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This paper proposes a solution to tune an observer keeping robust closed loop performances for the sensorless motion control of an uncertain mechanical load directly driven by a PMSM through a flexible axis. An evolutionary algorithm optimizes the observers degrees of freedom . Experiments show that performances are effectively maintained.

I. INTRODUCTION

Numerous systems working in a hard surroundings as a crusher, a rolling mill or a driller, have their reliability dramatically decreased by the presence of sensors. An observer should be considered. Due to large parameter variations of the axis (stiffness, inertia and friction coefficient), depending on the load (due to driller tool deepness, thickness of iron...) a robust specification should be introduced. Modeling these systems is possible by a wellknown two-mass system. Controlling such system is then harder due to the difference between load and motor's speed (the same problem arises in transient period in a load position controlled response). Therefore, removing the load speed sensor can lead to oscillations or to an unstable system if it is looped with the wrong motor speed or by an information furnished by a non accurate observer. The goal here is not to define a robust controller, but to obtain a robust observer design and tuning, keeping the state feedback performing whatever the load variations are. This consideration must stay feasible and useful for an industrial designer, who wants safe systems with easy specifications description. For large production systems, the controller has to be designed as simple as possible and the tuning methodology kept an easy way to follow.

Several methods exist to solve this problem : remaining the motor speed loop and slowing down the system response or implementing a robust observer is possible. Previous works [START_REF] Carrière | Optimal LQI synthesis for PMSM driving mechanical load with inertia variation[END_REF] or a robust synthesis [START_REF] Peter | Robust state-feedback H∞ control of a nonlinear two-mass system[END_REF] prove that conserving the system's performance under variations is feasible with a simple controller such as an optimized state feedback. This kind of structure and formulation is highly adapted to add an observer and then to loop the system with the load speed estimation. Oscillations are avoided if the observer is reliable under parameter variations. Different structures allow a robust state reconstruction: An adaptive structure [START_REF] Feiler | Adaptative control of a two-mass system[END_REF], an extended Kalman filter [START_REF] Szabat | Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptative kalman filter[END_REF] or a sliding mode control [START_REF] Fakham | Design and practical implementation of a back-EMF sliding-mode observer for a brushless DC motor[END_REF] provide a correct control but are complex and time consuming mainly in the conception phase. Lighter computation time method exists. It uses a Luemberger observer coupled with an anti-resoning filter. However, the parameter variation can change resoning frequency and cancel the effect of the filter.

Nevertheless, a Kalman filtering method appears as a good solution to this class of problem because its stochastic approach allows to deal optimally with uncertainties and to pre-calculate gains off-line. Furthermore, this method allows to check one objective, the low online computation time but the Kalman parameters tuning is still problematic.

First of all in this paper, the system is modeled by separating the mechanical and electrical parts in section II. The stiffness and the inertia variations taken into account are bounded due to the test bench used and it is shown how that they modify the system behavior. The following section III briefly describes the control law implemented to reach the speed requirements. As a consequence, the heart of the work exposes the two Kalman formulation in IV. The Kalman filter is presented in its robust form, transforming the variations acting on the dynamic's of the system matrices into additional state noises. The last contribution in this paper is to describe an easy way to optimize tuning parameters. To have optimized results and to tune optimally numerous degree of freedom (dof) an evolutionary algorithm is used to find the coefficients of the observer (VI). Because the previous modification does not guarantee stability on the variation range, a stability study is performed with the µ-analysis theory to avoid running simulation and computing performance criterion with an unstable system which wastes time and disturbs the algorithm convergence. Finally, the structures are hence compared under the variations with experimental measurements in section VII.

