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Controllers' robust design for PMSM drive fed with PWM voltage inverter with elastic joint and inertia load variation

A detailed design and comparisons of PID and LQ -State Space Controllers for Permanent Magnet Synchronous Machine (PMSM) loaded with elastic joint to a mass are presented. Step by step analyse for PID and LQ tuning is conduced for PMSM drive and varying load. A load inertia variation is taken into account to define the strategies used to calculate the optimum PID and LQ controllers that ensure the drive system stability and performance. Simulation results verify and compare the robustness of the controllers. Complexity of synthesis and performances obtained are discussed on an actual PMSM drive fed with a PWM voltage inverter controlled in current.

I. INTRODUCTION

The Permanent Magnet Synchronous Motor (PMSM) is the most used drive in machine tool servos and modern speed control applications due to its desirable features (compact structure, high air-gap flux density, high power density, high torque to inertia ratio, and high torque capability). However, the control performance of the PMSM system is strongly influenced by the unpredictable plant parameters variation, external load disturbance and nonlinear dynamics [START_REF] Ji | Kalman Filter and LQ Based Speed Controller for Torsional Vibration Suppression in a 2-Mass Motor Drive System[END_REF] [2] [START_REF] Chen | H∞ Robust Control of Permanent Magnet Linear Synchronous Motor in High-Performance Motion System with Large Parametric uncertatinty[END_REF]. For example, in machine tools operation, railway traction, and rolling mill drive the mechanical load varies considerably under certains operating conditions. Moreover, in many PMSM drive industrial applications the mechanical transfer elements (shafts, gears, friction, backlash, etc) introduce imperfections that must be considered in dynamic speed drives. The influence of inverter in such control is commonly neglected but an accurate current control and torque control contribute to the accurate position or velocity PMSM control. [START_REF] Moberg | Robust Control of a Flexible Manipulator Arm: A Benchmark Problem[END_REF].

The aim of this paper is to propose a design method of speed closed-loop controllers for the PMSM-Elastic Load system (PMSMEL). The speed controllers under consideration are: a PID controller and a State Space Controller with integral action on the load speed error. To elaborate the controllers design strategies the load inertia variation is taken into account. In this paper a two-mass system is considered for mechanical part so, the PMSM and the load are connected through a shaft. The mechanical system dynamic characteristics with a large load inertia variation is presented in II. The PID synthesis is driven in frequency domain and state space corrector is studied by LQ optimisation in III.

Simulation results on the mechanical model show the performance robustness to load parameter variation characteristics of the proposed controllers. Detailed analyses through simulations comparing the performance between the controllers are given in IV. The complete controller performed is used in V, in a global set-up including PWM inverter switched current control in the LQ velocity closed-loop control.

II. DYNAMIC MODEL OF THE SYSTEM

The electrical machine model of a PMSM can be described in the rotor rotating reference frame as follows [START_REF] Hsien | H∞ Robust Speed Control of Permanent Magnet Synchronous motors: Design and Experiments[END_REF]:

di d dt = 1 L d (v d + pω m L q i q -Ri d ) (1) 
di q dt = 1 L q (v q -pω m L d i d -Ri q -pω m ψ dm ) (2)
where v d and v q are d-q axis stator voltages, i d and i q are d-q axis stator currents, L d and L q are the d-q axis inductances, R is the stator winding resistance, ψ dm is the flux linkage of the permanent magnets, ω m is the angular velocity of the motor shaft and p is the number of pole pairs. The electromagnetic torque is stated as :

T m = 3p[ψ dm i q + (L d -L q )i d i q ]/2 (3) 
The basic principle in controlling a PMSM drive is based on field orientation. If i d = 0 the electromagnetic torque T m is then proportional to i q , which is determined by closedloop control. Since the PMSM is driven by a current-source inverter, i q is a known quantity and thus serves as input to the motor. For velocity control purpose considering a smooth poles PMSM equation (3) can be reduced to :

T m = k t i q (4)
where k t = 3P ψ dm /2 Considering the mechanical system described by external load disturbances is given by:

J m ω m s = T m -f m ω m + T sh (5) J l ω l s = -f m ω l -T sh (6) θ m s = ω m (7) θ l s = ω l (8) T sh = K sh (θ l -θ m ) (9) 
where : s is the Laplace operator, J m and J l are the motor and load inertias respectively, θ m and θ l are the motor and load angular positions respectively, f m is the viscous friction coefficient, T sh is the shaft torque, ω l is the load speed. In state space form the model ( 5)-( 9) can be expressed as follows:

