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Design of robust controllers for PMSM drive fed with PWM inverter with inertia load variation

A detailed design and comparison of PID and State Space Controller (SSC) for permanent magnet synchronous motor (PMSM) loaded with elastic joint to a mass are presented. The SSC controller consists of a LQ controller and a proportional feedback compensation of the load torque estimated by a reduced disturbance observer. Step by step analyse for PID and LQ tuning is conduced for PMSM drive and varying load. A large load inertia variation is taken into account to define the strategies used to calculate the optimum PID, LQ and reduced observer parameters that ensure the drive system stability and performances. Simulations results verify and compare the robustness of the controllers. Complexity of synthesis and performances obtained are discussed on a PMSM drive fed with a PWM voltage inverter controlled in current.

by a five dimensional LQ with integration and feed-forward coefficient optimization and a load disturbance observer is added.

Simulation results on the mechanical model show the performance robustness to load parameter variation charac- teristics of the two proposed controllers. Details analysis through simulations comparing the performance between the controllers are given in IV. The complete LQ and torque load compensation controller performance is used in V, in a global set-up including PWM switched inverter in current mode for accurate velocity closed-loop control.

I. INTRODUCTION

The permanent magnet synchronous motor (PMSM) is the most used drive in machine tool servos and modern speed control of industrial applications due to its: compact structure, high air-gap flux density, high power density, high torque to inertia ratio and high torque capability.

However, the control performance of the PMSM system is strongly influenced by unpredictable plant parameters vari- ation, external load disturbance and nonlinear dynamics [START_REF] Ji | Kalman Filter and LQ Based Speed Controller for Torsional Vibration Suppression in a 2-Mass Motor Drive System[END_REF] [2]. For example, in machine tools operation, railway traction, and rolling mill drive the mechanical load varies considerably under certain operating conditions. Moreover, in many PMSM drive industrial applications the mechanical transfer elements (shafts, gears, etc) introduce uncertainties and nonlinearities that must be considered in dynamic speed drives (friction, backlash, elasticity, etc). The influence of the inverter in such control is commonly neglected but an accurate current control and torque control contribute to the accurate position or velocity PMSM control [3].

The aim of this paper is to propose an optimal tuning of speed closed-loop controllers for the PMSM-Elastic Load system (PMSMEL). The speed controllers under consideration are: a PID controller and a State Space Controller with integral action on the load speed error. To elaborate the controllers de- sign strategies the load inertia variation is taken into account. In this paper the mechanical system is considered as a twomass system so, the PMSM and the load are connected through a shaft. The mechanical system dynamic characteristics with a large load inertia variation is presented in II. The three coefficients synthesis present in the PID controller is driven in frequency domain. The state space corrector is studied II. DYNAMIC MODEL OF THE SYSTEM For control purpose, the electrical machine model of a PMSM can be described in the rotor rotating reference frame as follows [START_REF] Hsien | Robust Speed Control of Permanent Magnet Synchronous motors: Design and Experiments[END_REF]: di1d dt diq dt [START_REF] Ji | Kalman Filter and LQ Based Speed Controller for Torsional Vibration Suppression in a 2-Mass Motor Drive System[END_REF] L(Vd + PmLqiq -Rid) L(vq -PWmLdJd -Riq-PWm4 dm) (2) q where vd and vq are d-q axis voltages, id and iq are d-q axis currents, Ld and Lq are the d-q axis inductances, R is the stator windings resistance, Ydm is the flux linkage of the permanent magnet, Wm is the angular velocity of the motor shaft and p is the number of pole pairs. The electromagnetic torque is stated as:

Tm = 3P[/dmiq + (Ld -Lq)idiq]/2 (3)
On a smooth airgap PMSM, Ld = Lq. The basic principle in controlling a PMSM drive is based on field orientation. If id is controlled to be null the electromagnetic torque Tm is then proportional to iq, which must be fixed by closed-loop control. Since the PMSM is driven by a current-source inverter, iq is a known quantity and thus serves as ideal supply to the motor. The equation (3) can be reduced to: Tm = ktiq [START_REF] Hsien | Robust Speed Control of Permanent Magnet Synchronous motors: Design and Experiments[END_REF] where kt = 3pbdm/2 Considering the mechanical system described by Fig. 1 the PMSM-Elastic Load system can be represented by the classical speed control system block diagram shown in Fig. 2. The dynamic of PMSMEL in the nominal condition without external load disturbances is given by: The Fig. where s is the Laplace operator, Jm and J1 are the motor and load inertias respectively, 0m and 01 are the motor and load angular positions respectively, fm is the viscous friction coefficient, T5h is the shaft torque, Wi is the load speed.

