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Abstract— A detailed design and comparisons of PID and LQ
- State Space Controllers for Permanent Magnet Synchronous
Machine (PMSM) loaded with elastic joint to a mass are pre-
sented. Step by step analyse for PID and LQ tuning is conduced
for PMSM drive and varying load. A load inertia variation is
taken into account to define the strategies used to calculate the
optimum PID and LQ controllers that ensure the drive system
stability and performance. Simulation results verify and compare
the robustness of the controllers. Complexity of synthesis and
performances obtained are discussed on an actual PMSM drive
fed with a PWM voltage inverter controlled in current.

I. INTRODUCTION

The Permanent Magnet Synchronous Motor (PMSM) is the
most used drive in machine tool servos and modern speed
control applications due to its desirable features (compact
structure, high air-gap flux density, high power density, high
torque to inertia ratio, and high torque capability). However,
the control performance of the PMSM system is strongly
influenced by the unpredictable plant parameters variation,
external load disturbance and nonlinear dynamics [1] [2] [3].
For example, in machine tools operation, railway traction,
and rolling mill drive the mechanical load varies considerably
under certains operating conditions. Moreover, in many PMSM
drive industrial applications the mechanical transfer elements
(shafts, gears, friction, backlash, etc) introduce imperfections
that must be considered in dynamic speed drives. The influence
of inverter in such control is commonly neglected but an
accurate current control and torque control contribute to the
accurate position or velocity PMSM control. [4].

The aim of this paper is to propose a design method of speed
closed-loop controllers for the PMSM-Elastic Load system
(PMSMEL). The speed controllers under consideration are:
a PID controller and a State Space Controller with integral
action on the load speed error. To elaborate the controllers de-
sign strategies the load inertia variation is taken into account.
In this paper a two-mass system is considered for mechanical
part so, the PMSM and the load are connected through a shaft.
The mechanical system dynamic characteristics with a large
load inertia variation is presented in II. The PID synthesis is
driven in frequency domain and state space corrector is studied
by LQ optimisation in III.

Simulation results on the mechanical model show the per-
formance robustness to load parameter variation characteristics
of the proposed controllers. Detailed analyses through simula-
tions comparing the performance between the controllers are
given in IV. The complete controller performed is used in V,
in a global set-up including PWM inverter switched current
control in the LQ velocity closed-loop control.

II. DYNAMIC MODEL OF THE SYSTEM

The electrical machine model of a PMSM can be described
in the rotor rotating reference frame as follows [5]:

did
dt

=
1
Ld

(vd + pωmLqiq − Rid) (1)

diq
dt

=
1
Lq

(vq − pωmLdid − Riq − pωmψdm) (2)

where vd and vq are d-q axis stator voltages, id and iq are d-q
axis stator currents, Ld and Lq are the d-q axis inductances, R
is the stator winding resistance, ψdm is the flux linkage of the
permanent magnets, ωm is the angular velocity of the motor
shaft and p is the number of pole pairs. The electromagnetic
torque is stated as :

Tm = 3p[ψdmiq + (Ld − Lq)idiq]/2 (3)

The basic principle in controlling a PMSM drive is based
on field orientation. If id = 0 the electromagnetic torque Tm

is then proportional to iq , which is determined by closed-
loop control. Since the PMSM is driven by a current-source
inverter, iq is a known quantity and thus serves as input to
the motor. For velocity control purpose considering a smooth
poles PMSM equation (3) can be reduced to :

Tm = ktiq (4)

where kt = 3Pψdm/2
Considering the mechanical system described by Fig. 1

the PMSM-Elastic Load system can be represented by the
the speed control system block diagram shown in Fig. 2.
The dynamic of PMSMEL in the nominal condition without
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Fig. 1. Modeling of mechanical system

external load disturbances is given by:

Jmωms = Tm − fmωm + Tsh (5)

Jlωls = −fmωl − Tsh (6)

θms = ωm (7)

θls = ωl (8)

Tsh = Ksh(θl − θm) (9)

where : s is the Laplace operator, Jm and Jl are the motor
and load inertias respectively, θm and θl are the motor and
load angular positions respectively, fm is the viscous friction
coefficient, Tsh is the shaft torque, ωl is the load speed. In state
space form the model (5)-(9) can be expressed as follows:

ẋ = Ax + Bu
y = Cx

(10)

where control input u = Tm, the state vector x =
[ωm ωl θm θl]t, output vector y = wl, C = [0 1 0 0], .

