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Abstract: The use of fuel cell hybrid vehicles is a potential transport solution achieving zero
emission once technical, economic, and social challenges are overcome. Energy management
strategies on board remain an important research subject in a quest to find an efficient power
splitting between the fuel cell system and the energy storage element of the hybrid powertrain.
This paper proposes an online strategy based on a fuzzy decision system. Fine tuning of
the fuzzy system parameters, mainly the membership functions, is made possible using a
powerful optimisation tool which is a genetic algorithm. This optimisation procedure takes
into consideration the minimisation of the hydrogen consumption while satisfying the requested
power over a given driving cycle.
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1. INTRODUCTION

Energy management strategies for hybrid electric vehicles
remain a main subject in recent studies where many in-
dustrials and researchers are actively implicated. To this
day, no specific approach or strategy was able to impose
itself as a best solution in each and every situation and
a considerable work has to be done, therefore, in order to
group and compare different adopted strategies. Neverthe-
less, the different approaches used for this purpose can be
classified in two categories which include rule based strate-
gies and optimisation based strategies Salmasi (2007).
Optimisation based strategies such as optimal control or
dynamic programming based methods often require an a
priori knowledge of the power profile and, thus, they are
often used offline Delprat et al. (2004), Lin et al. (2003).
On the other hand, rule based strategies include basic
deterministic rules or fuzzy rules Lee et al. (2000), Langari
and Won (2005). Fuel cell vehicles control strategies and
precisely the power split between the fuel cell and the
storage element, which is the subject of this study, remain
less exploited in literature. Nevertheless, different strate-
gies applied in a conventional hybrid vehicle can be easily
adapted to a fuel cell vehicle Rodatz et al. (2003). In this
context, we could mention, among others, the application
of a real time control strategy for fuel cell vehicles based
on optimal control theory Bernard et al. (2007) or based
on the minimisation of the equivalent consumption ECMS
Rodatz et al. (2005). The online management strategy

presented in this paper is based on a fuzzy inference
system optimized by means of a genetic algorithm. This
approach is classified among on-line rule based strategies
while further offering an optimisation possibility provided
by the use of the genetic algorithm. In a first step, the
fuzzy inference system is built by choosing the appropriate
system inputs and output membership functions and fuzzy
rules set. Fine tuning of the fuzzy system requires a good
expertise on one hand but also a time consuming trial
and error phase on the other hand. To overcome this
procedure while obtaining an optimal set of parameters, a
genetic algorithm is used in a second step. It is necessary
to mention that the applied fuzzy system is more likely
a decision making system based on fuzzy rules than a
fuzzy controller. More or less similar to this system, we
find power management applications applied to series or
parallel conventional hybrid architectures. For example,
Zeng and Huang (2007) propose a fuzzy system to control
the throttle angle degree of the internal combustion en-
gine according to the battery state of charge and to the
requested traction torque. In the work of Zhu et al. (2006),
the instant power of the battery is chosen based on the
power demand and the state of charge of that battery using
a statistical method based on the results of a dynamic
programming algorithm.

2. POWERTRAIN CHARACTERIZATION

A fuel cell vehicle is classified among series architecture
hybrid vehicles in which the entire set of an internal



combustion engine coupled to an electric generator is re-
placed by a fuel cell system. This latter is responsible of
generating the necessary electric energy requested by the
electric motor. The basic structure of the fuel cell vehicle
is shown is Fig. 1.
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Fig. 1. A fuel cell vehicle basic structure

The core of the fuel cell vehicle is a hybrid powertrain
formed of a fuel cell (FC) and a storage element (SE).
A standard model of the powertrain is considered in this
study as shown in Fig. 2 Caux et al. (2005). This pow-
ertrain is composed of the fuel cell system connected to
the DC bus by means of a boost DC converter from one
hand and of a supercapacitors pack type storage element
connected also on the same bus by means of a current
reversible boost converter. The electric motor, generally a
synchronous one, is connected to the DC bus through a
voltage inverter.
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Fig. 2. Powertrain bloc diagram