JmWmS = Tm -fmm + Tsh Jlw1s = -fmWl -T5h 0m s = 0m WmS £ Tsh Ksh(0l -Om) (5) (6) (7) (8) 
Choosing the control input u = Tm, the output vector y = wl, C = [O 1 0 0], the state vector x [Wi Wi Om O1]', the model ( 5)-(9) can be expressed in state space form as follows:

± y AF= f. Jm, 0 1 0 0 _f Ji 0 1 Ax + Bu Cx K,h Jm, K,h Ji 0 0 K,h Jm, K,h Ji 0 0 1 BF= Jm, 0 0 0 (10) ( 1 1 
) PMSM-load system Fig. 2. The block diagram of speed control system of the PMSM-load system The closed-loop transfer function H(s) from the motor torque Tm to the load speed Wi is given from (12) to obtain: w1 (s) Tm(s) 

nl Fig. 3. variation

The Bode diagram of the mechanical system with load parameter A special corrector synthesis must be made to take into account H(s) variation.

III. PID AND LQ CONTROL DESIGNS A. PID Controller's Design PID control, based on the motor/load speed behavior, is the most common controller structure used in industrial motor [5]. However, tuning of a PID controller requires knowledge of the nominal system's parameters (Jm, Jl, fi,m K,h, etc).

Due to the changes of the operating conditions or process/load disturbances, the dynamics of the system often changes. If the conception of the closed loop control system takes into account only the information concerning the nominal system model, it might become unstable. For a robust stability control the uncertainties of the systems must be considered in the PID control design.

The PID controller shown in Fig. 2 has the following transfer function with approximative derivation term: PID= Kp. 1+s+ +saTd (16)

The choice of the four degrees of freedom of the PID (Kp, Ti, Td, a), to obtain the desired response, is based upon Speed PID controller the application requirements. The PID controller is designed in order to increase the system closed-loop bandwidth (e.g. higher velocity response) and to get a cross over frequency wo much lower than the mechanical natural frequency wo.

The control input can not exceed the maximum motor torque, so saturation must be considered in the determination of the controller coefficients to not excite too much nonlinear phenomena. Classically a maximum tolerable overshoot of 5% of the load speed response and stability as the main criterion to be satisfied with the PID. Moreover, a high rise and setting time response due to classical industrial applications requirements must be obtained. The motor parameters are considered having known unchangeable nominal values. Although the inertia load parameter will be characterized by the variation given by ( 15).

Taking into account the above information, a strategy to determine the optimum PID controller for the system is defined as follows:

1) Three different load inertia references are studied . load minimum inertia reference (1): Jl Ji . load nominal inertia reference (2): J= Jnin . load maximum inertia reference (3): JI Jl these three load inertia references give as consequence three nominal systems parameter values.

2) For each load inertia reference only Kp is tuned in the PID parameters. As result three sets of PID parameters are established:

. set (1): Kp, Ti1, Td1, a, . set (2): Kp2, Ti1, Td1, a, . set (3): Kp3, Ti1, Td1, a, obviously: Kp3 >Kp2 >Kp,.

gives a more satisfying result. Observing the fourth curve, the criterion is respected in almost all of the inertia load variation range. The exception appears in the case where the load inertia reach the minimum value. At this moment the system becomes unstable (dashed arrow). The three sets of parameters do not provide satisfying results, while the compromise between stability and the robustness criterium is not fulfilled.

4) The optimal correction performance is between curve 2 and 4 to have an overshoot as little as possible avoiding instability. This means that the optimum value Kpop, has to lie necessarily between Kp2 and Kp3.