II. SYSTEM MODELING

A. Actuator implementation

A Permanent Magnet Synchronous Motor (PMSM) is the most used drive in machine tool servos and in modern speed control applications due to its desirable capabilities (a compact structure, a high air-gap flux density, a high power density, a high blocked torque...). Added to the previous advantages, this 3-phase motor is similar to a DC motor for AC power supply. This fact allows to model it in a (d,q) rotating reference frame. This frame rotates at the rotor's speed and via the Park transformation, the current control shifts from a sinus tracking problem to a constant regulation consideration. The controller is then simplified and lets the bandwidth requirement less stressed. The 2.5 kW motor is powered by a three-phase reversible inverter switching at 15 kHz. The influence of inverter in such a control is commonly neglected if an accurate current control is insured so the torque control is considered effective to contribute to the accurate velocity on the load side.

B. Mechanical specifications

Considering that electrical parameters are constant and the inverter is in current control mode, the torque is thus correctly applied on the rotor. The driven mechanical load, as explained in introduction, is here not only composed with the inertia and the friction but also includes a flexible transmission joint. Indeed, a spring can be inserted between the motor and the load as shown in Fig. 1. So, two first order systems (inertia and viscous friction) respectively subscripted by l and m for the load and the motor elements are connected through the spring. The load inertia and the spring stiffness can vary respectively by a factor of 2.5 and 26.6 (see Table. I). A load disturbance torque, created by a powder brake, can also be applied. Furthermore, on the considered systems, the impossibility to measure the load speed for technical or cost reasons leads to implement an observer and thus to properly control the load speed without sensor. To implement this item, the system has to be modeled by state space equation as shown in [START_REF] Carrière | Optimal LQI synthesis for PMSM driving mechanical load with inertia variation[END_REF] where : T m is the applied motor torque, T l is the load torque, J m , f m and J l , f l are the inertia and the friction of respectively the motor and the load side and K T represents the stiffness of the axis and joint.

The C matrix provides the motor speed as output until the load speed is controlled because this is the only sensor used on the test bench. Moreover, three state variables belong to the system, the motor and the load speed (ω m and ω l ) and the position difference (∆θ = θ lθ m ). The convergence requirement imposes to know the load torque information (T l ), to correctly estimate the system behavior. Therefore, a new variable representing this torque is added to the state vector, increasing it to a four dimension vector X. X = ω m ω l ∆θ T l T Motor and resolver Spring Wheels Brake 

                       Ẋ =     -fm Jm 0 -K T Jm 0 0 -f l J l K T J l -1 J l 1 -1 0 0 0 0 0 0     A X +     1 Jm 0 0 0     B T m y = 1 0 0 0 C X (1) 
All parameters have been chosen to describe the test bench behavior presented in Fig. 1 and are listed in Table . I. The stiffness and inertia variation are created by replacing the spring and taking down the wheels. Four different stiffness and three different inertias are available to conduce experiments, from flexible to rigid K T min , K T max and from empty to weighted system J lmin , J lmax . Note that flexible stiffness created by the spring is non ideal and here non-linear. This variation rating by 3 or 4 the stiffness are due to non-alignement of the two-axis, imperfection of concentricity of the spring and difference inside the material property for compressing or expending torsion. The following sections describe the control laws implemented on the system and their performances including stiffness or inertia variations.

