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INTRODUCTION

In electrical actuator field, new designed devices have often extended range of use compare to previous ones meaning a large velocity and different loads to control. It results that control definition is frequently shifted from a linear one to a control with an uncertain model which has to keep the same performance. In the case of the speed control of electrical motioned systems, the conventional first order for the mechanical system is now out of date. It is replaced by a two-mass one as used in [START_REF] Peter | Robust state-feedback h∞ control of a nonlinear two-mass system[END_REF], [START_REF] Szabat | Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptative kalman filter[END_REF], Carrière et al. [2010a] which provides a flexible effect in the power transmission. Obviously, its mechanical parameters have to vary. Moreover, for cost and reliability purpose, the recent controls lay on few sensor. Indeed, most of the mechanical sensors have been prohibited by the industrialist, specially the speed sensor. Consequently, the standard methods do not match with this new problem and some solutions have been created these last years improving either the controllers and the observers. Firstly, a disturbance observer is added to the control scheme. It balances the torque input deviation to follow the nominal behavior. Nevertheless, the model bound to this observer stays simple as used in [START_REF] Choi | Precise position control using a pmsm with a disturbance observer containing a system parameter compensator[END_REF] and is convenient for inertia variation or external load torque. But large stiffness variation can lead to unstability. An other drawback is the necessity of an accurate mechanical sensor. Secondly, these variations modify the system dynamics. Then, an idea has been to adapt the model to make it match with the reality at each time. Two methods have been implemented successfully in [START_REF] Szabat | Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptative kalman filter[END_REF], [START_REF] Feiler | Adaptative control of a two-mass system[END_REF]. These methods run algorithm to identify the most accurate as possible value of parameters and then to tune on line the controller or the observer. These methods use two different approaches, a stochastic one with the Extended Kalman Observer or an evaluation with the least mean square algorithm. These algorithms have to be tuned by a specialist to avoid quick variations which may destabilize the system as underlined in [START_REF] Szabat | Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptative kalman filter[END_REF]. Moreover, the order of the system is increased or control program is more complex and then need a more efficient hardware. Next, when the variation ranges are not too much important, a robust control or a control law with large stability margins can be used to keep a constant gain controller and no more sensor [START_REF] Peter | Robust state-feedback h∞ control of a nonlinear two-mass system[END_REF], [START_REF] Tondos | Proportionalintegral LQ control of a two-mass system[END_REF], [START_REF] Zirn | State control of servo drives with flexible structural components[END_REF]). Nevertheless, the way of tuning the controller has to be chosen carefully because a robust definition often provide a complex controller as in [START_REF] Peter | Robust state-feedback h∞ control of a nonlinear two-mass system[END_REF]. However, with a correct definition of variations, a simple algorithm, as in the two others can provide correct results with a simple and easy implementation.

Regardless to the wide choice of solutions, in case of a sensorless or multiple loop control, the dynamic of each loop follows the uncoupling principle to avoid interaction between the different loops. The two following examples are perfect examples : [START_REF] Zhang | Torsional vibration suppression control in the main drive system of rolling mill by state feedback speed controller based on extended state observer[END_REF], [START_REF] Lin | LEQG/LTR controller design with extended kalman filter for sensorless brushless DC driver[END_REF].

In the first one, a decade between the dynamics is imposed and in the second, the LTR/LQEG method rejects the observer dynamic as far as necessary to hide its effect on the system. In opposite, a new global philosophy in control or system design called "systemic" prefers optimizing in view of the global application otherwise to optimize each item alone. It also avoid bothering coupling effect which were not foreseen. In this case the choice of controller and observer degrees of freedom are made at the same time without uncoupling limitation. It results an extended space of solution which have to be tested.

The section 2 describes the load and the actuator's model linked to the experimental test bench. The control law implemented is then introduced in the section 3. The subsequent part explains the algorithm and the criterion defined to reach the global optimization objective. The section 5 shows some experimental results and comments this method which provides in this case some unpredictable but efficient tuning.