Each of the electric energy sources defines an energy path
representing a certain power flow (Fig. 3). Primary path is
formed by the fuel cell (and ancillaries) with its associated
converter. On the other hand, a second energy flow path
is defined by the storage element and its buck/boost con-
verter. The connexion of these two energy paths forms a
virtual electric node supplying the desired power request.
Therefore, the power demand, Pdem is the sum of the useful
power delivered by the fuel cell system, PFC bus and by
the storage element PSE bus. It is evident that a part of
the power delivered by both sources is lost as heat along
the path. It is therefore necessary to identify the system
energy balance highlighting the main power losses across
these paths. The total losses of the fuel cell system, which
are considered in this study, are the sum of the fuel cell
losses due mainly to the thermodynamic efficiency of the
electrochemical reaction and to voltage drops across this
fuel cell, the power converter losses due to the conduction
and commutation losses of the converter semiconductors,
and finally the electric energy losses across the fuel cell
auxiliaries. These auxiliaries and mainly the air compres-
sor are electricity consuming hence reducing the useful

delivered energy. On the other hand, the energy balance of
the storage element considers the losses of the supercapac-
itor pack due to its internal resistance and of the current
reversible converter.
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Fig. 3. Power and losses distribution along the hybrid
powertrain

The identification of these losses and therefore the char-
acterization of the global efficiency of each path, is made
possible using a simulation model under Matlab/Simulink.
The resulting fuel cell system efficiency is given in Fig. 4.
On the other hand a fixed efficiency of 93% is chosen for
the storage element for simplification.
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Fig. 4. Fuel Cell System Global Efficiency

Having characterized the global efficiency of each energy
path, the powertrain could therefore be represented in the
abstract model of Fig. 5. The primary power source is
therefore represented by its useful power at the electric
node, PFC and an efficiency value, ηFC allowing us to
estimate the real hydrogen consumed energy. On the other
hand, the storage system is also represented by its deliv-
ered power, PSE and a global efficiency, ηSE allowing to
compute the effective amount of energy actually stored
in the supercapacitor and thus its actual state of charge
variation.

For us to base the study upon a real lightweight transport
application case, the different powertrain elements sizing
was taken into consideration in simulation. Sizing consid-
erations impose limitations on the maximal and minimal
power delivered by the fuel cell, respectively PFC max

and PFC min, on the supercapacitors pack delivered and
absorbed power, respectively PSE max and PSE min and
finally on the maximal and minimal state of charge or state
of energy of the storage element, SOEmax and SOEmin.



All of theses values are given in table 1.

Table 1. System power and energy constraints

PSE min PSE max PFC min PFC max SOEmin SOEmax

-60 kW 60 kW 0 kW 70 kW
400
kW.s

1600
kW.s

3. FUZZY LOGIC BASED DECISION SYSTEM

The implemented fuzzy decision system uses two input
variables which are the state of charge of the storage com-
ponent, SOE , and the required propulsion power, Pdem

; the output variable being the fuel cell delivered power,
PFC . The universe of discourse of each of these variables
is defined by the power and energy size constraints. Each
of these universes of discourse is divided into a defined
number of subsets describing a general state of the desig-
nated variable. The state of charge of the storage element
can therefore be considered “very low” (VL), “low” (L),
“average” (A), or “high” (H). Similarly, the required power
could be considered as “negative” (N), “very low”, “low”,
“average”, or “high”. Finally, the fuel cell power could be
“Null’ (N), “very low”, “low”, “average”, or “high”.

