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In industrial world, direct drives are more and more used and rise up new control issues when parameter variations occur. New methods have been created, however, high cost computer and expert is often needed to implement them. In this paper, state feedback controller optimized by Linear Quadratic principle are shown up. These methods achieve cost requirement cause they provide lighter regulators with constant gain coefficients. Criterions must let the closed loop system stable and keep performances whatever the load inertia is. First method is using an iterative method using linear quadratic criterion with few parameters. The last blends traditionnal poles placement and Linear Quadratic priciple to achieve a fast synthesis method with interesting results. Experimental results have been obtained taking into account internal current control and inverter limitation too.

Introduction

Last decade innovations on control, converter and motor design, make actually PMSM having the highest power rate and a deep blocked torque. So, it allows designers to direct drive their applications avoiding backlash and efficiency loss in reducer. However, new issues appear. Indeed, load parameter variation effects decreased by the reducer must now be taken into account to not disturb correct operating mode. This statement is daily proved on rolling mill, crusher or traction system. Following this fact, new models have been developped as two-mass model to simulate all phenomena even if the system can be consider rigid. Nevertheless, industrial goalies do not change at all, a correct regulator must :

• have a parametric robustness (no response variation) • be light for real time calculation • not use special mathematical or optimization tools to not need any expert design.

Consequently, model being more complex, usual PID does not match features for large parameter variations. To achieve correct result, controller must be optimized by algorithm or helped by an observer [START_REF] De Sousa | Design of robust controllers for PMSM drive fed with PMW inverter with inertia load variation[END_REF][START_REF] Yang | Robust speed tracking of permanent magnet synchronous motor servo systems by equivalent disturbation attenuation[END_REF]. Mathematical research on optimization have lead to H∞ and µ-synthesis [START_REF] Chiali | H∞ Design with Pole Placement Constraints: An LMI Approach[END_REF][START_REF] Peter | Robust State-Feedback H ∞ control of a nonlinear two-mass system[END_REF] which give a reliable solution. But their complexity and high order resulting regulators are impedent for the major part of low cost applications. CRONE (non integer order robust control) [START_REF] Caux | CRONE Speed Controller for Synchronous Drives[END_REF] theory works as previous method in frequency domain instead of shaping in time domain and gives frequently high input gain, plus high order transfer function. Polynomials methods do not achieve complete goalies then state feedback controllers are tried. Constant coefficients, to keep light calculus, force to make an optimization. To keep hand over the method and stay in time domain, the Linear Quadratic criterion has been considered. Variations are not directly taken into account in calculus because it is not a robust method. But theoretically proven properties assure that controller keeps robustness under variations. This is underlined by many studies on this subject [START_REF] Ferretti | LQG Control of Elastic Servomechanism Based on Motor Position Measurements[END_REF][START_REF] Mansouri | Optimal Linear Quadratric Tracking Using Genetic Approach[END_REF][START_REF] De Sousa | Design of robust controllers for PMSM drive fed with PMW inverter with inertia load variation[END_REF] where iterative or genetic algorithms are added to achieve a fine synthesis.

To achieve goalies, the load and actuator model plus the test bench will be shown up. Then, the two regulators and their definition are described shortly beginning by an optimization synthesis with few parameters, followed by a specific method using LQ optimization property and dominant poles placement. This bring classical engineering speaking poles placement (trade between speed and variation sensitiveness) into the design. Last section compares all the detailed regulators using experiments on different loads and speed profiles.

Actuator and Load Modeling

Nowadays PMSM direct drive systems as rolling mills, manipulator are modeled by a two-mass system (fig. 1). Indices m and l represent respectively motor and load parameters.

Variable J and f are the inertia and viscous friction. ∆θ is the difference of position between the motor and load and varies proportionally to the shaft torque. Then, the test bench builded is as close as possible to this kind of system. As shown on fig. 2, the right shaft can be loaded with inertia discs and a regulated brake. J l , the inertia load is one of test bench variant parameter, zero, one or two disc can be fixed to the axis making a 6 times inertia variation J lmin J lmax . Torque load (T l ), the other variant parameter allow to simulate non linear disturbance. The stiffness property of the two mass model is obtained by the elastic joint (K sh ). A three phases PMSM motor powered by a PWM inverter takes the load into The current and speed controllers are in cascade, so even if the internal closed loop control is neglected, some assumptions must stay verified (speed dynamic lower than current one, torque reference lower than current limitation due to duty cycle limitation (α 1,2,3 ) of the inverter and motor size). The speed controller tuning must deals with bandwiths and saturation of both electrical and mechanical parts. The following controllers tuning takes into account all this phenomena.