SYSTEM MODELING

Actuator characteristics

A Permanent Magnet Synchronous Motor (PMSM) is the most used drive in machine tool servos and in modern speed control applications due to its desirable capabilities (a compact structure, a high air-gap flux density, a high power density, a high blocked torque...). Added to the previous advantages, this 3-phase motor is similar to a DC motor for AC power supply. This fact allows to model it in a (d,q) rotating reference frame. This frame rotates at the rotor's speed and via the Park transformation, the current control shifts from a sinus tracking problem to a constant regulation consideration. The controller is then simplified and lets the bandwidth requirement less stressed. The 2.5 kW motor is powered by a three-phase reversible inverter switching at 15 kHz. The influence of inverter in such control is commonly neglected if an accurate current control so a torque control is effective (described in Carrière et al. [2010a]) to contribute to the accurate velocity on the load side. The current bandwidth is 628rd.s -1 and the motor position is measured with a 12 bits accuracy resolver.

Mechanical specifications

Considering that the electrical parameters are constant and the PWM inverter in current control mode, the torque is thus correctly applied on the rotor. The driven mechanical load, as explained in introduction, is here not only composed with the inertia and the friction but also includes a flexible transmission joint. Indeed, a spring can be inserted between the motor and the load as shown in Fig. 1. So, two first order systems (inertia and viscous friction) respectively subscripted by l and m for the load and the motor elements are connected through the spring. The load inertia and the spring stiffness can vary respectively by a factor of 2.5 and 26.6 (see Table . 1). A load disturbance torque, created by a powder brake, can also be applied. It represents the load non linear torque (dry friction...). The system is then modeled by a third order state space equation 1 where : T m is the applied motor torque, J m , f m and J l , f l are the inertia and the friction of respectively the motor and the load side and K T represents the stiffness of the axis and joint. In conclusion, three state variables belong to the system, the motor and the load speed (ω m and ω l ) and the position difference 

(∆θ = θ l -θ m ). X = [ω m ω l ∆θ] T Ẋ =      - f m J m 0 - K T J m 0 - f l J l K T J l 1 -1 0      A X +    1 J m 0 0    B T m (1)
motor(Xm) load(X l ) Torque T (N m) 16 7 Inertia J(kg • m 2 ) 2.6 • 10 -3 [19.2; 50.9] • 10 -3 Friction f (N m • s • rd -1 ) 2.7 • 10 -3 5.4 • 10 -3 Stiffness K T (N m • rd -1 ) [75; 2000]
All the parameters have been chosen to describe the test bench behavior presented in Fig. 1 and are listed in Table . 1. The three phase motor is powered by an inverter driven in current mode and produces a torque proportional to this current magnitude. The stiffness and inertia variation are created by replacing the spring and taking down the wheels. Four different stiffness and three different inertias are available to conduce experiments, from a flexible to a rigid {K T min , K T max } and from an empty to a full weighted system {J lmin , J lmax }. Note that the flexible stiffness created by the spring are nonlinear. Whereas the simulation behaviours are similar to experiment ones, some fast stiffness variations make the further presented observer being unstable if not taken into account into stability analysis. These variations rate by 3 or 4 the stiffness and are due to a non-alignement of the two-axis, imperfection of concentricity of the spring and difference inside the material properties for compressing or expending torsion The following sections describe the control laws implemented on the system and their performances including stiffness or inertia variations.

GLOBAL CONTROL LAW

For a modern motion control, the load speed sensor is removed and let only the motor position sensor to perform the speed control. In fact, an observer has to be added to the controller to achieve the speed control. Furthermore, the load speed is the one to control and it imposes to rebuilt all the variables thus, to have a full order observer. Then, a state feedback does not increase the number of sensor or the observer complexity. Finally, the control scheme is presented on Fig.

2

X c = [ω m ω l ∆θ x i ] T Ẋc = A 0 (0 -1 0) 0 X c + B 0 T m (2)
This study lays on previous works and uses the controller and the observer designed respectively in Carrière et al. [2010a,b]. Focus is first made on the controller. It is a state space controller using a Linear Quadratic optimization with a dominant pole placement. Using only the third order model leads to a system with steady state error. An integrator x i on the load speed error Carrière et al. [2010a] is then added to the system (2) which is now a fourth order one and leads to a LQI controller. The LQ controller gains are computed by minimizing the criterion and used here.

