identification rate in
our catalogue of insect proteins, the false discovery rate (FDR) was below 1% for peptides
and proteins.

2.4. Bioinformatics

Multiple amino acid sequence alignments were carried out with CLUSTAL-X [49]
using the stuctural Risler’s matrix for homologous residues [50].

Except for the three-dimensional structures of apolipophorin III from Locusta migratoria
(protein data bank (PDB) code 1AEP [51] and 1LS4 [52]), the chemosensory protein from
Bombyx mori (PDB code 2JNT) [53], the 12 kDa hemolyph protein from Tenebrio molitor (PDB
code 1C3Z) [54] and odorant-binding proteins from Apis mellifera (PDB code 3S0D) [55]
and Bombyx mori (PDB code 2WCJ) [56] and (PDB code 1DQE) [57], and hexamerin from
Bombyx mori (PDB code 4L37) [58], which are available at the Protein Data Bank (PDB) [59],
other apolipophorins, chemosensory proteins (CSP), odorant-binding proteins (OBP) and
hexamerins, were homology modelled with YASARA structure [60], using appropriate
three-dimensional structures available at the PDB as templates.

As an example, the three-dimensional structures of arylphorin from Antheraea pernyi
(PDB code 3GWJ) [61], arylphorin from Bombyx mori (PDB code 4L37) [58], hemocyanin
from Panulirus japonicus (PDB code 6L8S) [62], and hemocyanin from Limulus polyphemus
(PDB code 1LL1) [to be published], were used as templates to build up to 25 different models
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for each of the modelled hexamerins from Apis mellifera, Galleria melonella, Locusta migratoria
and Tenebrio molitor. Finally, hybrid models of hexamerins were built up from the different
previous models. Similarly, the three-dimensional structures of odorant binding proteins
(OBP) from Apis mellifera (PDB code 3S0D) [55], Anopheles gambiae (PDB code 3R1P) [63],
AtraPBP1 from Amyelois transtyella (PDB code 4INW) [64], Antheraea polyphemus PBP1 (PDB
code 2JPO) [65], Bombyx mori GOBP2 (PDB code 2WCJ) [56] and chemosensory protein 1
from Bombyx mori (PDB code 2JNT) [53]), were used as templates for the building of other
OBP models from Locusta migratoria and Onthophagus taurus. Finally, hybrid models of
were built up from the different previous models. Apolipophorin III from Locusta migratoria
(code PDB 1AEP) [51], was used as a template to build the three-dimensional lodels
of apolipophorin III from Acheta domesticus, Bombyx mori, Galleria melonella, Schistocerca
gregaria, and Tenebrio molitor. Similarly, a single protein template, the crystal structure
of p53 epitope-scaffold of a cysteine protease in complex with human MDM2 protein
(5SWK) [66] available at the PDB, was used to build the 3D-models for the larval cuticle
proteins (LCP) of Tenebrio molitor, Bombyx mori, Locusta migratoria, Musca domestica, and
Tribolium castaneum (red flour beetle). PROCHECK [67], ANOLEA (Atomic NOn-Local
Environment Assessment) [68], and the calculated QMEAN scores [69,70] were used to
assess the geometric and thermodynamic qualities of the homology built three-dimensional
models. Using ANOLEA, only a few residues essentially located in loops connecting
the α-helices or β-sheets in the models, were found to exhibit an energy value over the
fixed threshold. Similarly, the calculated QMEAN scores for all the models, gave values
below 0.5.

The superposition of insect proteins was performed with Chimera [71]. Molecu-
lar cartoons were drawn with Chimera. The detection of potential cleavage sites to
pepsin, trypsin and chymotrypsin, was performed at pH 1.3 for pepsin and pH 8.5 for
trypsin/chymotrypsin, respectively, with the PeptideCutter web server (https://web.
expasy.org/peptide_cutter/) [72], from the amino acid sequences of chemosensory pro-
teins, odorant binding proteins, and apolipophorins III. Finally, the cleavage sites were
represented on the molecular surface of the proteins, using Chimera.

3. Results

The nano-LC-MS/MS approach performed on insect protein extracts allowed the
identification of a variable number of proteins, depending on the edible insects analyzed:
314 distinct proteins for Bombyx mori, 73 proteins for Locus migratoria, 62 proteins for
Zophobas morio, and only 46 proteins for Acheta domesticus, and 42 proteins for Rhynchophorus
ferrugineus. In a previous study, a similar approach allowed the detection of 106 distinct
protein in protein extract from Tenebrio molitor.

As an example, (Table 1) shows the complete list of proteins identified in the silkworm
(Bombyx mori) pupa protein extract.

Table 1. List of proteins identified in the silkworm (Bombyx mori) pupae protein extract. Proteins are ranked by decreasing
scores. Uncharacterized proteins and fragments from identical proteins were discarded from the list.

