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Energy management or supervisory control of Hybrid Electric Vehicles (HEV) has been the subject of a large amount of scientific effort in the last years. This paper presents a real time energy management algorithm based on fuzzy rules controller. This strategy has been improved applying a specified method of fuzzy rules switching. This method takes into account the evolution of the state of charge of the storage element at any time; in addition it carries the fuel cell to operate at its best efficiency point. It was verified, if the method of fuzzy switching is applied in real time on any unknown profile, the result is near-optimal.

INTRODUCTION

For several years the fluctuations in oil price and the misdeeds gases harmful to the environment have triggered some of the recent studies in transportation system. To meet the challenge of reducing further increased consumption and gas emissions, the automotive industry was first turned to electric vehicles that eliminate the combustion on board and thus do not produce any emissions. One way to fight against these emissions is to implement other kind of energy sources and new environmental friendly sources such as fuel cell (fuel cell produces electricity from hydrogen and oxygen without release of pollutants). Its use in the automotive sector is envisaged to solve these problems. A Fuel Cell Stack is usually associated with almost one storage element of electrical energy to drive an electric motor in a full hybrid electrical structure [START_REF] Garcia | Direct connection between a fuel cell and ultracapacitors[END_REF]. This secondary source of energy is composed of either batteries or super capacitors. Among the advantages of hybrid vehicle is that kinetic energy can be recovered and stored, such as might be used at a later date. The main problem still remaining is when using it to optimize the global system efficiency (thus increase autonomy).

This paper focuses the work on the energy management of the electric power of such Hybrid Electrical Vehicle (HEV). The overall objective is to satisfy a mission made with a power demand and in reducing as much as possible the hydrogen consumption with optimal splitting of power between the various sources, and respecting the constraints of each energy and power elements. There are two main strategies in order to define the distribution of power: 1. Offline strategy: If the trip (electrical power demand at sampled time) is known, it is possible to use offline strategies for global optimization. 2. Online strategy: If the trip is not known. The control strategies used are generally suboptimal [START_REF] Hankache | Real Time Fuzzy Energy Management of Fuel Cell and Ultracapacitor Powertrains[END_REF]).

In the framework, a first strategy of real time energy management working in frequency domain has been proposed. For this approach, the mission described by the power demand is divided into several frequency channels. Each channel bandwidth will be sent to a specific energy source to be followed by its own local controller. The second strategy is based on a system of fuzzy inference rules optimized through a genetic algorithm. The G.A. is used to optimize the choice of parameters of the fuzzy decision manager and to generate specific rules for each profile that blind the input variables to the output variable [START_REF] Neffati | Local versus global optimization in multi source energy management[END_REF]. The original method proposed, is based on the fuzzy switching of the fuzzy rules. This strategy is able to be applied to any unknown profile and deliver a near optimal consumption whatever the demand is.

In this paper, section 2 presents a characterization of the profiles to be used and a study on indicators to be applied. Section 3 presents an energy management strategy that relies on frequency management techniques. The management strategy presented in Section 4 is based on a system of fuzzy inference rules optimized through a genetic algorithm; these rules will be included in a failover process in Section 5. Once the optimal rules are identified, an original method of switching fuzzy for the fuzzy rules will be applied in real time.

STUDIES OF THE PROFILES

A trip is the act of going from point A to point B with a certain vehicle. It can be characterized by specific data such as speed, torque ... The driver works on the accelerator pedal and brakes to reach his set point speed. The speed evolution depends mainly on the environment in which the HEV evolves (highway, road and traffic in urban environment). A mission is reflected, in the cases treated in this paper, by an electrical power demand on the DC electric bus, and the main objective is to ensure the power demand as often as possible while minimizing the consumption of hydrogen and respecting the energy constraints imposed by the given size of each sources. Thus, three different missions are chosen:

-An Urban mission: characterized by low power requirements and a succession of repeated accelerations and decelerations.

-A Road mission (between urban and highway cycle): it concatenates a series of transient and quasi-permanent patterns.

-A Highway mission: characterized by high power demand.

Initially, the characteristics of each mission are analyzed with the aim of extracting signatures or indicators to rank the profiles according to their type. In this way, frequency methods have been applied such as: power distribution, study of slope (instantaneous power demand variation ∆Pdem/∆t), Fourier transform, autocorrelation, total harmonic distortion, etc. It is necessary to note that the best indicator is the one that helps to select accurately the type of mission profile studied in a short time. In fig1, the entire profile is analyzed and the iteration of power magnitude is presented. These results show the difficulty to separate one profile from another one. In real time, if this indicator is used with partial data, the discrimination is impossible. The proposed methods of profile analysis are primarily only a tool for characterization of profiles according to their natures, especially in the 3 cases: Urban, Roads and Highways. However, an interval less than 50 seconds is often insufficient to satisfy the constraints imposed for the load characterization. The challenge launched, is to find tools that will characterize the decision to choose a correct law commands that fits into a process of energy management in real time.