Two-mass model for speed control

Using Park transformation, the torque control (T m ) of PMSM direct drive is simply a current control. This transformation represents information in a 2D rotating frame. Controlling I dref = 0 (d axis is the magnet flux axis) let controlled quadrature current (I q ) linked to torque. Then, torque control has been split from speed control providing to mechanical model, torque as input and load speed as output. On fig. 1 Two similar sub-schemes appears, showing the two inertia effects. Torque transmission is made throught the elastic joint and is proportionnal to positions difference ∆θ.

Nevertheless, the inertia variation bring modification on system poles making the system behavior different in respect to inertia as shown in fig. 4. This problem does not resume as a stabilization problem h 1 but consist also to a robust problem limiting time response variation h 3 , overshoot h 2 and disturbance rejection.

As checked in part 4, PID synthesis can cancel the instability phenomena but is limited for robust performances, so other method has to be implemented and need the state space feedback built in next section. 

State Space formulation and State feedback

To use optimization algorithms based on mathematical principles, a state space representation is requested. For the speed control problem, the speed behavior of both the load and machine must be used in the state vector. Distortion ∆θ = (θ m -θ l ) id added and allow the complete modeling of the system without non bounded vector issue as it can happen with positions obtained in speed control. Nevertheless, controlling this kind of system without steady state error, need the addition of an integral action X i in the loop. Then the state vector is augmented and lead to [START_REF] Anderson | Optimal Control -Linear quadratic methods[END_REF].

X = ω m ω l ∆θ X i T (1)
And the 4-dimensional state space representation is given in (2) where J l is the varying load inertia.

                       Ẋ =     -f m J m 0 -K sh J m 0 0 -f l J l K sh J l 0 1 -1 0 0 0 -1 0 0     A X +     1 Jm 0 0 0     B T m y = 0 1 0 0 C X (2)
With this representation, to complete the control scheme, the loop is closed by a gain K = K c K i matrix which is the controller and results to the system scheme described in fig. 5.

Linear Quadratic formulation

Linear Quadratic is the state space optimization used. Although it is not a robust method, it has lot of advantages in our single input system. By carefully designing controller, the unsensitive system feature can be achieved.

As outlined in [START_REF] Anderson | Optimal Control -Linear quadratic methods[END_REF], the criterion (3) is minimized with a state feedback T m = -KX, the method provides always a stable closed loop system with wide phases margin (> 60 • ). The controller ( 4) is obtain by computing well known Algebric Riccati Equation [START_REF] Mansouri | Optimal Linear Quadratric Tracking Using Genetic Approach[END_REF]. Solving this linear problem do not bring out any problem cause lot of solver are available as lqr() in Matlab c or open source code (ARE).

J = ∞ 0 (X T QX + T T m RT m ) • dt (3) K = R -1 B T P (4) P A + A T P -P BR -1 B T P + Q = 0 (5) 
As soon as the solving algorithm is in function, the weight matrices Q and R have to be defined. Understanding that different Q and R values can dramatically change the closed loop system behavior.

Control Synthesis Approach

To achieve our performance objectives, two different solutions for optimal synthesis are now described and compared in section 4 with a classical but optimized PID designed in [START_REF] De Sousa | Design of robust controllers for PMSM drive fed with PMW inverter with inertia load variation[END_REF].

The first consists to an iterative limited parameter optimization with Linear Quadratic principle. The second one blends with optimization a dominant poles placement.

These sets of coefficients assure performances shown in the experimental part fig. 6,7 with curves named PID and the overall variations are in Table I. All experimental results will be commented further.

Limited Q and R synthesis (LQ3 method)

Using linear quadratic principle does not provide a robust performance, a study must be made on Q and R to tune the required criterion. Compare to other paper which runned complex algorithm [START_REF] Mansouri | Optimal Linear Quadratric Tracking Using Genetic Approach[END_REF], here a basic trial and error method is performed on Q and R matrices forms shown in [START_REF] Peter | Robust State-Feedback H ∞ control of a nonlinear two-mass system[END_REF]. Only three coefficients are considered tuned. This controller is set up to compare the linear quadratic optimization with a PID and these 3 dof are equivalent to PID dof.

R = γ Q =     0 0 0 0 0 α 0 0 0 0 0 0 0 0 0 β     (6) 
The major problem of this control design is to set up the correct weights in the quadratic cost function. Synthesis is performed by trial and error and imposed to underline some important influences of α, β and γ :

• α imposes the constraints to the load velocity dynamics. This constraint is directly correlative with load speed overshoot.

• β impacts on integral action dynamics and so on system dynamic. • γ is used to limit the maximum control input (motor torque) of the system.

Nevertheless, the single weight variation knowledge is insufficient to assume a correct dynamic and time response. The poles placement variation depicted in section 2.1 makes us selected the critical inertia (J lmin ) for regulator calculation.