1. Sex specific storage protein 1 55. Mitochondrial aldehyde
dehydrogenase cysteine

2. Arylphorin I 56. Hemocytin 108. Paralytic peptide binding protein

3. Sex specific storage protein 2 57. Antichymotrypsin-1 109. ATP-dependent
(S)-NAD(P)H-hydrate

4. Silkworm storage protein 58. Pyruvate kinase dehydratase
5. Arylphorine 2 59. Fructose-1,6-biphosphatase 110. Chymotrypsin inhibitor fb
6. Apolipophorin 60. 30 kDa protein 111. 30K protein 14
7. Vitellogenin 61. Chemosensory protein 7 112. Glucosamine-6-phosphate isomerase
8. Vitellogenin 62. Nucleoside diphosphate kinase 113. Thioredoxin
9. Antitrypsin isoform 1 63. Thiol peroxiredoxin 114. Adenosylhomocysteinase
10. Aliphatic nitrilase 64. Tropomyosin I 115. Proteasome subunit α type
11. Antichymotrypsin-2 65. Promoting protein 116. Carboxypeptidase

https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
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Table 1. Cont.

12. 30K protein 3 66. Phosphatidylethanolamine binding 117. Immune-related protein 1
13. Hemolin protein isoform 2 118. Glutathione S-transferase δ

14. 30K protein 7 67. Obstructor-A 119. Heat shock protein 70-3

15. Low molecular 30 kDa lipoprotein 68. Mitochondrial aldehyde
dehydrogenase 120. 30K protein 13

16. Hemolin 69. Actin-1 121. Heat shock cognate 70 protein
17. Major plasma protein 30K 70. Mesencephalic astrocyte-derived 122. DJ-1 β

18. Hemolin neurotrophic factor 123. Chemosensory protein 9
19. Chitooligosaccharidolytic β-N-acetyl- 71. Malate dehydrogenase 124. Allergen
glucosaminidase 72. Transaldolase 125. 14-3-3 protein ζ

20. Odorant binding protein 73. Malic enzyme 126. 32 kDa apolipoprotein
21. Odorant-binding protein 6 74. Glyceraldehyde-3-phosphate 127. Carboxypeptidase inhibitor
22. Aliphatic nitrilase dehydrogenase 128. Lysozyme
23. Dihydrolipoyl dehydrogenase 75. Chitinase 3 129. tRNA-nucleotidyltransferase 1
24. 30K protein 4 76. Chemosensory protein-1 130. Serpin-11
25. Carboxylic ester hydrolase 77. Serine hydroxymethyltransferase 131. Myosin heavy chain, non-muscle
26. 27 kDa glycoprotein 78. Acyl-CoA binding protein 132. Heat shock 70 kDa protein cognate 3
27. Carboxylic ester hydrolase 79. Isocitrate dehydrogenase [NADP] 133. Chemosensory protein 8
28. Tropomyosin-1 isoform 2 80. Cuticle protein 134. Fructose-1,6-biphosphatase 1
29. Low molecular mass 34 kDa
lipoprotein 81. Cationic peptide CP8 135. Ubiquitin

21G1 82. Tropomyosin-1 isoforms 33/34 136. N-acetylglucosamine-6-phosphate
30. Putative peptidase 83. β-galactosidase deacetylase
31. Saposin-like protein 84. Odorant binding protein 137. Mitochondrial cytochrome C
32. Hydroxypyruvate isomerase 85. Glyceraldehyde-3-phosphate 138. Pro-phenol oxidase
33. Serpin-2 dehydrogenase 139. Catalase
34. Serpin-6 86. Tenebrin 140. Glutathione-S-Transferase 1
35. Glucosamine-6-phosphate isomerase 87. Aminoacylase 141. Thioredoxin peroxidase
36. Serpin-9 88. ARP-like protein 142. Peroxiredoxin 1
37. Serpin-2 89. Serpin-7 143. Glutamate dehydrogenase
38. Hemolymph juvenile hormone
binding 90. Serpin-3 144. Nucleoplasmin-like protein

protein 91. Calmodulin 145. Angiotensin converting enzyme
39. Molting fluid carboxypeptidase A 92. Imaginal disk growth factor 146. DNA supercoiling factor
40. Superoxide dismutase [Cu-Zn] 93. Actin-depolymerizing factor 1 147. Nucleoside diphosphate kinase
41. Fructose-biphosphate aldolase 94. Chymotrypsin inhibitor SCI-III 148. HSP70
42. Fibrillin-like protein 95. Myosin light chain 2 149. Sericin 2
43. Bm8 interacting protein 2d-4 96. POX-C 150. Molting carboxypeptidase A
44. Superoxide dismutase [Cu-Zn] 97. Scarface 151. Fibrillin-1
45. Type IV collagen 98. Proteasome subunit α type 152. Small heat shock protein 20.8
46. Glyceraldehyde-3-phosphate 99. Chymotrypsin inhibitor SCI-I 153. β-glucuronidase
dehydrogenase 100. Kazal-type proteinase inhibitor 154. Trehalase
47. Serpin-5 101. Polyubiquitin-c isoform x7 155. DNA (apurinic or apyrimidinic site)
48. Superoxide dismutase [Cu-Zn] 102. Chymotrypsin inhibitor SCI-II lyase
49. Actin 103. Carboxylic ester hydrolase 156. Cuticlin-1
50. Thioredoxin 104. Prophenoloxidase subunit 2 157. Kv-channel-interacting protein
51. Glucosamine-6-phosphate isomerase 105. Thiol peroxiredoxin 158. Ferritin
52. Cystathionine γ-lyase 106. Ubiquitin/ribosomal protein S27 Ae 159. Chemosensory protein 5
53. Retinoic acid binding protein fusion protein 160. Arylphorin subunit α
54. Putative actin-related protein 107. Secreted protein acidic and rich in 161. Pterin carbinolamin dehydratase