[KP2KP,Pt KP3]

(17

)
Moving from the minimum value of the range Kp2 until the maximum value Kp3, Kpop, is detected. Kpop, will be found in the point where the system is still marked by stability. 3) For every set of controller parameters, the overshoot evolution of load speed response is analyzed while the load inertia is varying from Ji to J1max and overshoot evolution results are shown in Fig. 4. Curve 1 shown in Fig. 4 (first set of controller parameters) gives an overshoot exceeding the criterion of 5% while the load inertia parameter is increasing towards the maximum inertia value. Although the stability of the system is guarantied in all the load inertia range variation. The same situation appears for curve 2, although the overshoot evolution To verify the strategy, simulations of the closed-loop con- troller are conduced. In the simulated results, shown in Fig. 5, Kp is changed from Kpmin (Kp,) to Kpop,. In each case, the load inertia is moving from J1 to Jlmax. With the variation of these two parameters, the overshoot of the system response provides a surface. The variation of Ti is chosen in the way that the system stays stable. Each surface correspond to a different value of Ti. The arrow in the picture points to the region where the overshoot is the lowest whatever the inertia is, which corresponds to KpoP,. The reason why Ti parameter is included in this analyze, is to show that even if Ti varies, the optimum region does not change.

B. State Space Controller Synthesis

In this section, a state space technique is used to assign closed-loop poles. State feedback gains are computed using LQ approach. An integration is commonly added to this classical scheme to cancel steady error on load velocity Wi. Considering that the dynamics of the system are given by:

x = Axc+Bu (18)
with, the state vector : X [W i1 Wi 01 xi] t where xi is the state of the integral term, Win, Wi states are measured and 0m, 01 are observed with a load disturbance reduced observer. The matrix A, and B are respectively expressed as:

A [ 1A 04*1 ,B [ B with A and B the matrixes of the state space model given by (11). The vector of control input u is written as:

u=-Ktx (19) 
with K = [kl, k2, k3, k4, ki]. K is the the matrix gain of the state space law. The integral term ki is computed also in the matrix K, so ki is negative that explain sign(-) used in the block diagram of Fig. 6 representing the augmented LQ controller. The term ki on the load speed error is needed to eliminate steady state errors and to regulate the output if torque disturbances occurs. Under state feedback u = of the system are given by -Ktx, the closed-loop dynamics x = [A -BKt] From (18), the quadratic cost function JLQ and the control input u are given as follows:

* 3 gives the steady-state error dynamics. For high value of Q the system response becomes fast (short rising time). * -i is used to limit the maximum control input (motor torque) of the system. High values of -y results in high constraint on the maximum Tm. Therefore the settling and rise time is increased. To determine the optimum LQ weights the following strat- egy is developed:

1) The highest load inertia is used like reference.

. load inertia reference : Jl J=

The system parameters value are composed by the nom- inal motor parameters. 2) Using the trial and error method and the knowledge of the weights characteristics a set of LQ parameters is defined. 3) The system eigenvalues are analyzed when the load inertia is varying from J1 to Ji 4) If the robustness criterion, the maximum motor torque permitted, the condition of stability and the aim of high rise and settling time are achieved, the optimum LQ weights are found. If not, one more iteration goes to step 2. The Fig. 7 shows the closed-loop poles of the PMSMEL with LQ control. The system becomes unstable for J1 (X(s) > 0). The instability is due to the small weight value for control input (y = 0.001, no constraints about Tm) and Q has a high value (fast dynamic). Q is extremely important to determine the system stability or instability in case where (ay/a > 100). The weight matrixes Q and R to satisfy the control objec- tives of the system are given by: /0 0 0 0 0

Q 0 0 0 0 0 (21) 0 0 O Q/3 R (a) (22) 
where a: weight for reference tracking performance, Q: weight for steady-state error management, -y: weight for control input limitation, The major problem of this control design is the selection of the weights in the quadratic cost function. The weight factors a, Q and -i can be selected by trial and error method using off- line MATLAB simulation according to design specifications.

For this propose some important influences about a, /3 and ty must be discussed: a imposes the constraints to the load speed dynamics. For high value of a the system response is slowing. The load speed overshoot is directly correlative with a. Where the relation (a/-y > 100), the dominant closed-loop poles are placed near the real axis origin, system response is very slow. To accelerate the system response, Q has to be extremely high. The system is thus ever stable, and no overshoot is observed for every value of the load inertia.

C. Load Torque Reduced Observer

Generally, it is required to know all inputs given to the system to do the state feedback. But in real system, there are many cases where some inputs are unknown or inaccessible.

Considering that the motor and load position are measured, and the motor and load speed are estimated, a load disturbance reduced observer can be implemented. If it is assumed that the load torque is a state variable and its dynamics is constant, the PMSMEL system equation can be modified as follows: where Yr = [0m 01] is the measured vector, x,r =[Wi W Ti]

is the vector to be estimated.