J LQ = t 0 X ′ Q LQ X + R LQ T 2 m (3)
This method is able with a pole placement and the system model to choose the rating matrices R LQ on input and Q LQ required for the LQ gains calculation method. Consequently, the benefits of the LQ controller are mixed with thus of the pole placement : a good stability margin and a dynamic choice. To tune a controller, few steps are required :

1: Choose all the poles except one and make m(s). For this system, the two hight modulus complex poles stay unchanged. 2: Solve (4) to deduce the vector d. p 0 (s) is the open loop polynomial. 3: Choose R LQ = 1 and Q LQ = ρdd T . ρ is a parameter to grown progressively to reach the aimed dominant pole. 4: Then calculate the state feedback gains with a LQ solver as lqr() in Matlab c .

m(s p 0 (s) = d T (sI -A) -1 B (4)
The second control part is the observer. For convergence purpose as the controller, the state is augmented with one integrator T l matching the external nonlinear load torque. The evolution of this integrator is not linked with inputs or other state variables to allow the observer setting its value in compliance with the non linear effects of the test bench (7). Due to the controller definition (LQ) and the parameter variation, a continuous Kalman observer is implemented. Its stochastic approach manages the parameter variations as noises [START_REF] Szabat | Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptative kalman filter[END_REF]) and lays on a quadratic method to solve the observer gains which gives same stability performance as the controller. The problem of continuous Kalman observer as the LQ controller is to define the rating matrices R K on observer input and Q K on the vector state to achieve a highly capable observer and to minimize effectively the Kalman observer criterion (5).

J K = t 0 X ′ Q K X + R K ω 2 m (5)
As for the controller, the model to compute the Kalman observer gains is chosen constant because of no sensor or method to make it evolve. Consequently, the Kalman gains K and covariance P recursive equations reach quickly a steady state. Considering that these systems are operating during long period, it is possible to only program the steady state gains K (6) with the steady state covariance matrix P to minimize the on line computation time. Carrière et al. [2010b], a method using the model of the system variations is introduced to minimize the amount of tuning parameters. With this solution, The state space becomes (7) and the kalman criterion (8).

K = P * C * R -1 K (6) In
                       X o = [ω m ω l ∆θ T l ] T Ẋo (t) =      A    0 - 1 J l 0    0 0      X o (t) + B 0 T m (t) + B r w(t) y = (1 0 0 0) X o (t) + v(t) (7) 
J K = t 0 (B r X) ′ Q K B r X + R K ω 2 m (8)
A B r matrix is premultiplied to a white noise to give it a direction in compliance with the model variations. In this case the B r matrix is given by (9).

B r = A min -A max +      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x      (9) 
By taking extreme bounds of the parameter variations, a first rate is given between variables. However, some state variables, as the load torque here, are not linked with the parameter variations. So for these variables, a classical diagonal noise is added inside B r matrix. In this case, the diagonal noise is zero for all the variables, except for the nonlinear torque T l where a x degree of freedom is added on the fourth diagonal term. Finally, the state noise w(t) is a scalar noise. Then it lets only three parameters to define: the input noise R K , the state noise Q K and the parameter x for load torque inside the B r matrix.

For the global proposed approach, the controller gives one parameter to choose, the dominant pole. As a consequence, this pole plus the three previous parameters are considered as four degrees of freedom to be globally optimized. Finally for a global approach, the two methods provide two items with large stability margin and with few parameters to tune:

p dom : The dominant pole of the close loop only with the controller. R k : The scalar rating the observer input noise influence. x : The parameter scaling the influence of the load torque compare to the parameter variations. Q K : The scalar rating the state noise influence.

Lastly, this command is computed for a constant model defined on a nominal system which is for each case the slowest system for command, i.e. the maximal inertia and the minimal stiffness, and the fastest for observer, i.e. the minimal inertia and the minimal stiffness, to avoid any instability under the parameter variations. Now that the control is described, the items composing it have to be tuned. The way used in this work is detailed on the next section.

OPTIMIZATION

The command is tuned to have good performance in term of dynamic (time response, overshoot, deviation recovery...) but also to keep the stability under the parameter variations. The parameter to tune are not linked directly to this requirements and then lead to a tuning by trial and error. To save time and to not forget some interesting possibility, an evolutionnary algorithm as described in the reference manual [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF] is set up.

As most of optimization principle, this algorithm classifies items from the most competitive to the less interesting one by evaluating a criterion (detailed hereafter (10)). Each item has a vector of parameters : the coefficients listed previously representing the observer parameters (the output of algorithm) and a standard deviation per observer parameter in order to achieve the mutation. Then, the optimization algorithm needs the following steps to be effective :

Firstly, The parent creation allows the algorithm to start. The observer parameters and the linked standard deviations are randomly chosen inside the bounded space allowed by an uniform distribution.