Most of the potential allergens frequently distributed in edible insects, correspond
in fact to IgE-binding cross-reactive allergens that occur in other groups of arthropods
(acari, crustaceans), mollusks, and nematods. However, a few potential allergens including
apolipophorin III, the chemosensensory protein, the coackroach allergen-like protein,
hexamerin, the larval cuticle protein, the odorant binding protein and the receptor for
activated protein kinase, appear as being apparently most specifically distributed in insects
(Table 2).
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Table 2. List of IgE-binding cross-reactive allergens identified (+) in edible insects (Bm: Bombyx mori, Tm: Tenebrio molitor,
Ad: Acheta domesticus, LM: Locusta migratoria, Zm: Zophobas morio, Rf: Rhynchophorus ferrugineus) shared (X) with crustaceans
(C), acari (Ac), insects (I), mollusks (M), worms (W), fungi (F), plants (P) and animals (A). The allergens more specifically
distributed in insects are black boxed X.

Allergen Bm Tm Ad Lm Zm Rf C Ac I M W F P An

Acidic ribosomal protein + + + X X X X X X X X

Actin α + + + + + + X X X X X X X X

Actinin + + X X X X X X X X

Adenosylhomocysteinase + X X X

α-Amylase + X X X X X X X X

Apolipophorin III + + + X X X X X X

Apolipoprotein + X X X X X X X X

Arginine kinase + + + + + + X X X X X X

Arylphorin, Hemocyanin + + + + X X

Aspartic protease + X X X X X X

ATP synthase + + + X X X X X X X X

Carboxypeptidase + X X X X X X X X

Catalase + X X X X X X X X

Chemosensory protein + + + X X X X X

Chitinase + + X X X X X X X X

Cockroach allergen-like protein + X

Cystatin proteinase inhibitor + X X X X X X X X

Cytochrome C + + + X X X X X X X X

Enolase + + + + + X X X X X X X X

Fatty acid-binding protein + + + + X X X X X X X X

Ferritin + X X X X X X X X

Fructose-1,6-biphosphate aldolase + + + + + + X X X

Glucosamine-6-phosphate
isomerase + X X X X X X X X

Glutathione S-transferase + + X X X X X X X X

Glyceraldehyde-3-phosphate
dehydrogenase + + + + + + X X X X X X X X

Hexamerin + + + + + X X X

HSP 70 + + + + + X X X X X X X X

Larval cuticle protein + + + X X X X X

Lipocalin + X X X X X X X X

Lysosomal aspartic protein + X X X X X X X X

Lysozyme + X X X X X X X X

Malate dehydrogenase + + + X X X X X X X X

Mitochondrial aldehyde
dehydrogenase + X X X X X X X X

α-Myosin + + + + + X X

Myosin heavy chain + + X X X X X X X X
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Table 2. Cont.

Allergen Bm Tm Ad Lm Zm Rf C Ac I M W F P An

Myosin light chain + + X X X X X X X X

Nucleoside diphosphate kinase + X X X X X X X X

Odorant-binding protein + + + + + + X X X X X X

Paramyosin long form + + X X X X X X

Paramyosin short form + + X X X X X X X

Peroxiredoxin + + X X X X X X X X

Pyruvate kinase + + + X X X X X X X X

Receptor for activated protein
kinase + X X X X X X X X

Sarcoplasmic calcium-binding
protein + X X X X X X X

Serine protease + X X X X X X X X

Serpin + + X X X X X X X X

Superoxide dismutase [Cu-Zn] + + + X X X X X X X X

Thioredoxin + + X X X X X X X X

Transaldolase + X X X X X X X X

Triosephosphate isomerase + + X X X X X X X X

Tropomyosin 1 + + + + + + X X X X X X X X

Tropomyosin 2 + + + X X X X X X X X

Troponin C + + X X X X X X X X

Troponin T + + + X X X X X X X X

Trypsin + X X X X X X X X

Tubulin α + + X X X X X X X X

Tubulin β + + + + X X X X X X X X

Vitellogenin + + + X X X X X X X X

Chemosensory proteins, odorant binding proteins and hexamerins, emerge as three
groups of proteins essentially distributed in insects (≥98%), together with apolipophorins
III, larval cuticle proteins and receptors for activated protein kinase, which are preferentially
distributed in insects (80–85%) (Table 3). The cockroach allergen-like protein holds a unique
place since its apparently occurs only in the yellow mealworm (Tenebrio molitor).