III. CONTROL LAW

In this electromechanical case, controlling the speed means applying a calculated torque, so with the PMSM, the current is then completely defined. Luckily, two different dynamics allow to tune the two regulators separately instead of a complex design by considering that the quicker subsystem (electrical) has its output reacting instantaneously in the slower subsystem (mechanical) time range. This separation simplifies calculation but also implementation. Finally, the two loops are needed to control this system as shown in Fig. 2. The current controllers (d and q are the Park frame axis) are classical PI calculated to have a 100 Hz bandwidth and no overshoot. This bandwidth is enough to insure no effect on mechanical speed because the current loop regulates two DC currents and not sinus wave current. This is the biggest advantage of the Park transfomation to shift sinus wave to a 
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In consequence, the lower bandwith allows a smoother behaviour when system is subject to the noise on current measurements. The current controllers feed the Pulse Width Modulation (PWM) inverter and impose the duty cycles α to each phase voltage alimentation. Next, the speed controller has to maintain the motor speed dynamics as constant as possible, with a known torque, in spite of mechanical parameter variations. Previous works [START_REF] Carrière | Optimal LQI synthesis for PMSM driving mechanical load with inertia variation[END_REF] focused on a constant gain controller designed to minimize these effects using linear quadratic optimization coupled to a dominant pole placement. This controller uses all state variables and is convenient to be coupled with an observer. Although, a state feedback is easy to implement, one critical drawback limits its use. All states have to be measured and most of time, a long shaft system does not provide all the measurements. To reach such system requirements, an observer is implemented and the control law becomes as drawn in Fig. 3. Only the motor speed is provided by the system and is given as input to the observer. All the states are rebuilt and the load torque is also included in the observer for convergence purpose. The observer outputs are used to feed the controller and to close the mechanical loop. The load torque information can be helpful to accelerate the response in case of a disturbed torque by directly reacting without any integration on control input (torque reference T mref as explained in [START_REF] Choi | Precise position control using a PMSM with a disturbance observer containing a system parameter compensator[END_REF]. So, observed torque is directly added to the computed control input as shown in the complete control scheme Fig. 2.

The load parameter variations imply a modification of the matrix A and removes the possibility of using a Luenberger-type observer even with an anti-resoning filter. However, other techniques exist to solve such a problem. A Kalman filter [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF] is a quite interesting method by considering the parameter variations as an additional state variable noise. Note that goal of this observer is not only to rebuild the states with a sufficient accuracy but also to do it accurately even if variations occur in the system's set of parameters. The observer has to provide values requested by the controller to impose a 
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IV. THE CONTINUOUS KALMAN FILTER

The continuous Kalman filter is an optimal observer in noise rejection point of view. From the motor speed ω m and the motor torque T m , the state should be rebuilt with the dynamic model established [START_REF] Peter | Robust state-feedback H∞ control of a nonlinear two-mass system[END_REF].

     Ẋ(t) = AX(t) + BT m (t) + w(t) y = CX(t) + v(t) (2) 
X is the state vector, T m is the input torque, ω m is the output and w and v are respectively the state and the measurement output noises. However, to ensure the filter's convergence, some critical assumption should be effective, mainly, the noises have to be white Gaussian noises with a null mean value. The Q and R matrices are the coefficients rating respectively the state noises and the measurement one in order to calculate the Kalman coefficients. The minimization of the quadratic error between the estimation and the real values provides the algebraic Riccatti equation (3) which allows to calculate the instantaneous Kalman coefficients (4), named K k , with the value of the instantaneous standard deviation matrix P .

Ṗ (t) = P (t)A(t) + A T (t)P (t)+

(3)

+ P (t)C(t) T R -1 C(t)P (t) + Q(t) K k = P (t)C(t) T R(t) -1 (4) 
Nevertheless, the aimed type of systems works in speed regulation and dynamically, all matrices of (3) except P are constant. It can be proven that this equation tends to a steady state. Consequently, only the steady state coefficients should be implemented. Finally, to find the coefficients, (5) has to be solved using are algorithm under matlab c

P (t)A + A T P (t) + P (t)C T R -1 CP (t) + Q = 0 (5)
Hence, the main challenge of this control structure is to tune Q and R to always maintain the stability and the performance. Two methods are now proposed, the first is the commonly used form for noise perturbation rejection but is adapted to the parameter varying problem and the second uses model variation inside the estimation algorithm.

A. Common Q and R matrices (KS4)

The first method is to choose the matrices as white uncorrelated noises with a null mean, so the matrices are diagonals and detailed in [START_REF] Choi | Precise position control using a PMSM with a disturbance observer containing a system parameter compensator[END_REF]. Matrices are classically set up with the estimated noises values and tuned by a trial and error method. The matrices Q and R with a four order state vector show five parameters to be tuned (one on the scalar input R and four on the state vector Q).