FREQUENCY MANAGEMENT

The objective of this part is to move towards implementation of management strategies that relies on frequency management techniques. A splitting of mission power in several frequency channels is required [START_REF] Jaafar | Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators[END_REF]. Each channel bandwidth will be sent to a specific energy source to be treated. The system has two energy sources and the irreversible Fuel Cell Stack (FCS) is responsible for positive powers which are characterized by low-frequency signals, for against, the Storage Element (SE) supports the positive powers characterized by high-frequency signals on the one hand, and storage of negative powers "brake" on the other.

To overcome this problem, many frequency management devices have been proposed, such as applying a low pass filter and digital smoothing by applying a sliding window directly related to the classification of sources in the representation of Ragone, Power=f(Energy).

The method discussed in this part is how to tune optimally the low-pass filtering? The low-frequency positive signals will be sent to FCS and the high frequency signals of positive powers and the negative powers will be sent to SE.

The cutoff frequency of the low pass filter was chosen via a genetic algorithm that is to vary at each generation the cutoff frequency by checking the constraints imposed on the maximum and minimum state of charge of SE, to identify the best cutoff frequencies. In fact, that reveals at each profile corresponds a given optimal cutoff frequency to obtain good performance in terms of respect of these constraints and minimizing the hydrogen consumption on the overall profile. Moreover, the principle of filtering structure is impacting and is shown in the following arrangement Fig. 2, Fig. 4. In the first assembly two blocks can be distinguished, the first block is the low pass filter, the second block rejects the negative signals to the storage element (For_ES), it used to divide the positive powers in two frequency channels. The evolution of the state of charge (SOC), for the urban profile and results are given hereafter in Fig. 3. The initial state of charge of the storage element is equal to SOCinit = 900 kWs, whose evolution or variation is limited by two terminals (SOCMin = 400 kWs and SOCMax = 1600 kWs). Table1, noticed the total consumption (Conso), sum of power demand not satisfied (MSE), and the difference from the final state of charge compared to the initial = ∆soc. So if ∆soc = 700 kWs or -500 kWs, means that, the storage element is in the limits in over charge max or in total discharge at the end of the profile. In the 3 cases the SE is around the maximum load limit for the three studied profiles. This observation leads us to prove the presence of Power errors that are important to both profiles, then, the power demanded is not always satisfied. These results lead to conclude that it is not possible to tune the filter optimized on the global consumption since the energy constraints were not met. To solve this problem and improve the results, a second assembly Fig. 4 is proposed. It is the same as the first filter, except that swapped the positions of the two blocks. The results obtained by applying the second filter assembly are given in Fig. 5. NB: with AG optimization to define the cutoff frequency always specific for each profile. It clearly appears a significant improvement in terms of consumption, as well the evolution on the SOC in this case has not reached the limits of maximum and minimum along the power management of the three profiles on one hand and a small variation of the energy state ∆soc on the other. To be also noticed, a zero energy errors for the three profiles have been met, since the constraints of the limits of the state of charge are also respected.

To illustrate the effect of the permutation of the two filtering blocks, it is interesting to see the influence of the proposed structure on the power sent to the fuel cell "For_FC" presented in Fig. 6 and Fig. 7. The permutation of blocks allowed the filtering system to cancel numerous points at low power operation that are characterized by low efficiency of FCS and thus higher consumption. From this analysis, the second assembly is better than the first one. But as previously mentioned, the Genetic Algorithm running off line provides a unique cutoff frequency, which should be different for each profile and is not a solution for an unknown power demand.

