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Abstract 
This paper proposes a sensorless control system based on extended Kalman filter (EKF) for permanent 
magnet synchronous motors (PMSM). The EKF equations are built in rotor flux oriented synchronous 
coordinate, so it can easily be used for either non-salient or salient pole motors. Inertia and other 
mechanic parameters are not needed in this observer. Rotor speed and position can be estimated 
exactly and then a sensorless control system is built. The initial rotor position and the mechanic 
parameters are not needed in this system. By some compensation in observer equations, the observer 
can be always stable and has only one expected equilibrium point. So the motor can start up from any 
unknown initial positions. 

Introduction 
Permanent magnet synchronous motors (PMSM) are more and more used because of its high power 
density, large torque to inertia ratio and high efficiency. The rotor flux is generated by the permanent 
magnet on the rotor. So the rotor flux position is the same as the rotor electrical position. And the 
precious rotor position is needed for the high performance control. Since mechanic position sensor is 
usually too expensive, increases the cost and decrease the stability of the system, mechanic sensorless 
control is becoming a research focus now. 
Some sensorless control methods have been proposed before. Generally there are the methods based 
on back electromotive force (EMF), model reference adaptive system (MRAS) (example in [1]) and 
state observer method. The methods based on back EMF are simple but doesn’t work well in low 
speed region because the back EMF is too small compared with the noise. The method based on 
MRAS also cannot get a satisfying performance in low speed region and is greatly depended on the 
accuracy of the reference model. The state observer method is not suitable for the nonlinear model and 
is hard to know the feedback matrix. Also some methods based on Kalman filter have been proposed, 
most of which are founded in the static two-phase coordinate, since the stator inductance of salient 
pole motor is a variable of rotor position in static two-phase coordinate, these observers can hardly be 
used for salient pole motors [2][3][4] . 
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In this paper, a new state observer based on extended Kalman filter is used to observe the rotor 
position and speed.  The observer model is set up in the rotor flux oriented synchronous coordinate, so 
it can be used easily in either salient or non-salient pole motor because the stator inductances in 
synchronous coordinate are always constant. Extended Kalman filter can solve nonlinear equation 
directly by numeric iteration. Kalman filter also considers the errors of the parameters and the noises 
in the measurement, so it is very robust with the parameters’ errors and measurement noises. Also the 
initial rotor position is not necessary for the start-up. By a proper compensation in the observer 
equation, the other unexpected equilibrium points of the observer are moved off. The motor can start-
up successfully from any unknown initial position[5][6][7].   

Observer based on extended Kalman filter  
In rotor flux oriented synchronous coordinate (d,q axes), PMSM model is shown in (1). 
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Here Id and Iq are the currents in d and q axes. R is stator resistance while Ld and Lq are the stator 
phase inductances in d and q axes. For non-salient motors, Ld is the same as Lq. Ud and Uq are stator 
voltages and R is stator resistance. ω is the rotor electrical angle speed and θ is rotor electrical angle 
(rotor flux angle). rψ is rotor flux amplitude. Rotor speed is considered to change more slowly 
compared with other variables. 
State equations for PMSM can be written as (2).  

( , )x g x u w
y C x v

= +
= ⋅ +

                                                                                                                    (2) 

Here 
T

d qx I I ω θ =                                                                                                          (3a) 

1 0 0 0
0 1 0 0

C
 

=  
 

                                                                                                                        (3b) 

 d

q

I
y

I
 

=  
 

                                                                                                                                       (3c) 

Here w and v are random disturbances. In fact w is the process noise which stands for the errors of the 
parameters; v is the measurement noise which stands for the errors in the measurement and sample. 
The noise covariance matrixes are defined as follows: 

}{)cov( TwwEwQ ==                                                                                                     (4a) 
}{)cov( TvvEvR ==                                                                                                                  (4b) 

Extended Kalman filter can be built by the derivation below: 
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Define matrix F: 
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/d dL Rτ = , /q qL Rτ =  are stator constants. 
Define matrix P as the error covariance of observation 
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}{⋅E  is the computation of expectation value. 
Extended Kalman filter can be realized by iteration as follows: 
1. Compute the state ahead and the error covariance ahead. 