E[w k ] = 0 E[w k w T i ] = Q k i = k 0 i = k E[v k ] = 0 E[v k v T i ] = R k i = k 0 i = k (6)
The parameter variations imply that matrices does not match with the classical noises notions. They have to describe a state variable shape modification which is not gradable as a white gaussian noise. Thus implying that the coefficients has to be first arbitrary chosen before tuning them. The high number of parameters avoids a human tuning to optimize the filter behavior, then an evolutionary algorithm, presented in section VI, is used to tune optimally the matrices coefficients.

B. Model variation tuning (KR4)

The second method is inspired from [START_REF] Stevens | Aircraft control and simulation[END_REF] where the system is modified following [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF]. A matrix B r is premultiplied with the state noises to give them a specific direction to achieve robust purposes i a quicker and simpler manner than classical way.

     Ẋ(t) = AX(t) + BT m (t) + B r w(t) y = CX(t) + v(t) (7) 
In the first method, the parametric variations are minimized by scaling each state noise covariance. On this system, these variations modify directly the dynamic matrix A. As a consequence, the B r matrix represents the variation of this dynamic matrix as written in [START_REF] Stevens | Aircraft control and simulation[END_REF]. This variation is the direction used to robustify the observer.

B r = A min -A max +        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x        (8) 
However, the systems are always subject to exogenous perturbations. Here, the load torque T l allows the observer to be stable and to asymptotically converge under this kind of perturbations. By calculating the B r matrix only with the dynamic matrix variation, the exogenous variations are not correctly modelled and this leads to an unstable structure. In fact, the coefficients given to these state variables are too small to accurately rebuilt the system. Therefore, a diagonal matrix is added to the dynamic matrix variation with only exogenous state variable terms which are non null. The blending of the two structures can now lead to a stable observer.

This matrix B r normalizes the state noises w(t) along to deacrease its dimension to one and modify the Algebraic Riccatti Equation (3) providing [START_REF] Duc | Commande H∞ et µ-analyse[END_REF]. The γ coefficient allows to rate the B r matrix compare to R matrix.

Ṗ (t) = P (t)A(t) + A T (t)P (t)+ (9) 
+ P (t)C(t) T R -1 C(t)P (t) + B r * B T r γ
The implementation of this observer compare to a standard Kalman observer is not different on a DSP. The differences are in the number of coefficients to choose in system with a little number of exogenous parameter.

Here, only 3 coefficients to tune (R, x and γ) compare to the five of the standard structure. Finally to compare accurately the both structures, this one is also optimized by the same evolutionary algorithm.

V. µ-ANALYSIS

A. Theory

In order to prove mathematically stability otherwise by simulating a long time or having a fastidious scheme, µanalysis technic proved and explained in [START_REF] Duc | Commande H∞ et µ-analyse[END_REF], [START_REF] Skogestad | Multivariable feedback control : an analysis and design[END_REF] allows to check the system stability under variations.This analysis is an extension of the small gain theorem. Separately, the system modelled by LFT M (s) shown in Fig. 4 and the variation matrix are stable. The variation matrix is normalized. Its norm is inferior to 1. Then, the only component which is able to destabilize the system is the feedback introduced by the loop. Consequently, only the poles and the upper singular value of the matrix M wz (s) is important to define stability. M wz (s) is the submatrix corresponding to the input w et output z of the M (s) matrix.

M (s) ∆(s)

z w e y In the small gain theorem, as soon as the system uncertainties have been normalized to always have a ∆(s) matrix norm inferior to 1, while the upper system M zw (s) singular value is less than 1, the system is stable for all uncertainties matrix ∆(s). Nevertheless, a lot of ∆(s) matrix can not correspond to with the system definition and decrease the space of stability. The aim of µ-analysis is to exclude the non-realistic ∆(s) matrices. So, the uncertainties are classified in two categories [START_REF] Duc | Commande H∞ et µ-analyse[END_REF] :