Table 3. Number and proportion (expressed as %) of specific proteins identified in insects, crustaceans,
mollusks and nematods. N/I: protein not identified. Green: highly specific insect proteins.

Protein: Insects: Crustaceans: Mollusks: Nematods:

Apolipophorin III 549 (79.7%) 6 (0.8%) 26 (3.8%) 108 (15.7%)
Chemosensory protein 17,207 (98%) 142 (0.8%) 47 (0.2%) 180 (1%)
Cockroach allergen-like

protein 1 N/I N/I N/I

Hexamerin 395 (99.5%) 2 (0.5%) N/I N/I
Larval culticle protein 3971 (84.7%) 315 (6.7%) 1 (0.02%) 399 (8.5%)

Odorant binding protein 14,318 (99.8%) 13 (0.08%) N/I 19 (0.13%)
Receptor for activated

protein kinase 313 (79%) 16 (4%) 17 (4.4%) 50 (12.6%)
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Chemosensory proteins (CSP), consist of small globular proteins of 110–120 amino
acids, built from 6–7 α-helices connected by short loops. They usually contain four cystein
residues forming two adjacent disulfide bridge, which contribute to the tight packing of
the protein (Figure 1A).
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Figure 1. (A–E). Ribbon diagram of the three-dimensional structure/model of chemosensory protein
(A), odorant binding protein (B), apolipophorin III (C), larval cuticle protein (D) and hexamerin (E),
from Bombyx mori. N and C correspond to the N- and C-termini of the polypeptide chains. Fatty acids
complexed to hexamerin are represented in spheres colored cyan.

Chemosensory proteins from different insect species, exhibit rather conserved amino
acid sequences, especially at the N-terminal end of the polypeptide chain whereas their
C-terminal end appears as less conserved (Figure 2). However, in spite of these amino
acid sequence discrepancies, CSP from different insects display very similar structural
organizations that are readily superposable (Figure 3).

However, in spite of these amino acid sequence discrepancies, CSP from different in-
sects display very similar structural organizations that are readily superposable (Figure 3).

Odorant binding proteins, also known as pheromone-binding proteins, are small
globular proteins with structure very similar to that of CSP, that have been recognized
as potential IgE-binding proteins in yellow mealworm extracts. They typically consist of
small polypeptide chains of about 120–130 amino acid residues (13–14 kDa) built up from
6 α-helices tightly packed by 3 conserved disulfide bridges (Figure 1B).

Despite a very conserved three-dimensional structure, they differ by their amino acid
sequences which show a low degree of both identity and similarity (Figure 4). Accordingly,
their three-dimensional core structures are readily superposable (Figure 5).

Hexamerin consists of an insect storage protein synthesized in body fat, resulting
from the non-covalent oligomerization of protomers exhibiting a hemocyanin-like domain
(Figure 1E). Their amino acid sequences exhibit a high degree of identity and homology
(Figure 6), which is in accordance with their very structurally conserved character. In
this respect, hexamerins from different edible insects exhibit nicely superposed three-
dimensional core structures, with the exception of a few exposed loops, the conformation
of which differs from one structure to another (Figure 7).
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Figure 2. Multiple amino acid sequence alignment of chemosensory proteins from Apis mellifera (Apis m.), Bombyx mori (Bom-
byx m.), Locusta migratoria (Locusta m.), Schistocerca gregaria (Schistocerca g.), Bactrocera dorsalis (Bactrocera d.), Rhynchophorus
ferrugineus (Rhynchophorus f.), Tenebrio molitor (Tenebrio m.), and Vespa velutina (Vespa v.). Identical amino acids are displayed
in white letters highlighted in blue, homologous amino acids are displayed in black letters highlighted in cyan, and putative
N-glycosylation sites are highlighted in red.
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Figure 3. A. Superposition of the ribbon diagrams of chemosensory proteins from Apis mellifera
(blue), Bombyx mori (red), Bactrocera dorsalis (green), Locusta migratoria (purple), Schistocerca gregaria
(yellow) and Tenebrio molitor (orange).
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Figure 4. Multiple amino acid sequence alignment of odorant binding proteins (OBP) from Tenebrio
molitor (Tenebrio m.), Onthophagus taurus (Onthophagus t.), Locusta migratoria (Locusta m.), Apis mellifera
(Apis m.), Schistocerca gregaria (Schistocerca g.) and Bombyx mori (Bombyx m.). Identical amino acids are
displayed in white letters highlighted in blue, homologous amino acids are displayed in black letters
highlighted in cyan, and putative N-glycosylation sites are highlighted in red.



Foods 2021, 10, 280 10 of 18
Foods 2021, 10, x FOR PEER REVIEW 10 of 19 
 

 
Foods 2021, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/foods 

 
Figure 5. A. Superposition of the ribbon diagrams of odorant binding proteins from Apis mellifera 
(red), Bombyx mori (blue), Locusta migratoria (green), Onthophagus taurus (yellow) and Tenebrio 
molitor (purple). 