MANAGEMENT STRATEGY BASED ON FUZZY RULES

The energy management strategy online is based now on a fuzzy logic system [START_REF] Tekin | Energy management strategy for embedded fuel cell system using fuzzy logic[END_REF][START_REF] Hankache | Real Time Fuzzy Energy Management of Fuel Cell and Ultracapacitor Powertrains[END_REF], the fuzzy rules are used to identify the instantaneous power output to be supplied by FCS using two input variables, especially the state of charge (SOC) and the power demand (Pdem). The fuzzy inference system is characterized by rules that are already raised offline by a genetic algorithm. The genetic algorithm is also used to optimize the choice of parameters of fuzzy controller and generate these specific rules for each profile that blind variables input to the output variable. It is clear that this phase requires prior knowledge of the journey offline, [START_REF] Neffati | Local versus global optimization in multi source energy management[END_REF][START_REF] Caux | Online fuzzy energy management for hybrid fuel cell systems[END_REF]). Once identified optimal rules, the fuzzy decision controller should be used in the management of energy without prior knowledge of the journey. It obviously can be seen in the results summarized in Table 3, when applying a rule on the profile which it was optimized, better results are obtained (bold values), and if another rule is applied the consumption degrades. In the case of an unknown profile (caller hereafter "Profile 4"), switching is expected depending on the profile, and decisions must be made in real time. In this context, a method is proposed for optimal switching that involves manipulating the fuzzy rules according to the required power via a segmentation method, for more details for this method see Neffati 2011. In order to develop a method for real-time optimization, a method of switching fuzzy rules is proposed, this method is an appropriate choice with an option for choosing the optimal rule to be used in the algorithm for optimal power management.

Switching

Segmentation

FUZZY SWITCHING IN REAL TIME

The second fuzzy system for fuzzy decision adopted in this case, is used to characterize real-time power demand, and therefor to identify the best fuzzy rule to use for the power demand even if unknown. The switching rules programmed uses the average power as an indicator, then it treats the average power of segments to give each segment an index, this index will enable later in the decision algorithm to choose the optimal rule to use among the existing 3 fuzzy rules (Fig. 10). The question now is: how to switch from 3 rules in real time! The fuzzy switching (fuzzy type-2 principle) allows letting fuzzy the choice. The switching fuzzy system, implemented uses two input variables that are: the power demand in real time at the moment i, and a memory factor which contains the average of three previous power demand. The output variable of the system is the best decision of the fuzzy rule "Rule 1, Rule 2, Rule 3" to apply for this power demand. To improve the fuzzy inference system, it requires an adjustment phase and improvement of its parameters. For this purpose, the genetic algorithm is again used to optimize the choice of parameters of fuzzy controller switching to finally obtain the complete scheme Fig. 11. Table4, shows the values obtained by applying the optimal rule for each profile and the method of Fuzzy Switching of Fuzzy Rules (FSFR).

From these results it can be seen that switching fuzzy of fuzzy rules does not really change the optimal consumption, the solution is quite close to the optimum for the three profiles. Numerous switching are noticed on the different profile and of course fuzzy switching is better than applying the non-optimal rule. It means the fuzzy controller is able to dynamically switch between the rules and achieve better energy consumption with a zero error on Pdem. To improve these results the Dynamic Programming is used as the best programming solution to reach offline the optimal consumption used as a criterion with included constraints. It would be wise to remember that the Dynamic Programming (DP) is calibrated in such a way that respects the constraints of equality P dem =P FC +P SE (null errors energy including the recovery of all braking energy) and maintaining the state of charge in its limits.

This programming suffers from high data volume and the accuracy depends on the sampling requested in time and energy to limit computing time. Moreover, the algorithm can sometimes be in critical situations meanly because it is required to maintain the final state of charge (equal to the initial in this case), as a results, the FCS will operate in points that are characterized by low efficiency in order to respect these constraints. The SOC evolution is shown in Fig. 12. To establish a base for comparison between the different energy management methods, it is interesting to bring the final state of charge to its initial value in each case. So, an additional cost of recharging is added in the method of fuzzy switching if at the end ∆soc<0 (to be noticed this end charging uses the FCS at its best efficiency point). The results obtained Table5, show that the fuzzy rules respect the constraints, but in a flexible manner, that means the originality of a FSFR is to provide a better consumption, within the limits of charge so to bring the FCS to work in points that are characterized by better efficiency while remaining within the limits, and have not energy errors. The FSFR allows during the profile to not recover energy braking avoiding in this way low fuel cell efficiency even if the storage element is empty at the end, reload it after the journey is more efficient. To demonstrate the behavior of the fuel cell, the following graphs Fig. 13, Fig. 14, present the distribution of operating points of the FC System performance efficiency both used on the power demand type "road profile". The results are very significant, it is clear that 40% of the points which are characterized by low efficiency by applying Dynamic Programming have been cancelled by the application of the FSFR method, this allows to define this method leads to use the fuel cell with points at better efficiency.