| 1 1| 1ˆ ˆk k k k ex x x T− − −= + ⋅                                                                                                                         (8a) 
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T
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2. Compute the Kalman gain. 
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3. Update estimation with measurement. 
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4. Update the error covariance matrix. 
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Based on extended Kalman filter, the sensorless control system is shown in Fig. 1. In this system, rotor 
flux oriented vector control is adopted. The d-axe current is controlled to be zero which can get the 
largest torque with the smallest phase currents. Since the terminal voltages of motor are hard to 
measure, the reference voltages are used in extended Kalman filter instead of the real voltages. 
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Fig. 1. Block diagram of the sensorless system 

Start up ability analyse 
Take non-salient PMSM motor as example, in real rotor flux oriented coordinate (γ δ− axes), PMSM 
model is: 
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= − + ⋅ ;                                                                                                               (9a) 
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Uγ  and Uδ  are stator voltages in γ-δ axes. Iγ  and Iδ  are stator currents in γ-δ axes. 
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Since the real rotor flux is not known in sensorless control, in the coordinate oriented by estimated 
rotor position (d-q axes), there are: 
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PMSM equations become: 
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Here: 
ˆγ θ θ= −  is rotor position error. 
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Fig.2. Real and estimated axes 
 

In both coordinates, there always are: 
d
dt
θ ω=                                                                                                                                             (12) 

Electromagnetic torque is: 
( cos sin )em r r q dT p I p I Iδψ ψ γ γ= ⋅ ⋅ = ⋅ −                                                                                        (13) 

Mechanical movement equation of PMSM is: 

( )em L
dJ T T
dt
Ω = − Ω                                                                                                                            (14) 

( )LT Ω  is load torque and it is a function of rotor speed. 
If rotor electrical angle speed is used instead: 
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In the observer proposed in (1), the third equation for rotor speed just relies on state feedback. If we 
just consider the other three equations, (superscript ^ stands for estimated variables) 
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State observation errors are defined as: 
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Using (10) (11) and (16), there are: 
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The equilibrium points of the system former will satisfy: 

0d
dt
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In the observer based on the equations former, besides the expected equilibrium point 0γ = , there is 
another equilibrium point: 
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Since the observed speed is zero, difference between reference speed and feedback speed exists, the 
output of speed regulator (reference torque) will arrive at the maximum limitation. But on this point, 
the electromagnetic torque equals load torque while current Iq equals desired torque current. So the 
motor cannot accelerate any more and will stay in this wrong situation. 
Particularly, when load torque is just friction or block torque which are most familiar, the equilibrium 
point is / 2γ π= ±  where the actual electromagnetic torque is zero although current Iq equals the 
desired value. On this point, since the rotor speed and electromagnetic torque are all zero, load torque 
is also null. Under the effects of the maximum limitation in speed regulator, the motor will stay in this 
situation. 
In practice, when initial position error satisfy cos 0γ > , the real electromagnetic torque has the same 
direction with desired torque, then PMSM can start up towards the desired speed direction, and the 
motor will start up successfully. Otherwise, PMSM reverses and the observer will get a wrong speed 
direction and will converge to the unexpected equilibrium points. This is verified by simulation in next 
section.  
In [2], another equilibrium points are proposed which doesn’t satisfy (11). It’s the converging problem 
of some observers and these points don’t exist in our observer. 
The second kind of equilibrium points are mainly determined by the q-axe voltage equation, so we can 
add some compensation in the second equation to break out this balance. We change the equation to: 

ˆ ˆ ˆ
ˆˆ ˆq q q qe
d

dI U I k RIKI
dt L L L

ω ω
τ

⋅
= − − ⋅ − ⋅ +                                                                                             (21) 

Here k is a coefficient positive. 
With the compensation, the unexpected equilibrium points can be avoided. In steady states, the 
compensation will be considered as a little error in stator resistance parameter. Its effects will be 
eliminated by the robustness of the system. Also when motor is started up successfully, the coefficient 
k can be decreased artificially and the compensation can be moved off finally. 

Simulation results 
Simulations have been done in MATLAB Simulink to verify the performance of the extended Kalman 
filter. Motor parameters are shown in TABLE I. 