Hexamerin consists of an insect storage protein synthesized in body fat, resulting 
from the non-covalent oligomerization of protomers exhibiting a hemocyanin-like domain 
(Figure 1E). Their amino acid sequences exhibit a high degree of identity and homology 
(Figure 6), which is in accordance with their very structurally conserved character. In this 
respect, hexamerins from different edible insects exhibit nicely superposed three-dimen-
sional core structures, with the exception of a few exposed loops, the conformation of 
which differs from one structure to another (Figure 7).  

Figure 5. A. Superposition of the ribbon diagrams of odorant binding proteins from Apis mellifera
(red), Bombyx mori (blue), Locusta migratoria (green), Onthophagus taurus (yellow) and Tenebrio molitor
(purple).

Foods 2021, 10, x FOR PEER REVIEW 11 of 19 
 

 
Foods 2021, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/foods 

 
Figure 6. Multiple amino acid sequence alignment of hexamerins from Locusta migratoria (Locusta 
m.), Apis mellifera (Apis m.), Tenebrio molitor (Tenebrio m.) and Galleria mellonella (Galleria m.). 
Identical amino acids are displayed in white letters highlighted in blue, homologous amino acids 
are displayed in black letters highlighted in cyan, and putative N-glycosylation sites are highlighted 
in red. 

 
Figure 7.  Superposition of the ribbon diagrams of hexamerin from Apis mellifera (red), Galleria 
mellonella (blue), Locusta migratoria (green), and Tenebrio molitor (purple). 

As previously reported, other less specific potential allergens such as apolipophorin 
III and larval cuticle protein, exhibit rather well conserved amino acid sequences but share 
a highly conserved three-dimensional structure. As an example, the multiple alignment 

Locusta m.     TINPAPHVTADKDFLLRQKKILQIFWHVGQPLLD-TELKAIADSFKLEEHAGDFKDPELVKTFVKYY  
Apis m.        --EYYDTKTADKDFLLKQKKVYNLLYRVAQPALANITWYNEGQAWNIEANIDSYTNAAAVKEFLSIY  
Tenebrio m.    -CTYPQVQISDFRLLQKQFHVLNLFRYVNIPSYC-KDSNEIAQSYDISEHYNDYSNPQVAKHYYQIY  
Galleria m.    DPVKKLQRTVDQTVLDRQYKLLTLFFHPHEPIHI-KEQQEIAASWDLEKNIGLYENATAVHLTIQML 
   
Locusta m.     SHGYFKKRGEPFSIHYKYDFLQAKALVDLLYQAKDFDTFYKTALWARENFNQGLFVYAFNVAKLHRD  
Apis m.        KHGMLP-RGELFSLYYPQLLREMSALFKLFYHAKDFDIFFKTALWAKNNINEAQYIYSLYTAVITRP  
Tenebrio m.    QYGLLP-RGQVFSIFYQEQLQQAIALYRLFYYAKDYQTFYNTAVWARQHVNEGVYLYSLSVAIVHRP  
Galleria m.    HNNYQVPRGVPFTVLESVHRFEISVYYSLLYSAKTYDTFYKTAVFLRQHVNENLFVNVLSVVILHRS 
           
Locusta m.     DVFDVVIPPFYEIYPHLYVSPDVIREAW--AATLEG----KTFDESK---PYVIRANYSGY--PHAH  
Apis m.        DTKFIQLPPLYEMCPYFFFNSEVLQKAN--HALIFGKLDTKTSGKYK---EYIIPANYSGWYLNHDY  
Tenebrio m.    DTYGIVLPPIYEVYPYYFYNNEVIQQAYRYKQQYYGQQRQQNQDEHSGFNGYTINTNYSGY--YLYL  
Galleria m.    DTQDIRIPPIYDVFPSYFHNGEIYDDSPKNNYSWSTNVRTLPINICLG-EQCCIRHNETAWP-YYCN  
 
Locusta m.     NADELISYYTEDIGLGAYLDYVHYRYPFWAKLDEYNQANYTRRGDHFYYGIKATLSRYYLERLSNHL  
Apis m.        NLENKLIYFIEDIGLNTYYFFLRQAFPFWLPSKEYDLPDYR--GEEYLYSHKLLLNRYYLERLSNDL  
Tenebrio m.    NPEQSLSYFTEDVRLNSFYYYYNIYYPYWLGGQEFNYQNDRR-GELFYYIYQQLLPRYYLERLSNGF  
Galleria m.    TESMPVSYFTHDVTLNALYYNIKLAYPIWLRSDACAIKEKR--GELFFFWNKQLLARYYMERLSVGL 
                          
Locusta m.     YPDIEPVDYKKPIPG----SKPYG------------------PFVQYLGTL------------ERRL  
Apis m.        PHLEEFDWQKPFYPGYYPTMTYSNGLPFPQRPIWSNFPIYKYKYIREIMNK------------ESRI  
Tenebrio m.    GEIEYFNYEVPFQTGYYPSLQYSNGLPFPTRPNYANLYEYFYNYGQRYGNNRYAYSYTRVQDYERRI  
Galleria m.    GEIPELGLNEVEEG-YVSGLLYHNGIPYPVRPNHLVLNHQTWHAEAIEEIEVY----------ENRI 
  