• Structured : These uncertainties can be totally modelled (gain and phase) with the system state variables and lead to a real scalar or a group of diagonal scalars in ∆(s) matrix. By definition, on the described system, this type represents the parametric variations. • Unstructured : By adding transfer function, only the gain is modelled by using the system state variables for these uncertainties then the phase is given by a complex value inside the ∆(s) matrix. This type allows to model all the neglected dynamics, delays and noises. Resulting from the previous assumptions, the ∆ matrix is a bloc diagonal [START_REF] Skogestad | Multivariable feedback control : an analysis and design[END_REF] where α q (s) represents the q th unstructured uncertainties and δ i , the i th structured uncertainties. The ∆(s) matrix is a bloc diagonal matrix because each uncertainties can only have an effect on the part of the system where they are located. They can not be linked or modify the behaviour of other uncertainties without integrating system dynamics.

∆(s) = diag{ α 1 (s), ..., α q (s), δ j I j , ..., δ k I k } ∆ i (s) ∈ CH ∞ ; δ ∈ R (10 
) Now, the space of all the admissible ∆(s) matrices is defined, for all frequency and all the ∆(s) respecting [START_REF] Skogestad | Multivariable feedback control : an analysis and design[END_REF] the value of µ ∆ (M (s)) describe in ( 11) is estimated by algorithm programmed inside robust toolbox of Matlab software. By solving [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF], the algorithm looks for the value of k m with poles on imaginary axis. M (s) is a stable system, as a consequence, a value of k m inferior to the one founded will provide a stable system. Consequently, if µ ∆ (M (s)) < 1, ∀ω, k m > 1 and shifts the poles toward the right part of the complex plan, it implies that the system is stable for the uncertainties taken into account.

µ ∆ (M (s)) = (min{k m , det(I -k m ∆(s)M (s)) = 0}) -1
(11) The stability can now be proved before simulation with non-linear effect taken into account.

B. Application to the two-mass system

Finally considering this system, the uncertainties are :

• the load inertia variation,

• the stiffness variation,

• the delay of measurement,

• the neglected dynamics of current loop,

• the measurement noise. Each uncertainties is modeled by an LFT considering multiplicative effect. Scalars or transfert functions are involved depending on the uncertainties. The µ-analysis is working with symmetric variation space thereof the system nominal point is chosen at the center of the variations to have the smallest space.

The 2 first are structured and lead each to one scalar δ i representing the normalized variation from the nominal point. The 3 last are unstructured and are gathered inside a 2×3 complex matrix ∆ u (s) to be treated as described into [START_REF] Duc | Commande H∞ et µ-analyse[END_REF]. This matrix creates all the phasis variations possible due to the unstructured uncertainties. As a consequence, the matrix ∆(s) has the form described in [START_REF] Fogel | Autonomous automata[END_REF]. M (s) is split into four submatrix (13) :

• M zw (s) is the feedback created by modelling with LFT. It gives the system stability under variation. Its dimensions are 5 × 4 to be connected with the ∆(s) matrix.

• M zu and M yw create the linkage between the variation and the nominal system. • A c is the dynamic matrix of the tested closed loop system.

∆(s) =   δ j 0 0 0 δ k 0 0 0 ∆ u (s)   ( 12 
)
M (s) = M zw (s) M zu (s) M yw A c (13) 

C. Utility

Of course, the evolutionary algorithm computes time response and can check stability or a pole computation can check also the linear stability. But inside the allowed space of observer's parameters, some combinations have very slow unstability which appear after the end of the time response simulation or due to non-linear effect as time delays, noise or neglected dynamics. Additionally, the fast variation during operation of the stiffness is quite hard to simulate, by making a security space of stiffness variation, the µ-analysis allows to guarantee stability without complex modelization. The µ-analysis integrated inside the criterion calculation allows to check such effect on stability prior to simulation and save time during algorithm execution. Furthermore, the neglected dynamics are also neglected inside the time simulation process (To avoid very long time simulation) and unstable system can be detected prior experimental test and allow algorithm to always give a proper solution.