FUZZY SWITCHING IN REAL TIME ON UNKNOWN PROFILE

With the aim to validate the robustness of the management strategy based on fuzzy rules and fuzzy switching, the method FSFR in real time is tested on a fourth unknown profile ('profile4') that is characterized by a mixture of the three profiles: Urban area, Road area and Highway area. For comparison purpose, an optimal fuzzy rule was generated specifically for this profile using the genetic algorithm. The latter was introduced into the optimization algorithm to be the reference for the management strategy to demonstrate full implementation of the fuzzy switching. It is interesting to apply the different rules that have been optimized on the fourth unknown profile to have basis for comparison. The following Table6 shows the results obtained. The results obtained by applying the rules 1, 2 and 3 on 'profile 4', are worst from the optimal rule which is quite obvious. On consumption, the method of fuzzy switching is very close to the optimum (12032 kWs vs 12010 kWs), that means the FSFR management is able to switch the rules in real time in a fuzzy manner and achieve the best consumption in real time without energy error.

From a different point of view, the distribution of operating points of the fuel cell is shown in Fig. 15. It can be seen that switching fuzzy bring the robustness required retaining its performance when tested on a fourth unknown profile. Indeed, the optimal rule provides a concentration of the operating points of the FC Stack with better efficiency. Against the FSFR split the operating point around the best performance converging to optimal consumption and let energy within the constraints imposed. 

CONCLUSION

This paper has been devoted to energy management of a Hybrid Electric Vehicle. the problem solved is how to split instantaneously the electric power required through the two energy sources optimizing in real time the global consumption of hydrogen on an unknown mission profile. Energy Management Strategy in real time based on fuzzy rules was applied. This method has been improved by the method of segmentation and switching, in addition, switching between rules is added. The EMS based on Fuzzy Switching of Fuzzy Rules (FSFR) has been improved on different profile. This method takes into account the evolution of the SOC of the Storage Element at each time, in addition it carries the fuel cell to operate at its best efficiency point. The results show that if the method of fuzzy switching is applied in real time blur any unknown profile, it will be near-optimal results. Such controller is not time consuming and an experimental phase is started on an actual HEV.
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 67 Fig. 6. Comparison of the power demand and power sent to the Fuel Cell by applying the filter A « Road profile ».
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  Fig. 10. Fuzzy switching fuzzy rule.
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 12 Fig. 12. Storage element SOC along the road profile applying DP with sampled energy ∆E = 1kW et sampled at ∆T = 1s.
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 13 Fig. 13. Distribution of operating points of efficiency fuel cell by applying Dynamic Programming on « Road profile ».

  Fig. 14. Distribution of operating points of efficiency fuel cell by applying Fuzzy Switching of Fuzzy Rules on « Road profile ».

  Fig. 15. Distribution of operating points of efficiency fuel cell by applying optimal rule on profile4.

  Fig. 16. Distribution of operating points of efficiency fuel cell by applying FSFR on « Unknown profile4 ».

Table 1 :

 1 Obtained results applying first filter's structure

	Profile	Conso (kWs)	MSE (kWs)	∆soc (kWs)
	Urban	8495	0	638
	Road	15329	4.7	700
	Highway	22762	4.4	700

Table 2 :

 2 Obtained results applying second filter

	Profile	Conso (kWs)	MSE (kWs)	∆soc (kWs)
	Urban	5778	0	0
	Road	12534	0	1
	Highway	20610	0	99

Table 3 :

 3 Consumption using one optimized rules.

	Fuzzy rules	Urban	Road	H.way
	«Rule 1 » kWs	3390	11311	19819
	«Rule 2 » kWs	3457	11020	19921
	«Rule 3 » kWs	3490	11469	19660

Table 4 :

 4 Comparison of consumption using: one optimized rule or three fuzzy switched rules.

	Method	Urban Road H.way
	Optimal rule	Cons (kWs) 3390 11020 19660 MSE (kWs) 0 0 0
	FSFR	Cons (kWs) 3390 11030 19732 MSE (kWs) 0 0 0

Table 5 :

 5 Comparison of global consumption using: the strategy for Fuzzy Fwitching of Fuzzy Rules and the optimal result obtained with Dynamic Programming approach.

	Profile	Urban	Road	H. way
	Cost (kWs)	3390	11030	19732
	∆soc (kWs)	-421	-191	-53
	FSFR cost (kWs)	4531	11535	19863
	DP cost (kWs)	5986	12667	20099

Table 6 .

 6 Consumption of the unknown profile.

	Method	Optimal rule	Rule 1	Rule 2	Rule 3	FSFR
	Cons kWs	12010	12150 12047 12326 12032
	MSE kWs	0	0	0	0	0