A =

⎡
⎢⎢⎣

− fm

Jm
0 −Ksh

Jm

Ksh

Jm

0 − fm

Jl

Ksh

Jl
−Ksh

Jl

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

1
Jm

0
0
0

⎤
⎥⎥⎦
(11)
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Fig. 2. The block diagram of speed control system of the PMSM-load system

The closed-loop transfer function H(s) from motor torque
Tm to load speed ωl is given from (10) to obtain :

ωl(s)
Tm(s)

=
1

2fm

[
JmJl

2fmKsh
s3 + Jmfm+fmJl

2fmKsh
s2 + JtKsh+f2

m

2fmKsh
s + 1

]
(12)

where Jt = Jm + Jl

The natural resonant frequency ωnp and damping factor ζp

are calculated from the poles of the transfer function H(s):

ωnp =
√

JtKsh

JmJl
, ζp

∼= 1
4fm

√
Jt

JmJlKsh
(13)

Defining the bounds of load parameter variation Jl as
follows:

Jl = [Jlmin Jlmax ] (14)

Classical industrial limitations provide :

Jlmin = Jlo/2
Jlmax = 5.Jlo

(15)

The Fig. 3 represents the bode diagram of the transfer function
H(s). With inertia variations the gain abruptly increases near
the mechanical resonant frequency ωnp.
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Fig. 3. The Bode diagram of the mechanical system with load parameter
variation

III. PID AND LQ MODERN CONTROL DESIGNS

A. PID controller’s Design

PID control based on the motor/load speed behavior is the
most common controller structure used in industrial motor
[6]. However, tuning of a PID controller requires knowledge
of the nominal system’s parameters (Jm, Jl, fm, Ksh, etc).
Due to the changes of the operating conditions or process/load
disturbances, the dynamics of the system often change. If the
conception of the closed loop control system takes into account
only the information concerning the nominal system model, it
might become unstable. For a robust control the uncertainties
of the systems must be considered in the PID control design.

The PID controller shown in Fig. 2 has the following
transfer function:

PID = Kp ·
[
1 +

1
s · Ti

+
s · Td

1 + s · aTd

]
(16)

The choice of the PID parameters (Kp, Ti, Td, a), to obtain
the desired response, is based upon the application require-
ments. The PID controller is designed in order to increase the
system closed-loop bandwidth (e.g. higher velocity response)
and to get a cross over frequency ωc much lower than the
mechanical natural frequency ωnp. The fact that the control
input can not exceed the maximum motor torque must be
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considered in the determination of the controller to not excite
nonlinear phenomena.

It is well known that the proportion gain Kp is used
to increase the systems bandwidth, as well as, the system
bandwidth determines speed of response and it is limited by
the dominant poles. The choice of the Kp gain or equivalently
the crossover frequency ωc must be a trade off between a
fast enough motor/load response and a damped enough load
behavior.

Considering a maximum tolerable overshoot of 5% of the
load speed response as the main criterium to be satisfied with
the PID. Moreover, a high rise and setting time response due to
classical industrial applications requirements must be obtained.

Before calculating the optimum PID controller we are
remaining that the motor parameters are known. The motor
parameters are considered as unchangeable nominal values.
Although the inertia load parameter will be characterized by
the variation given by (15).

Taking into account the above informations, a strategy
to determine the optimum PID controller for the system is
defined. The strategy is developed as followed:

1) Three different load inertia references are studied :

• load minimum inertia reference (1): Jl = Jlmin

• load nominal inertia reference (2): Jl = Jlo

• load maximum inertia reference (3):Jl = Jlmax

these three load inertia references give as consequence
three nominal systems parameters value.

2) For each load inertia reference only Kp is tuned in the
PID parameters. As result we have three sets of PID
parameters:

• set (1): Kp1 , Ti1 , Td1 , a1

• set (2): Kp2 , Ti1 , Td1 , a1

• set (3): Kp3 , Ti1 , Td1 , a1

obviously : Kp3>Kp2>Kp1 .

3) For every set of the controller parameters, the overshoot
evolution of load speed response is analysed while
the load inertia is varying from Jlmin to Jlmax . The
overshoot evolution results are shown in Fig. 4.
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Fig. 4. The overshoot evolution of load speed response (the load inertia is
varying from Jlmin

to Jlmax )

Curve 1 shown in Fig. 4 which depends on the first set
of controller parameters, gives an overshoot exceeding
the criterium of 5% while the load inertia parameter is
increasing towards the maximum inertia value. Although
the stability of the system is guarantied in all the load
inertia range variation. The same situation appears for
the curve 2, although the overshoot evolution is giving a
more satisfying result. Observing curve 4, the criterium
is respected in almost all of the inertia load variation
range. The exception appears in the case where the load
inertia approach the minimum value of the inertia range
variation. At this moment the system becomes unstable
(dashed line).
The three sets of parameters do not provide satisfying
results, while the compromise between stability and the
robustness criterium is not fulfilled.

4) To calculate the optimum PID parameters the two most
satisfying sets of PID parameters are used as reference.
This means that the optimum value Kpopt has to lie
necessarily between Kp2 and Kp3 .