Locusta m.     WEAIDSGFVFDKEFKKYSLRDPLSIEIFGRIVEGNADSINKDYYGSFYNGLLKYLGHGDLFIKNVHE  
Apis m.        SAAIDSGYILNNDGKWHNIYSEKGLNILGNIIEGNADSYNTEFYGSIDTLARKILGY-NLEAASKYQ  
Tenebrio m.    RDAIDRGYVYSPDGQRVNLNSQEGLNVLGNLFESNPDSPNTQYYGALQVYACHLLGY-SYQPLYKYQ  
Galleria m.    RDMIDQGFYITNTGEHVSINSPDSIDVLGRLIEANVDSPNVQYYKDFISIWKKVLGNSLVHESVAFN  
 
Locusta m.     ----EEPSELDRPASTFRSPVYYKIVKRISVILDQFKNHLGPYTQKELALPGVEVKSLTVDKLVTYF  
Apis m.        ----IVPSALEIFSTSMKDPAFYRIYKRIIDYYHSYKMHQKPYNKDEIIYPNLKIESFTVDKLITYF  
Tenebrio m.    ----IVPSALEQYETSLRDPAFYQFYKRVLLYFQQYQSNLPAYTPEDLSFQGVQVTNVEFNRLVTYF  
Galleria m.    GIPLVVPSVLEQYQTALRDPAYYMIMKRVLKLFNLWHEHLPHYTTKELSVPSVKIEKVEVDKLLTYF 
                   
Locusta m.     EDYDFELNNAIPVAS-IEQAKK--LNVVARVPRLTHKPFNYHVKVTSDKDIDVFVRFFVGPRYDVYG  
Apis m.        EQFDTTINNGLLLEEQRNDDKP--FLIKIRQYRLNHKPFNFHITINADKPMKAAIRIFIGPKYDSHH  
Tenebrio m.    DYFYSDLCNAVYVTPEEYDSDR--VQVRARQYRLNHKAFTYKIYVKSNEEQQASVWIYIGPEYDEYG  
Galleria m.    EYTNFNVTNHLHLNEIECNNVINTKSVLVQRTRLNHKVFTVRVNVKSGVAKHVTVRFFLAPKYDSVG 
                   
Locusta m.     KELSLNEKRHNFVYIDSFVYKLKQGENELVRNSKDFNYYGQLPLSFGKLYQATEAALVGDAQPYIDD 
Apis m.        KLIEIPEDLKYFYEIDNWMLDLNSGLNKITRNSLDCFFTMNDLEPSEIFYEKIETSLNSDKPFTYNE 
Tenebrio m.    RYINISQNRQNFVQFDHFRYSLYSGENVFERNSRQNYFYQNDRTSYRELYQRVLGALYGNGQFSVEA 
Galleria m.    NEIPLNVNTQNFLLIDIFNYELKEGDNLITRVSSDNLLVTDEIDSASVLFNKVDSALQGHGQYMLNM 
                     
Locusta m.     FVHKYGDIERLALPRGTRSGLPLSTFVIIT---PFTHKTISR-SNPYTDDVGS------KVSF-FPF 
Apis m.        RIFGFP--GRLLLPRGKKEGMPFQLFLYVS---PVSSEYNQYNSRIWGGYKFD------KRSFGFPL  
Tenebrio m.    NEAYFGFPRRFLLPKGTYGGYDYQFYVFVSPYVPYQGQQQVDTSKYYYPRVGSGAQYIDNYPLGYPF  
Galleria m.    KQNILKTPRHLLLPKGRVGGMPFVLMVYIS---EYHAPNDVHRGTVETSTIDN-TIRLTSDTLGFPV  
 
Locusta m.     DRPINELDFY--VPNVHFGEAVVLHRNADEVAAP-----  
Apis m.        DKPLYDFNYE--GPNMLFKDILIYHKDEFDMNITY----  
Tenebrio m.    NRPIYYEQVYNNIPNAYVYNAKIYHRDVEDINASNSVRE  
Galleria m.    DRPLFPWMLTG-VENIFLQDVQIYH--------------                     

Figure 6. Multiple amino acid sequence alignment of hexamerins from Locusta migratoria (Locusta
m.), Apis mellifera (Apis m.), Tenebrio molitor (Tenebrio m.) and Galleria mellonella (Galleria m.). Identical
amino acids are displayed in white letters highlighted in blue, homologous amino acids are displayed
in black letters highlighted in cyan, and putative N-glycosylation sites are highlighted in red.
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Figure 7. Superposition of the ribbon diagrams of hexamerin from Apis mellifera (red), Galleria
mellonella (blue), Locusta migratoria (green), and Tenebrio molitor (purple).