Secondly, The children birth is operated with two calculations, the first is a recombination. Two parents are randomly chosen and each children parameter is inherited from one parent. The second operation is a mutation. The parameters used as standard deviation, mutate following a decreasing exponential law. The observer parameters mutate with a normal distribution using the standard deviations included in the set of parameters and with their own values as mean. In the evolutionary strategy, the mutation is the most important operation, because it allows, at the beginning to scan large part of the space due to the hight value of standard deviation and avoid local minima. Step by step, the standard deviations decrease to look for the value of the minimum in a smaller space.

Thirdly, the criterion is computed for each item. Of course, to avoid non implementable solution, a two steps procedure is employed. At the beginning, the stability of the closed loop system is performed by means of the µanalysis. If the system is unstable, a great value is assigned to the evaluation criterion thus stopping the evaluation of the item. Otherwise, a second step is executed to evaluate the criterion by time simulations of the system. This optimization procedure ensures that the designed system has the minimal output deviation for all the parameter varia- 3 (a is given by a system equipped with sensor and having the following set of parameter : Θ ref = (J lmax , f lmax , K T max ) and b is a step). To realize this, a set Θ representing all the extreme variations is defined. For all the members of Θ, the time response of the system is computed. Next, the criterion ( 10) is computed to evaluate the performance of the structure by summing all the error due to the variations.

f = n i=0 ( T end 0 (ω l (t, Θ ref ) -ω l (t, Θ i )) 2 dt+ + 2 T end T end -1 abs((T m (t, Θ ref ) -T m (t, Θ i ))) • t • dt) (10)
A close regards on criterion reveals that it consists of the sum of two terms. The first term is the integral of the squared error between the tested response and the reference one, this term is relevant when the error is high thus here for the transient time. Nevertheless, the algorithm takes high coefficients to minimize the transient deviation and this increases noise effects. Consequently, an integral time absolute error increases criterion depending on the torque ripple.

Finally, the algorithm is stopped when the criterion value is quite similar between two consecutive steps. Hence, all the responses have to be as closed as possible to the reference response without any rating between the bounds. The pursued purpose is to have an overall optimization and not only one optimized solution for a defined variation.

RESULTS

Two different optimizations have been computed, the first with a speed behavior corresponding to curve a from Fig. 3. Such a reference is linked to performance reachable with this motor considering its power, torque and sensors. The second is a speed step to have the best time response performance considering that the observer filters the sensor noises. 

Response with reference 1

A first look on Fig. 4 underlines the robustness of the speed response with almost same overshoot, time response and speed deviation on a load torque step whatever the parameters are. This feeling is confirmed by the numerical values of the performance of the table 2. On modified system with the minimal inertia or the maximal stiffness, during the transient, the load torque oscillates to modify the behavior. This variable helps the system to stay close to the nominal one by modifying the supplied motor torque. It is important to note that the algorithm does not match to the decoupling method: The dominant poles of the observer (-20 rd.s -1 ) and the controller (-9 rd.s -1 )are similar (×2). This effect allows the observer to modify the global system behavior and not only to observe. It let the system being more robust. As a consequence, the poles dynamic being similar, some oscillations appear mostly due to the complex part of the observer dominant pole and the mixed dynamic effect. The speed deviation is a little high because, on the criterion, the quadratic error is more impacted by the tracking error of the step which makes higher error through the reference and the response. As a consequence, the tracking problem is more important with this set of reference. Finally, after a look to the time response and the pole values mixed with the definition of the observer and the controller, the controller impacts more on time response and observer on robustness. It is logic because the controller is defined by a dominant pole and the observer by the modification of the system dy- 

Response with reference 2

On a second time, the system is not anymore limited by the speed sensor noises, the dynamic should increase according to the available power and torque. The speed reference for the criterion computation is now a simple step as depicted by curve b in Fig. 3. The inputs of the system (speed and load torque input) stay the same as the previous.

As expected, the system response shown on Fig. 5 and the measured performance written in the table 3 proved that the system reacts faster than previously to reach the steady state, almost 15% faster. As a consequence, the torque is saturated causing a larger overshoot. It is the standard trade-off between the time response and the overshoot which is visible here. However, the dynamic being increased, the regulation is better with a speed deviation less important. Nevertheless, the robustness is not decreased. The variation of variable stays into the same range as previous test. An effect is inflated with the increased dynamic and start to become impeding. The curves with the minimal stiffness have a response delay either for speed or load torque step longer than thus with the maximal stiffness due to the information on the load speed becoming indirect and then less reliable.