Iterative computer aided trial on each modifiable coefficients allows us to know the system reaction to these variations and provide weight rates [START_REF] De Sousa | Design of robust controllers for PMSM drive fed with PMW inverter with inertia load variation[END_REF] to close quickly to the wanted stable regulator.

     α γ < 50 β γ < 20000 (7) 
So, the final design method consists in the following algorithm which is in three steps leading us to optimum the 3 dof LQ weights :

1) Defined rate (7), system knowledge and requirements lead to a set of matrix Q and R. 2) Time response, poles placement and torque have to be supervised on the over-all inertia variation. 3) If the robustness criterion is achieved (limited motor torque, time response variation and overshoot as less as possible), the parameter set is taken otherwise one more iteration must be done.

This regulator produces responses shown after in the experimental part. According to (Table I), this regulator provides better performances than PID, this gain of performance is quite interesting but this method has the same disadvantage than the PID. The choice of matrix makes the designer loose the hand on dynamic. So an other method is performed, it blends dominant poles placement to linear quadratic optimization to achieve quick result and good performances.

Q and R synthesis and poles placement (LQP method)

In this part, a pole placement procedure is defined to have a full definition of Q and R with performance management specified by dominant closed loop poles positioning (poles placement and actuator management). Therefore, this method blends the attractive linear quadratic criterion and traditional poles placement to reach a fast design method. Theoretically proved in [START_REF] Anderson | Optimal Control -Linear quadratic methods[END_REF] and succesfully used on a position controlled two mass system in [START_REF] Ferretti | LQG Control of Elastic Servomechanism Based on Motor Position Measurements[END_REF] based on a n-dimensional standard state space formulation, this method is adaptable to all observable and controllable system following conception steps :

1) The (n -1) closed loop poles are chosen.

2) the equation ( 8) is solved where A and B are the system open loop matrices, p 0 (s) the open loop polynomial, m(s) the desired close loop polynomial and d a column vector which must be found. 3) Solving (9) provide the Q and R matrices. ρ is an iterative placement parameter.

m(s) p 0 (s) = d T (sI -A 3aug ) -1 B 3aug (8) R = 1 and Q = ρdd T (9)
The placement parameter ρ has important effects on the system. As high ρ is, as closed are the closed loop poles to the desired placement. Otherwise, the closed loop poles tend towards open loop poles. The last pole which has not been chosen will be on real axis and its real part decreases toward -∞ when ρ grows up. So, in this case, ρ is as much higher as necessary to have both, the dominant poles placed and the last one five to ten time faster to be neglected in the desired behavior. This method uses the same optimization criterion than the previous one, thus the same performances should be expected. Poles placement is selected as a consequence with a first order dynamic to minimize the overshoot with maximum inertia. Poles are one real and dominant at -30rd.s -1 and two complexes with big module -30 ± 1700j.

Besides choosing the dominant poles placement, so the dynamic, the linear quadratic optimization provides for all controller a minimum phase margin which allows to tune them quickly while performances are kept compared to other methods. (see LQP curves in fig. 6,7)

Experiments and results

In this section, all methods are experimentally compared on the direct drive test bench. Three different tests are performed, each one on minimal and maximal inertia to completely defined controller performances:

• Step reference response. Time response and overshoot can be measured. • Step torque load disturbance response.

• Response to a reference slope. Overshoot and tracking error could be underlined.

To be noted, with each controllers, a sinusoidal disturbance of 50 Hz is observable only when inertia is minimal fig. 6. This disturbance is inducted by current PWM noises and amplified through inertia and stiffness resonance. When inertia is bigger, this noise is filtered.

To begin, system responses are studied with minimal inertia which is used for calculation. PID regulator response is faster than other state feedback regulators (2.5 times) fig. 6(a) but has a 10% overshoot due to command saturation whereas the state feedback are keept linear. LQ3 has the slowest under inertia variation so parametric robustness. In spite of its fastest time response, PID has worse performances on the other criterion with the maximal variation. State feedback regulators have almost the same features. Finally between this two controllers, the main differences is the way they are synthetised. The linear quadratic criterion assure minimal stability condition on the two cases and poles placement makes designer tuning its controller quickly giving one decisive advantages to the last method.

Conclusion

This paper describes the robust design and comparison of state feedback controller tuned by two methods on PMSM direct drive application with elastic load on large load inertia variation. Alike other studies, the PID does not achieve purpose.

State space allows design of highly capable controller as linear quadratic one which has interesting characteristics in term of parametric stability robustness and keep implementation simple for industrial application. Unlike first method and common used algorithm, the last proposed approach, LQP, lead quickly to a solution which achieves the performance robustness goal helped by a classic poles placement. 
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