Each subset is designated by a membership function which
assigns to each value of that variable a membership degree
to that subset. In this regard, trapezoidal type membership
functions are chosen to designate each of the fuzzy sets
spread over the universe of discourse. Fig. 6 represents
the trapezoidal membership functions of the SE state of
charge, between SOEmax and SOEmin. Fig. 7 and Fig. 8
represent respectively the chosen membership functions of
the required power and fuel cell delivered power.
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Fig. 5. Fuel Cell Vehicle Abstract Model
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Fig. 7. Pdem input variable membership functions

The trapezoidal type membership functions are chosen for
their simplicity, and the number of these membership func-
tions remains an arbitrary choice based on the expertise
acquired towards the system operation principles. This
expertise is consolidated with the bibliographic research
from one hand and with trial and error on the other hand.
It is necessary to precise that the choice of these functions
is directly related to the set of fuzzy rules characterizing
the fuzzy decision system by linking the system inputs to
the unique output.

The inference system is composed by a number of 17 rules
linked by an OR operator. Each rule presents a condition
preceded by the IF symbol and a conclusion, or action
preceded by THEN symbol. An example of the system
rules is: IF Pdem is “very low” AND SOE is “low” THEN
PFC is “low”. The entire rules set can be represented
graphically in an inference matrix as shown in table 2.
At the intersection of a matrix line and column linked to
the input variable, lays the corresponding set of the output
variable. The general idea behind these rules is that the
fuel cell delivers as much power as the required power is
high and / or the state of charge of the storage element is
low. On the other hand, the fuel cell delivers as low power
as the required power is low or the storage element is high
enough to provide this power. From this general idea, the
choice of these rules remains an arbitrary choice that tends
to ensure a continuous passage of power from its highest
level to its lowest one using the intermediate levels.

Table 2. Fuzzy logic based decision system
inference matrix

PFC
Pdem

VL L A H N

SOE

VL A H H H N
L L A A A N
A VL VL L L N
H VL VL VL L N

Finally, we have to precise that the fuzzy logic system is
implemented under Matlab environment using the Fuzzy
Logic Toolbox. Or and AND operators are represented
by the “Min-Max” method while the defuzzification is
made possible by computing the centre of gravity of
the resulting membership function. The choice of the
membership function parameters is usually made by trial
and error and a time consuming experimental procedure
is necessary to obtain the proper set of parameters. To
overcome this problem, a genetic algorithm is used to find
the optimal set which minimizes a certain criterion.
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Fig. 8. PFC output variable membership functions



4. MEMBERSHIP FUNCTIONS OPTIMISATION
USING A GENETIC ALGORITHM

The genetic algorithm optimisation method follows the
flowchart presented in Fig. 9. First, an initial population
of Npop individuals is created, each individual forming a
specific combination of the parameters to be optimised.
At each step of the genetic algorithm, the fuzzy inference
system is built using the corresponding individual param-
eters. An evaluation or fitness function is then calculated
for each individual with respect to a certain criterion.
The following step consists of selecting specific individuals
regarding their fitness function to which are applied the
operators of mutation and crossover. The new created
individuals in this step are again evaluated to maintain the
best individuals or the individuals that better adapt to the
imposed criterion. These individuals form the population
of the next generation which undergoes the same process
as its previous generation. The algorithm stops whenever
the stop criterion is met. The stop criterion chosen in this
study is the reach of a fixed number of generations Ngen.
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Evaluation of each individual

Evaluation of created individuals

Creation of a new population
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Stopping 

criterion satisfied
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Fuzzy system evaluation over 
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Choice of the best individual 

Building of the fuzzy system 

corresponding to each individual 

Fig. 9. Genetic algorithm fuzzy logic flowchart

Coding of the individual also called chromosome is a
delicate issue. The individual contains all the information
needed which is, in this case, the necessary parameters
allowing the membership functions identification. Taking
into consideration previous hypotheses made on the shape
and type of the membership functions, a number of 22
parameters is sufficient to represent the membership func-
tions and thus the fuzzy system. These parameters are the
different xi , yi and zi as shown in figures 6, 7 and 8.
The chromosome thus formed of the concatenation of these
parameters is shown in Fig. 10.