The poles are still coupled but this time, the observer is slower than the controller that is a surprising result. It is opposite to the standard and all the dynamic choices make until now for electrotechnical control. It underlines the speciality off the both items, the controller is more involved with the time response and the observer to the robustness.

It is deduced from their definition. However, the choice of each item can not be make separately from the other due to the coupling. It is visible on Fig. 5 where the time response is not directly linked with the controller dynamic (0.3 s instead of 0.125 s). Thus this coupling added to the load torque estimation modify largely the behavior of the system to reach at any time the same response. It is widely visible on the minimal inertia curve where after a fast rising speed, growing is suddenly stop to save the nominal behavior.

Focus a last time on the table 2 and the table 3 which compare performance of the both criterion references. The variation of time response and speed deviation stay close from one solution to the other (0.16 s and 0.1 s for the time response variation compare to a faster time response of 0.34 s). The time response is faster and the speed deviation is lower for the second case corresponding to the fastest dynamics of the controller. Nevertheless overshoot is higher. It is the traditional trade off between rapidity and precision. The last important fact is the evolution of the controller and the observer dynamics. Starting in the table 2 with a standard order, the controller is slower (9 rd.s -1 ) the the observer (-20 rd.s -1 ) but coupled (factor 2 between dynamic). The dynamics evolve in the table 3 to a controller faster (45 rd.s 1 ) than the observer which stays same. It is an unpredictable but efficient results. The dynamics order of the observer and the controller can inverse and have to be coupled to increase robustness. Despite this, each part have always a specified effect on the system. The observer deals with robustness and the controller deals with behavior. Nonetheless, the coupled dynamics impose to have a cross synthesis.

Finally, the cross-synthesis unlocks some pole choices traditionally avoided by the habits and the human perception which does not happen with a computed algorithm. The possibility of coupling or inverting the dynamic between the controller and the observer allows to increase the robustness on large variation range without having a complex robust definition or an adaptative control.

CONCLUSION

A global synthesis method is here described for parameter variant system. The both controller and observer are not mathematically robust but have large stability margins which allow a better robust behavior than a standard definition. The observer is based on a Kalman observer. It allows also to have noisy input. Then, the tuning parameters of the both observer and controller are prospected at the same time with an evolutionary algorithm without any uncoupling specification nor pole placement limitation.

The criterion insures the stability with a robust analysis and checks the performance with the deviations of the simulated load speed and the control input oscillation at steady state. It results that the cross-synthesis gives opposite results compare to what is usually done. The observer and the controller dynamics are coupled to modify system behavior when a parameter variation arises and become inverted when the dynamic specifications increase. Nevertheless, the definition of each item gives them preferences.

The observer stays more involved on the robustness while the controller defines time response. An other conclusion is the abilities of the cross synthesis to keep performances with constant gain controller and observer on large parameter variation range.
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 3 Fig. 3. Reference and test input for criterion computation
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Fig. 5 .

 5 Fig. 5. Experimental results with step reference namic matrix. The performances obtained are supported by both the controller and the observer cross tuning.

Table 1 .

 1 Test bench parameters

	Parameter
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  LQ and Q LQ are respectively rating matrices for input and state variables which tune the response behavior. It avoid, on system, oscillations of the most weighted variables and then increase stability margin. It is now a standard method and solvers are included in most of the scientific computation programs as Matlab c . Despite the knowledge on this method, it is always a big problem to deal with the R LQ and Q LQ
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Table 2 .

 2 Performance value for the first reference

	P domcom (rd.s -1 )	-9.4	P dom obs (rd.s -1 )	-20.6 ± 18.9i
		T r5 M ax (s)	0.4	∆T r5 M ax (s)	0.1	
	Overshoot max(%)	2.8	∆Overshoot	(%)2.8	
	Deviation max(%)	12.1	∆Deviation(%)	4.7	
	0 0	0.2	0.4	0.6	0.8	1	1.2

Table 3 .

 3 Performance value for the step reference

	P domcom (rd.s -1 )	-45	P dom obs (rd.s -1 )	-20.8 ± 19.5i
	T r5 M ax (s)	0.34	∆T r5 M ax (s)	0.16
	Overshoot max(%)	11.5	∆Overshoot(%)	5.1
	Deviation max(%)	11.5	∆Deviation(%)	5.2
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