As previously reported, other less specific potential allergens such as apolipophorin
III and larval cuticle protein, exhibit rather well conserved amino acid sequences but share
a highly conserved three-dimensional structure. As an example, the multiple alignment of
amino acid sequences of apolipophorin III from different edible insects shows a moderate
degree of identity and similarity (Figure 8), even though their three-dimensional structures
are nicely superposed (Figure 9).
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In addition, it is noteworthy that different isoforms often exist for the specific allergens
indentified in Bombyx mori, Locusta migratoria and Tenebrio molitor, as shown from the corre-
sponding genome assemblies available for the three edible insects (Table 4). Depending on
the potential allergens, the number of identified isoforms shows important variations. In
this respect, proteins involved in recognition function towards environmental factors such
as chemosensory proteins and odorant binding proteins, exhibit the higher diversity. This
extreme diversity of both groups of chemosensory proteins and odorant binding proteins
in insects, has been known for a long time.

Table 4. Number of specific protein isoforms identified in Bombyx mori, Locusta migratoria, and
Tenebrio molitor, from the genome assemblies available at the NCBI database.

Protein: Bombyx mori Locusta migratoria Tenebrio molitor

Chemosensory protein 16 28 12
Odorant binding protein 23 26 19

Hexamerin 0 7 2
Apolipophorin III 3 6 1

Larval culticle protein 9 3 10

Moreover, a bioinformatics identification of the potential cleavage sites for pepsin and
trypsin on the molecular surface of chemosensory proteins, odorant binding proteins, and
apolipophorin III, suggests the occurrence of a great number of exposed cleavage sites to
trypsin and chymotrypsin, compared to the reduced number of cleavage sites accessible
to pepsin (Figure 10). Accordingly, these insect protein allergens are suspected to exhibit
an enhanced resistance to the proteolytic attack by pepsin and other aspartic proteases,
whereas they should be further degraded at alcaline pH, in the presence of trypsin and
trypsin-like proteases.
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Figure 10. (A–F). Distribution of potential cleavage sites for pepsin (magenta) and trypsin (blue)
on the molecular surface of chemosensory protein from Apis mellifera (A,B), Locusta migratoria (C,D)
and Tenebrio molitor (E,F). (G–L). Distribution of potential cleavage sites for pepsin (magenta) and
trypsin (blue) on the molecular surface of odorant binding protein from Bombyx mori (G,H), Locusta
migratoria (I,J) and Tenebrio molitor (K,L). (M–R). Distribution of potential cleavage sites for pepsin
(magenta) and trypsin (blue) on the molecular surface of apolipophorin III from Acheta domesticus
(M,N), Bombyx mori (O,P) and Tenebrio molitor (Q,R).

4. Discussion

Using an appropriate combination of SDS-PAGE and nano-LC-MS/MS proteomic
analyses of proteins extracts from various insect species including the crickets Acheta do-
mesticus and Locus migratoria (Orthoptera), the silkworm Bombyx mori (Hymenoptera), and
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the mealworms Rhynchophorus ferrugineus, Tenebrio molitor and Zophobas morio (Coleoptera),
we have revealed the great variety of proteins occurring in insect extracts. Depending on
the insect species, the number of identified proteins may vary considerably, from up to
314 distinct proteins for the Bombyx mori extract to only 42 proteins for the Rhynchopho-
rus ferrugineus extract. These discrepancies observed in (2) the very limited availability
of genome sequencing data for edible insects and, (3) possible variations in the protein
content and isoform diversity among different insect species. In this respect, the more
complete protein data were obtained for the well known insects Bombyx mori (161 distinct
proteins identified), Locusta migratoria (73 distinct proteins identified) and Tenebrio molitor
(106 distinct proteins identified), for which the genome sequencing data are available.

Insect allergens responsible for either contact allergies or food allergies, have been
reviewed in detail by de Gier & Verhoeckx [31]. By reference to this review, it appears that
most of the potential edible insect allergens consist of pan-allergens widely distributed in
other arthropods, acari, chelicerates (spiders) and crustaceans, mollusks and nematods. As
such, they are far from being usable as probes to detect the occurrence of insect flour in
food products, due to the lack of specificity. Hopefully, a few insect allergens have been
characterized as rather specific for (edible) insects since they primarily occur in insects
and are much less abundant or lacking in other organisms phylogenetically-related to
insects. These specific insect allergens essentially correspond to proteins dedicated to the
recognition of environmental chemical signals, such as the chemosensory proteins and the
odorant- or pheromone-binding proteins [73], Bla g 3 from the German cockroach (Blattella
germanica) [74], and Per a 3 from the American cockroach (Periplaneta americana) [75],
hexamerin from the edible cricket Gryllus bimaculatus [76], hexamerin from the maggot fly
Caliphora erythrocephala [77], hexamerin from the fruit fly Drosophila melanogaster [78], and
hexamerin from the yellow mealworm Tenebrio molitor [79]. Except for CSP and OBP, which
usually are poorly glycosylated, other specific allergens of insects contain N-glycosylation
sites and apparently consist of glycosylated proteins. Due to the different N-glycosylation
pathways and linkage of sugar units in the insect oligosaccharides, compared to that
occurring in human glycans [80,81], specific allergens from insects should act as non self
CDD, responsible for some non specific immunologic-reactivity.