1y 2y 3y 5y4y 6y1x 2x 3x 4x 5x 6x 7x 8x 1z 2z 3z 4z 5z 6z 7z 8z

gene

Chromosome or individual

parameters demP SOE FCPparameters parameters 

Fig. 10. Identified parameters considered as a chromosome
genes

Another important issue is the definition of the fitness
function which will evaluate the performance of each indi-
vidual. In our case, the aimed target is the minimisation
of the hydrogen consumption while ensuring the power
required along the entire vehicle driving cycle. Maximiz-
ing the evaluation function Feval consists of minimizing
an optimisation criterion Copt as given in equation (1).
This criterion takes into consideration the total consumed
hydrogen energy (in kW.s) on a fixed time interval of the
driving cycle, EH2 , as given in equation (3), and a value
quantifying the mean quadratic error equadr measured be-
tween the required power and the power actually provided.
The defined criterion is therefore given according to the
equation (2) where k is a scaling factor between consump-
tion and error values. The choice of this factor also allows
to adjust the required precision since the more k is low, the
more we favour the minimization of consumption versus
error and vice versa.

Feval =
1

Copt
(1)

Copt =
EH2

k
+ equadr (2)

EH2 =
∑

i

PFC (i) ·∆t

ηFC (PFC (i))
(3)

The expression of the mean quadratic error equadr (in kW)
is given in the following equation:

equadr =

√√√√√
N∑

i=1

(ePdem
(i))2

N
(4)

Where ePdem
is the instantaneous power error between the

required power, Pdem , and the actually provided power
Pprov:

ePdem
(i) = Pdem (i)− Pprov (i) (5)

The actually provided power is the sum of the fuel cell
delivered power, PFC cor, and of the power supplied or
absorbed by the storage element PSE cor after correction of
their values with taking into consideration the saturations
over these power and state of charge values.

Pprov (i) = PFC cor (i) + PSE cor (i) (6)

Furthermore, the fitness function will allow us to handle
further constraints imposed on the individual parameters
by using a penalty function that penalizes the non feasible
solutions reducing their fitness function Carlos and Coello
(2002). These further constraints are given in equation (7).
Individuals which parameters do not verify this condition
are penalized with a quite high criterion Copt. This allows
the genetic algorithm to progressively depart away from
these non feasible values.{

xi < xi+1 i = 1, .., 7
yi < yi+1 i = 1, .., 5
zi < zi+1 i = 1, .., 7

(7)

To summarize, the genetic algorithm is used to optimize
the fuzzy logic decision system. This optimisation is made
offline using a specific mission power profile. Once the op-
timized parameters found and the corresponding optimal
fuzzy logic system built, this latter is therefore ready to



be used in an online energy management strategy (with
no a priori knowledge of the future power request). This
optimisation is made possible by using two different power
mission profiles. The first one, the INRETS profile repre-
sents an electric vehicle circulating in an urban environ-
ment Jeanneret et al. (1999) Trigui et al. (2004) while
the second, the ESKISEHIR profile, represents a tramway
running on the ESKISEHIR line and this after having
applied the necessary scaling factor in order to adapt the
power level to our application size considerations. These
two profiles are represented in figures 11 and 12.
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Fig. 11. INRETS mission power profile
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Fig. 12. ESKSEHIR mission power profile

After applying the genetic algorithm to the fuzzy logic
system, the optimized characteristic surface of this fuzzy
system is given in Fig. 13 for both mission profiles. The
grey surface represents the INRETS profile while the dot-
ted surface the ESKISEHIR profile. It is clear that these
two surfaces present slight differences related the differ-
ences between the two power demand profiles. Indeed,
the ESKISEHIR profile presents a higher mean power
compared to the INRETS profile which is translated by
a higher demand on the fuel cell power as shown on this
figure.