Using the Gopinath's reduced theorem the following equation is obtained.

it Frzt + BrCm + ToYr (24) Xr Zt + Lyr where xr = Wn iJ Ti] is the estimated vector, Zt is an internal state vector, Fr = A22 -LA12, Br = B2 -LB1, To = FrL + A21 -LA,,. L is a 3x2 feedback gain matrix composed of two identical columns of L1, L2, L3 coefficients.

(figure 8).

After some tests it becomes evident to use for synthesis Jlm,x to define the observer parameters so the highest load inertia is taken like reference. Assuming the load inertia variation given by (15), Jlo = J1,.x The load torque disturbance observer performance is achieved wherever the load inertia variation is. The dominant poles of Fr are ever real, and the load disturbance estimation has a fist order system response (no damping).

IV. COMPARISONS OF THE 2 CONTROLLERS

To investigate the effectiveness of the two optimum proposed controllers, PMSMEL system simulations are conduced. The motor and load parameters are reported in Appendix.

The time response of the optimum PID controller system to a step in the load speed reference is shown in Fig. 9 (a). The overshoot and settling time goes up when the load inertia augments. The criterion is not achieved (5% overshoot max- imum). However, the closed-loop system is stable for every load inertia variation. The optimization only keep the stability but the system performances (response time, overshoot) vary.

Fig. 9 (b) shows the system response with the LQ controller and disturbance compensation. The closed-loop system is ever stable and excellent performances and robustness are achieved. The dynamic response is easy controllable. The coefficients L1, L2, L3 are calculated by the equality between the observer characteristic polynomial and the polynomial imposed by the load dynamics. V. LQ CONTROLLER ON COMPLETE PMSM-EL DRIVE To verify the results obtained with the best controller (LQ controller with load torque observer), a PMSMEL control experimental setup (Fig. 10) is simulated. The mechanical part is not the only element simulated but also the complete PWM inverter and its current control is implemented. The three- phase voltage source inverter is composed by a set of 3x2 IGBTs with a carrier frequency of of 20kHz. The maximum DC Source voltage available is 600 volts. To drive such device 3 duty cycles must be generated to obtain the ON/OFF switch orders. These states are obtained comparing 3 voltage reference to a 20kHz symmetric slop. The Park transformation and the rotor position feedback is used to generate the dqaxis current (d iq). This transformation allows to control 2 constant current value in a fixed rotating frame. Moreover, in this frame only the q axis current produces an effective torque so, a classical current control fixing (id = 0) and (iq = Iref) is sufficient. The current control is achieved only by DC bus Ti Y===4 Fr Observer and 2 machines lines current measurements. The scheme is implemented with an anti-windup structure (See parameters in appendix).

The Fig. 11 shows the load speed response for a 100 rpm load speed reference. The load inertia varies from Jl i to Jlm The system response is ever stable and no overshoot is observed. At 1.5s a load disturbance of 2N.m is introduced.

The load torque disturbance compensation given by T1 and G, decreases the time response and the load speed shut down. The load torque estimation error observed in I1 .(b) is due to a load inertia variation (Jlo 7 Jlmx ). For Jlo = J1max no important error is observed and the load disturbance estimation has an excellent dynamic. 

VI. CONCLUSION

This paper describes the robust design and comparison of classical controllers in PMSM drive in application of elastic load with large load inertia variations. Of course, classical synthesis of a PID in frequency domain is not robust but an optimization can be made to remain stable whatever the inertia is (bounded variations). State Space Controllers allows accurate pole placements, but actual torque limitation must be considered to have both transient and permanent controlled desired behavior. LQ synthesis is difficult due to gains acting directly on outputs performances and input limitation. Testing different coefficients allows to extract the optimal LQ regulator that let the system in stable region and around fixed performances. The load torque observer decreases the time response, and improves the system performance in the case of load disturbance whatever the load inertia variation is. Kp = 100 Ti = 0,1 a = 0.1 Q = 500 y 0.001 
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 11 Fig. 11. (a) Simulated load speed response of a PMSMEL control experi- mental setup (w = 100 rpm), with load inertia variation from J1 to J,Tm-In (b) The load torque disturbance value is the 2N.m. At the transient state an error the estimation is observed for J1 7