[Kp2 Kpopt Kp3 ] (17)

Moving from the minimum value of the range Kp2 until
the maximum value Kp3 , Kpopt is detected. Kpopt will
be find in the point where the system is still marked by
stability.
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Fig. 5. The overshoot evolution of load speed response for Kp , Jl and Ti

variation.

To verify the strategy, simulations of the closed-loop con-
troller are conduced. In the simulated results, shown in Fig 5,
Kp is changed from Kpmin(Kp1) to Kpopt . In each case, the
load inertia is moving from Jlmin to Jlmax . With the variation
of these two parameters, the overshoot of the system response
provides a surface. Ti parameter is also studied. The variation
of this parameter is chosen in the way that the system stays
stable. Each surface corresponds to a different value of Ti. The
arrow in the picture points to the region where the overshoot is
the lowest whatever the inertia is, which corresponds to Kpopt .
The reason why Ti parameter is included in this analyse, is to
show that even Ti vary, the optimum region does not change.
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B. State Space Controller

In this section a state space technique is used to assign
closed-loop poles. State feedback gains are computed using
LQ approach. An integration is commonly added to this
classical scheme, the integral term Ki on the load speed error
is needed to eliminate steady state errors if torque disturbances
occur.

Considering that the dynamics of the system are given by:

˙̃x = Ãx̃ + B̃u (18)

with, the state vector : x̃ = [ωm ωl θm θl xi]t where xi

is the state of the integral term. The full state vector x is
measured (or observed). The matrix Ã and B̃ are respectively
expressed as:

Ã =
[

A ∅4∗1
−C 0

]
, B̃ =

[
B
0

]
with A and B the matrixes of the state space model given by
(11). The vector of control input u is written as:

u = −Kx̃ (19)

with K = [k1 k2 k3 k4 ki]. K is the the matrix gain of
the state space law. The integral term ki is computed also in
matrix K so ki is negative that explain sign (-) used in the
block diagram of Fig. 6 representing the LQ controller.

+ -

- -

ki
s

PMSM system

LQ

ωref

ωl

ωlxTm

Fig. 6. The LQ regulator

Under state feedback u = −Kx̃, the closed-loop dynamics
of the system are given by

˙̃x = [Ã − B̃K]x̃

From (18), the quadratic cost function JLQ and the control
input u are given as follows:

JLQ =
∫ ∞

0

(x̃tQx̃ + utRu)dt (20)

u = −Kx̃ (21)

with R > 0 et Q ≥ 0 .
The weighting matrixes Q and R to satisfy the control

objectives of the system are given by:

Q =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 α 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 β

⎞
⎟⎟⎟⎟⎠ (22)

R = (γ) (23)

where

α: weight for reference tracking performance,

β: weight for steady-state error management,
γ: weight for control input limitation,

The major problem of this control design is the selection of
the weights in the quadratic cost function. The weight factors
α, β and γ can be selected by trial and error method using off-
line MATLAB simulation according to design specifications.
For this purpose some importants characteristics about α, β
and γ must be discussed:

• α imposes the contraints to the load speed dynamics. For
high value of α the system response is slowing. The load
speed overshoot is directly correlative with α.

• β gives the steady-state error dynamics. For high value of
β the system response becomes fast (short rising time).

• γ is used to limit the maximum control input (motor
torque) of the system. High values of γ results in high
contraints of the maximum Tm. Therefore the settling and
the rise time is increased.

To determine the optimum LQ weights the following strat-
egy is developped:

1) The highest load inertia is used like reference.

• load inertia reference : Jl = Jlmax

The system parameter values are composed by the
nominal motor parameters and load inertia.

2) Using the trial and error method and the knowledge of
the weights characteristics, a set of LQ parameters is
defined.

3) The system eigenvalues are analyzed when the load
inertia is varying from Jlmin to Jlmax .

4) If the robustness criterium, the maximum motor torque
permitted, the condition of stability and the aim of high
rise and settling time are achieved the optimum LQ
weights are found. If not return to step 2.

The Fig. 7 shows the closed-loop poles of the PMSMEL
with LQ control. The system becomes unstable (�(s) > 0)
for Jlmin . The instability is due to the small weight fixed
for control input (γ = 0.001), no contraints about Tm and β
has a high value (fast dynamic). β is extremely important to
determine the system stability or instability in the case where
(γ/α > 100, γ and α < 0).

X X X XX X XX

XX X X X X X

X

X
XXX X X X

X

�

�

Jlmax

Jlmax

Jlmax

Jlmin
Jlmin

Jlmin

Jlmin

Fig. 7. Closed-loop control poles. Jl = Jlmax . α = 0.1, β = 500 and
γ = 0.001

Where the relation (α/γ > 100, γ and α > 0 ), the
dominant closed-loop poles are placed near the real axis origin,
system response is considerably slow. To accelerate the system
response β has to be extremely high. The Fig. 8 shows the
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closed-loop poles of the PMSMEL system for the α, β and γ
optimum weight values achieved. The system is ever stable,
and no overshoot is observed for every value of the load
inertia.
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Fig. 8. Closed-loop control poles. Jl = Jlmax .