In spite of sharing poorly conserved amino acid sequences, all these allergens exhibit
extremely well conserved three-dimensional structures. Accordingly, all these proteins are
sufficiently closely-related to display an IgE-binding cross-reactivity allowing their use as
specific probes for insects. Additionally, most of the identified insect specific allergens are
built from a tightly packed structural fold, strengthened by disulfide bonds, that should
enhance their resistance to heat denaturation susceptible to occur during the transformation
processes of insect flour-containing food products. Join to their predicted resistance to acidic
proteases susceptible to occur in foods and food products, all these features favor their use
as particularly stable specific probes for the detection of insect flour in food products. In
this respect, both processing and in vitro digestion of three mealworm species including
Tenebrio molitor, Zophobas atratus, and Alphitobius diaperinus, and Gryllus bimaculatus, was
reported to readily influenced their allergenic cross-reactivity [82–84].

With the exception of the receptor for activated protein kinase, other proteins have
been previously identified as IgE-binding allergens, and could therefore be used as specific
immuno-probes for the detection of added insects or insect flours to food products, in
complement to other detection methods such as the genomic detection of insect proteins
using polymerase chain reactions (PCR) [45] or DNA barcoding authentication [85]. Re-
cently, functional biological bioassays based on tropomyosin as immuno-probes, have been
proposed to assess the tropomyosin allergenicity of novel animal foods [86]. However,
even though its allergenic character has been demonstrated [87], the cockroach-like aller-
gen protein, which is apparently restricted to the yellow mealworm, could not serve as a
relevant immuno-probe for the detection of insect proteins.

Moreover, beside the safety aspect associated to the consumption of edible insect and
insect products, other important aspect dealing with the use of edible insects as food and
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feed, and as a protein ingredient added to improve the nutritional balance of various food
products, should be considered [88,89]. Especially, the ecological and legislation aspects
deserve to be discussed. Facing the increasing demand for animal proteins, edible insects
and insect proteins were seen early on as a sustainable source of proteins whose production
was susceptible to cause less negative impact on the environment, compared to other
sources of animal proteins, e.g., the conventional forms of livestock [90,91]. Compared
to the conventional sources of animal proteins, the production of insect proteins at an
industrial scale, requires less energy use, releases less greenhouse gas and uses less surface
area. However, while the industrial-scale production and processing of microbially- and
parasitically-safe insect proteins is apparently assured, their production at a reasonable
price remains a current challenge in comparison to meat or plant proteins [92,93]. In addi-
tion, outside of countries where entomophagy is traditionally developed, the reluctancy to
consume edible insect often observed in other countries, especially in european countries
and in USA, could be an obstacle to the development of the industrial farming of edible
and insect-containg food products [94–97].

As part of the safety assessment of novel foods, two scientific opinions have been
recently published by EFSA (European Food Safety Authority) on the “risk profile of insects
as food and feed” [98], and on the “safety of dried yellow mealworm (Tenebrio molitor larva)
as a novel food pursuant to Regulation (EU) 2015/2283” [99]. Both opinions, intended to
help europeans politicians to put in place a regulation for the authorization of edible insects
on the european market, mention the allergenic risk associated to the consumption of edible
insects for allergic people. They point out the risk of reactions to either insect-specific
allergens, allergens cross-reacting with other arthropods, or contaminant allergens from
insect feeding such as gluten.

5. Conclusions

Potential IgE-binding allergens identified in edible insects, correspond essentially
to pan-allergens developing some IgE-binding cross-reactivity with other homologous
proteins present in other arthropods (acari, crustaceans), mollusks and nematods. Owing
to this lack of specificity, they are not suitable for being used as relevant probes for the
specific detection of insect flours, added as ingredients to different food products. However,
a few other proteins occurring in insect protein extracts, emerge as specific allergens essen-
tially distributed in insects whilst they are much less abundant or even lacking, in other
phyllogenetically-related organisms such as acari, crustaceans, molluks and nematods.

These specific insect allergens include chemosensory proteins (CSP), odorant or
pheromone- binding proteins (OBP), and hexamerin, the main storage protein of insect fat
bodies. Three other proteins, apolipophorin III, the larval cuticle protein, and the receptor
for activated protein kinase, could be used as specific probes since they are preferentially
distributed in insects and, to a much more lesser extent, in crustaceans and nematods. The
cockroach allergen-like protein is apart, because it only occurs in the yellow mealworm
(Tenebrio molitor).

With the exception of the receptor for activated protein kinase, other proteins have
been previously identified as IgE-binding allergens, and could therefore be used as specific
immuno-probes for the detection of added insects or insect flours to food products, in
complement to other detection methods such as the genomic detection of insect proteins
using polymerase chain reactions (PCR) or the DNA barcoding authentication.
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