Fig. 13. Fuzzy system caracteristic surfaces generated with
the genetic algorithm using both mission profiles

In order to evaluate the performance of the proposed
strategy, table 3 shows the hydrogen energy consumption
as calculated in equation (3) and the improvement (in %)
made on the consumption reduction as compared to the

case where the fuel cell is used alone with no hybridization.
This table compares the results obtained with the opti-
mized fuzzy system GAFL with the results of the hand
tuned fuzzy logic system FL showing the clear improve-
ment made with applying the genetic algorithm. It also
compares these results with those obtained by applying
a global optimisation method which is the dynamic pro-
gramming algorithm (D.P.). This latter comparison shows
the powerful performance of this algorithm as it provides
close results to the D.P. algorithm.

Table 3. Comparison of the obtained results
applying different control strategies

Profile Algo. Cons. Improv.

INRETS
D.P. 9 189.7 kW.s 38 %
F.L. 10 866 kW.s 27 %
GAFL 8 359.9 kW.s 43.8 %

ESKISEHIR
D.P. 31 826 kW.s 33.7 %
F.L. 33 358 kW.s 30.5%
GAFL 29 802 kW.s 37.9 %

The evolution of the state of charge of the storage element
along the driving cycle is shown in Fig. 14 for the INRETS
profle and in Fig. 15 for the ESKISEHIR profile. Fig. 16
presents the resulting power split between the fuel cell
and the storage element after applying the optimized fuzzy
system along the INRETS profile while Fig. 17 represents
the power split on the ESKISEHIR profile.
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Fig. 14. Supercapacitors state of energy along the INRETS
driving cycle

0 500 1000 1500

400

600

800

1000

Time(s)

S
O

E
(k

W
.s

)

Fig. 15. Supercapacitors state of energy along the ESKISE-
HIR driving cycle

As the optimisation of the fuzzy logic system is made on
a specific mission profile, the obtained fuzzy system tends
to adapt on that specific profile while not presenting the
same performance when applied to different other profiles.
Therefore, a further attention should be given to the study
of robustness of this method. For this sake, we have tested
the performance of the system optimised on the INRETS
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Fig. 16. Optimal power split generated by the genetic
algorithm using the INRETS mission profile
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Fig. 17. Optimal power split generated by the genetic
algorithm using the ESKISEHIR mission profile

profile and applied on the ESKISEHIR one and vice versa.
Results of this crossing application are given in table 4
where :

• Inr-Inr: System optimised on the INRETS profile
and applied on the INRETS profile.

• Esk-Inr :System optimised on the ESKISEHIR pro-
file and applied on the INRETS profile.

• Esk-Esk : System optimised on the ESKISEHIR
profile and applied on the ESKISEHIR profile.

• Inr-Esk: System optimised on the INRETS profile
and applied on the ESKISEHIR profile.

These results show that the algorithm performance re-
mains quite acceptable when differentiating the testing
profile from the optimisation profile with a relatively ne-
glected error as the required power is well satisfied all along
the driving cycle.

Table 4. Consumption and mean quadratic er-
ror resulting of the application of the optimised

fuzzy system

Inr-Inr Esk-Inr Esk-Esk Inr-Esk

Improvement 43,8 % 41,5 % 37,9 % 35,6 %
M.Q.E. 1, 5.10−13 1, 6.10−13 2, 4.10−14 2, 3.10−14

5. CONCLUSION

A fuzzy logic based decision system is applied in order to
properly manage the power split between the power source
and storage element of the hybrid electric generator in an
fuel cell vehicle. The fuzzy system parameters were opti-
mised using a genetic algorithm aiming to reduce hydrogen
consumption over a given driving cycle. The performance
and robustness of the optimised fuzzy system was tested
on two different mission power profiles showing quite ac-
ceptable results as compared to a dynamic programming
based algorithm. As future perspectives, a thorough study

will be made to define a quantitative relation between a
certain profile and the optimised parameters obtained with
the genetic algorithm in order to allow easy tuning and
adaptation of the fuzzy system without having to repeat
the optimisation procedure.
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