IV. COMPARISONS OF THE 2 CONTROLLERS

To investigate the effectiveness of the two optimum pro-
posed controllers, PMSMEL system simulation are conduced.
The motor and load parameters are reported in Appendix.

The time response of the optimum PID controller system
to a step in the load speed reference is shown in Fig 9.(a).
The overshoot and settling time goes up when the load inertia
augment. The criterium of robustness is not achieved (5%
overshoot maximum). However, the closed-loop system is
stable for every load inertia variation. The optimization only
keep the stability but the system performances (response time,
overshoot) vary.

Fig 9.(b) shows the system response with the LQ controller.
The closed-loop system is ever stable and excellent perfor-
mance of robustness is achieved. The dynamic response is easy
controllable. The maximum control input effort necessary is
0.99Nm.

V. LQ CONTROLLER ON COMPLETE PMSM-EL DRIVE

To verify the results obtained with the best LQ controller,
a complete PMSMEL control experimental setup (Fig. 10)
is simulated. The mechanical part is not the only element
simulated but also the complete PWM inverter and its cur-
rent control is implemented. The three-phase voltage source
inverter (PWM Inverter) is composed by a set of 3x2 IGBTs
with a carrier frequency of 20kHz. The maximum DC Source
voltage available is 600 volts. To drive such device 3 duty
cycles must be generated to obtain the ON/OFF switch orders.
These states are obtained comparing 3 voltage references to a
20kHz symetric slop. The 3 references are computed through
a 2 to 3 dimensional transformation. The Park transformation
and the rotor position feedback is used to generate the dq-axis
current (id, iq). This transform allows to control 2 constant
current value in a fixed frame rotating with the machine.
Moreover, in this frame only the q axis current produces an
effective torque so, a classical current control fixing (id = 0)
and (iq = Iref ) is sufficient. The current control is achieved
only by DC bus and 2 machine lines current measurements.
The scheme is implemented with an anti-windup structure
(Parameters in appendix).
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Fig. 9. (a) Simulated load speed step response (optimum PID), with load
inertia variation from Jlmim

to Jlmax . Effective robustness on stability, but
variation in transient phase. (b) Simulated load speed step response (optimum
LQ controller), with load inertia variation from Jlmim

to Jlmax . Effective
performance robustness and system stability.
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Fig. 10. The schematic diagram of the PMSMEL control experimental setup.

The Fig. 11 shows the load speed response for a load speed
reference equal to 100 rpm. The results obtained is very close
to the results shown in Fig. 9. A zoom at steady state shows the
effective control of the velocity but the inertia variation allows
the current (the torque) to vary in different manner during each
sampling period. The less the inertia is the greater the speed
variation is in a period (1/20k s). But the control scheme and
the sampling period is sufficient to be accurate.

A more complex velocity reference to follow has been
generated. It consist in an acceleration slop a fixed velocity
+100rpm constant phase, decreasing to -100rpm and return to
0rpm. In all of the load inertia range variation the controller
performance is satisfied.
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Fig. 11. (a) Simulated load speed response of a PMSMEL control experi-
mental setup (ωref = 100 rpm), with load inertia variation from Jlmim

to
Jlmax . In (b) a little load variation is observed.
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to Jlmax . The speed reference consists of a increasing and decreasing
ramp reference. Good performance is achieved.

VI. CONCLUSION

This paper describes the robust design and comparaison of
classical controllers in PMSM drive in application of elastic
load with large load inertia variations.

Classical synthesis of a PID in frequency domain is not
robust but an optimisation can be made to remain stable
whatever the inertia is (in presence of limited variations). State
Space Controller allows accurate pole placement, but actual
torque limitation must be considered to have both transient and
permanent controlled desired behavior. LQ synthesis allows to

fix performances and to limit torque magnitude in the same
way. LQ synthesis is difficult due to gains acting directly on
outputs performances and input limitation. Testing different
coefficients allows to extract the optimal LQ regulator that let
the system in stable region and around fixed performances.
A robust design of the standard controllers adapted to the
load and inertia variation guaranties the system stability and
performance robustness.

VII. APPENDIX

The system parameters used in the simulation.
R = 10.7 ohm Kt = 0, 8 N.m/A
L = 7, 4 mH fm = 20.10−3 N.m.s/rad
p = 4 Ksh = 1740 N.m/rad
Jm = 0, 027.10−3 Kg.m2 ωnp = 8033, 14 rad/s
Jlo = 20.10−3 Kg.m2

PI current control
Kp = 100 Ti = 0, 1
LQ parameters.

α = 0.1 β = 500 γ = 0.001
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