VI. EVOLUTIONARY ALGORITHM

Given the human abilities, the both presented structures require to deal with a great number of variables. To overcome this difficulty and to scan faster a large space of possible solutions, an evolutionary algorithm has been implemented. Extract from [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF], and first presented by Fogel in [START_REF] Fogel | Autonomous automata[END_REF], this algorithm searches the best pattern by evolving item parameters as made in nature. It means that only a combination and a mutation are allowed.

The principle of this algorithm is presented in Fig. 5. Firstly, classifying items from the most competitive to the less interesting one is a priority, then an evaluation criterion is calculated (detailed hereafter (14)).

Nevertheless, numerous solution are not experimentally implementable and compare some numerical criterion for non implementable solution is useless, therefore, two steps are computed to define the criterion. First, to manage an implementation, the system has to be stable, thus, the µ-analysis of the closed loop system is computed. If system is unstable, a very hight criterion is given to this item and evaluation is over, otherwise, a second step is executed providing a numerical criterion value by simulating the system. In fact, this optimization ensures that the system has the minimal output deviation for all the system variations (inertia or stiffness) compare to a reference behaviour which is system with sensor and with this set of parameter :

Θ ref = J lmax , f lmin , K T max .
The optimization is finished when the global deviation is minimized meaning that the defined observer is able to maintain performance whatever the parameters are. So, a set of parameter variations Θ is defined. Θ represents all the parametric variation bounds to be taken into account. Most of time, Θ has two sets of parameter which are the upper and lower bounds of the parameter variation (Inertia or stiffness or the both). All Θ time responses of the system driven with the chosen observer are computed. After all experiments, the criterion ( 14) is computed to evaluate the performance of the structure. The criterion is computed for each variations of the set Θ and all effects are summed. Hence, all the variations have to be as closed as possible to the reference without any rating between the bounds. The purchased purpose is to have an overall optimization and not only one optimized solution for the defined variation.

A close regards on criterion reveals two summed items. The first item is the integral quadratic error between the tested response and the reference, this error is relevant when the difference is high thus here for the transient time. Nevertheless, the algorithm takes high coefficients to minimize the transient deviation and this increases noise effects which creates small speed variations avoided by speed regulation. Consequently, the second item is the integral time absolute error which amplifies the error for steady state because the error is multiplied by time and avoid torque ripple at steady state. 

(ω l (t, Θ ref ) -ω l (t, Θ i )) 2 dt+ + 2 T end T end -1 abs((T m (t, Θ ref ) -T m (t, Θ i ))) • t • dt) (14)
Secondly, each item has a vector of parameters : the three or five coefficients listed in section IV representing the observers need (the output of algorithm), plus one standard deviation per observer's parameter to achieve the mutation. Thirdly, the optimization needs the following steps to be effective : 1 : The parent's creation allows the algorithm to start.

The observer parameters and the linked standard deviations are randomly chosen inside the bounded space allowed by an uniform distribution. 2 : The children's birth is operated with two calculations, the first is a recombination. Two parents are randomly chosen and each parameter is modified by a weighted mean of both parents parameters. The weighting is randomly defined by an uniform distribution.

The second operation is a mutation. The parameters used as standard deviation mutate following a decreasing exponential law. The observer parameters mutate with a normal distribution with the standard deviations which are included in the set of parameters and with their own value as mean.

In the evolution strategy, the mutation is the most important operation, this ambiguous method allows at the beginning to scan large part of the space due to the hight value of standard deviation and avoid local minima.

Step by step, the standard deviations decrease to look for the value of the minimum in a smaller space. 3 : The criterion is computed as described previously and the item are organized following the growing values of the criterion and the better ones are kept to create a new generation. 4 : Finally, the algorithm is ended when the criterion value is quite similar between two consecutive step (0.5%) after a minimal number of steps [START_REF] Skogestad | Multivariable feedback control : an analysis and design[END_REF]. All methods and constants to be defined are deeply explained into the standard reference [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF]. Tuning the filter's gains is now possible in two or three hours with a Pentium 4 2.4 Ghz. Thus, this method evolves with µ-analysis to become a kind of µ-synthesis simpler to employ, theoretically less stressed annd giving a low computation time observer. The last section shows and compares the experimental results of the proposed filters.