Table I  Motor parameters 

Stator resistance R  0.155 Ω  
Stator inductance d qL L=  0.00125 H 
Number of pole pairs p  4 
Rotor magnet flux  rψ  0.153 Web 

In extended Kalman filter, matrixes Q and R in (4a) and (4b) are difficult to be known exactly because 
the disturbances w and v are not known. The only possible method is to adjust the values of Q and R 
by practical simulations or experiments. In simulation, we use the values as follows: 
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Rotor speed and position estimation results are shown in Fig. 3 and Fig. 4. It shows that extended 
Kalman filter can observe rotor speed and position exactly. 
If there is some initial rotor position error, when this error is too large, the motor cannot start up and 
will converge to the unexpected equilibrium point. As shown in Fig. 5. 
With compensation as shown in (17), simulation results when there is a large initial position error 
( 2 /3π ) is shown in Fig.6. The motor can start up successfully under the effects of compensation.   
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Fig. 3. Estimated and real rotor speed 
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Fig. 4. Estimated and real rotor position 
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Fig.5. Failure start up when initial position 

error is too large (simulation) 

0 0.5 1
-20

0

20

40

60

80

100

time(s)

ro
to

r s
p

ee
d 

(r
a

d/
s)

 

 

real speed
estimated speed

0 0.2 0.4
0

1

2

3

4

5

6

7

8

time(s)

ro
to

r p
o

si
tio

n 
(r

ad
)

p p

 

 

real position
estimated position

 
Fig. 6. Success start-up with compensation 

(simulation) 
Simulations also show that with the same load torque and mechanic inertia, the coefficient of 
compensation has no relations with the initial position error. With the same value of k, result of start 
up without initial position errors is shown in Fig. 7. To test the start up ability with load torque, 
simulation result with an electromotive torque of 5Nm is shown in Fig. 8.  
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Fig. 7. Start-up with compensation and no 

initial position error 
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Fig. 8. Start-up with compensation and load 

torque 
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Simulations also show that the system can start up when there is a block torque and in steady state, the 
compensation has very little effects in rotor speed and position estimation. 

Experiment results 
Experiments have been done on a platform with the DSP C6711 as the controller. The parameters of 

the motor are the same as Table 1.In fact, the parameters can be varied in a large field. 
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The estimated and real speeds when the motor rotor mechanical angle speed is accelerated from 2π  
rad/s to 2π  rad/s are shown in Fig.9. If a load torque impact is used in the rotor, rotor speed during 
dynamic state is shown in Fig. 10. It can be seen that in both steady and dynamic states, the estimated 
speed by EKF observer can also track the real rotor speed very well. 
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Fig. 9. The estimated and real speeds during 

acceleration 
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Fig.10. The estimated and real speeds during 

load impact 
 

When there are some errors in the initial position, the estimated and real positions during start up 
periods are shown in Fig. 11 and Fig. 12. The initial value of the estimated position is always zero 
while the real position is random.  
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Fig. 11. Start-up with little initial position error 

(experiment) 
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Fig. 12. Start-up with large initial position error 

(experiment) 
It can be seen that the motor can start up from any unknown initial position. The extended Kalman 
filter can track the real rotor position quickly during start up periods. And there is few reverses or 
vibrations.  It is obvious that the initial position measure or estimation in our system is not needed. In 

Authorized licensed use limited to: INP TOULOUSE. Downloaded on January 24,2022 at 10:57:40 UTC from IEEE Xplore.  Restrictions apply. 

gaugerenques
Rectangle



steady state, there are some steady-state errors between the real and estimated rotor positions. That is 
because we use the reference voltages instead of the terminal voltages, the voltage errors caused the 
position estimation error.  

Conclusion 
This paper proposed a sensorless control system based on extended Kalman filter for the PMSM. The 
Kalman filter can estimate the exact rotor speed and rotor position while the initial position and 
mechanic parameters are not needed. By proper compensation in q-axe equation, only expected 
equilibrium point is kept. Then the motor can start up at any unknown initial positions and it is not 
necessary to estimate the initial position before start up. The extended Kalman filter is set up at rotor 
flux oriented synchronous axes, so it can be easily used in either non-salient or salient motors. The 
problem is that the covariance matrixes of noises can only be determined by experiment since the 
noises and disturbances are not known in practice. 
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