VII. THE TEST BENCH

Before exploring the results, the test bench shown in figure 1 should be technically presented and the parameters are given in Table I. From left to right, a permanent magnet synchronous motor is directly coupled to the load through a spring, this creating a non-rigid system. Two removable inertia discs and a powder brake compose the varying load. The motor is powered by a three-phase PWM inverter with a 15 kHz switching frequency.

The experimentation is controlled via a DSpace platform in a friendly environment. The programmes are made with MATLAB/Simulink c . Two control loops have to be programmed from the scheme drawn in figure 2. The loops have quite different dynamics to allow a simpler tuning procedure than a coupled system.

On the mechanical side, two encoders are available to measure both the motor and the load positions :

• Motor resolver : 4096 points per turn accuracy.

• Load side encoder : 3600 points per turn accuracy.

(Just to compare to compare accuracy of sensorless control) ∆θ is calculated by subtracting the two positions and have an accuracy of 0.18 • . The derivation of both positions produces the speeds. As a consequence, a considerable quantity of noise is produced due to low quantization compared to the operated speed (30rd.s -1 ). Hence, a sliding average using seven measurements is implemented to smoothen the speed. Nevertheless, this sliding average is just computed for drawing purpose. The kalman filter computes all state from the noisy output of the motor position derivation.

All elements confirm the necessity to deal with a Robust observer synthesis as explained in previous theoretical parts. To underline this fact, some results are shown. Firstly, two tables compare the performance of each observer:

• Table. II writes the performance of each observer in all the variations cases • Table . III compares the criterion and the number of generation needed by the algorithm to converge to the final solution secondly, four curves show the behavior of the system on extreme conditions. All the combination of variations bounds with the KS4 observer are printed in Fig. 6.

The both observers lead approximatively to the same results. However, KR4 is more dynamic in the reference transient and have a slightly smaller overshoot. Contrarily, the KS4 observer deals better with the load disturbances, less deviation and a better recovery time on the both curves. Nevertheless, the both observer can be considered as performing for the two-mass system. All the differences are underlined by figure written in Table . II. On the contrary, Table . III lights out something very interesting for an industrial. By reducing the number of parameter for a given structure, the criterion is not too bad but, the time synthesis is greatly improved, gain of time by 40%.

VIII. CONCLUSION

Two methods to tune Kalman filter's coefficients are experimented with a variable two-mass system. A strategy has been developed to guarantee stability of the system. The observers are tuned with an evolutionary algorithm comparing the simulation results and making a µ-analysis of the structure for stability purpose under parameter variations. The addition of all these elements leads to a kind of µ-synthesis. Both of them have a quite similar response quality after tuning them with the evolutionary algorithm. The robust form KR4 has slighter better results.

The KR4 form has only 3 degree of freedom (dof) compared to 5 dof for KS4 method providing an easy and a quick automatic tuning. It is possible to compute gains off-line for the observer, that makes it easy to implement with a lighter execution time as usually required. The experimental results prove that implementation is feasible with good performance and allow to finally obtain "robust" optimized observers on a direct drive system with load parameter variations. 
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 1 Fig. 1. The test bench
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 3 Fig. 3. Implemented sensorless speed control
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 6 Fig. 6. System behaviour with KS4 observer and all extreme variations

TABLE I TEST

 I 

		BENCH PARAMETERS
	Parameter	motor	load
	Torque (N m)	16	7 (brake)
	Inertia (kg • m 2 ) Friction (N m • s • rd -1 ) Stiffness (N m • rd -1 )	2.6 • 10 -3 2.7 • 10 -3	[19.2; 50.9] • 10 -3 (wheels) 5.4 • 10 -3 [75; 2000] (springs)
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