ẋ = Ax + Bu y = Cx ( 10 
)
where control input u = T m , the state vector x = [ω m ω l θ m θ l ] t , output vector y = w l , C = [0 1 0 0], . The closed-loop transfer function H(s) from motor torque T m to load speed ω l is given from (10) to obtain :

A = ⎡ ⎢ ⎢ ⎣ -fm Jm 0 -K sh Jm K sh Jm 0 -fm J l K sh J l -K sh J l 1 0 0 0 0 1 0 0 ⎤ ⎥ ⎥ ⎦ B = ⎡ ⎢ ⎢ ⎣ 1 Jm 0 0 0 ⎤ ⎥ ⎥ ⎦ (11) 
ω l (s) T m (s) = 1 2f m JmJ l 2fmK sh s 3 + Jmfm+fmJ l 2fmK sh s 2 + JtK sh +f 2 m 2fmK sh s + 1 (12) where J t = J m + J l
The natural resonant frequency ω np and damping factor ζ p are calculated from the poles of the transfer function H(s):

ω np = JtK sh JmJ l , ζ p ∼ = 1 4 f m Jt JmJ l K sh (13)
Defining the bounds of load parameter variation J l as follows:

J l = [J lmin J lmax ] (14) 
Classical industrial limitations provide :

J lmin = J lo /2 J lmax = 5.J lo (15) 
The Fig. 3 

III. PID AND LQ MODERN CONTROL DESIGNS

A. PID controller's Design

PID control based on the motor/load speed behavior is the most common controller structure used in industrial motor [START_REF] Ferretti | Load Behavior Concerned PID Control for Two-Mass Servo Systems[END_REF]. However, tuning of a PID controller requires knowledge of the nominal system's parameters (J m , J l , f m , K sh , etc). Due to the changes of the operating conditions or process/load disturbances, the dynamics of the system often change. If the conception of the closed loop control system takes into account only the information concerning the nominal system model, it might become unstable. For a robust control the uncertainties of the systems must be considered in the PID control design.

The PID controller shown in Fig. 2 has the following transfer function:

P ID = K p • 1 + 1 s • T i + s • T d 1 + s • aT d (16)
The choice of the PID parameters (K p , T i , T d , a), to obtain the desired response, is based upon the application requirements. The PID controller is designed in order to increase the system closed-loop bandwidth (e.g. higher velocity response) and to get a cross over frequency ω c much lower than the mechanical natural frequency ω np . The fact that the control input can not exceed the maximum motor torque must be considered in the determination of the controller to not excite nonlinear phenomena.

It is well known that the proportion gain K p is used to increase the systems bandwidth, as well as, the system bandwidth determines speed of response and it is limited by the dominant poles. The choice of the K p gain or equivalently the crossover frequency ω c must be a trade off between a fast enough motor/load response and a damped enough load behavior.

Considering a maximum tolerable overshoot of 5% of the load speed response as the main criterium to be satisfied with the PID. Moreover, a high rise and setting time response due to classical industrial applications requirements must be obtained.

Before calculating the optimum PID controller we are remaining that the motor parameters are known. The motor parameters are considered as unchangeable nominal values. Although the inertia load parameter will be characterized by the variation given by (15).

Taking into account the above informations, a strategy to determine the optimum PID controller for the system is defined. The strategy is developed as followed:

1) Three different load inertia references are studied :

• load minimum inertia reference (1): J l = J lmin • load nominal inertia reference (2): J l = J lo • load maximum inertia reference (3):J l = J lmax these three load inertia references give as consequence three nominal systems parameters value.

2) For each load inertia reference only Kp is tuned in the PID parameters. As result we have three sets of PID parameters:

• set (1): K p1 , T i1 , T d1 , a 1 • set (2): K p2 , T i1 , T d1 , a 1 • set (3): K p3 , T i1 , T d1 , a 1 obviously : K p3 >K p2 >K p1 .
3) For every set of the controller parameters, the overshoot evolution of load speed response is analysed while the load inertia is varying from J lmin to J lmax . The overshoot evolution results are shown in Fig. 4. Curve 1 shown in Fig. 4 which depends on the first set of controller parameters, gives an overshoot exceeding the criterium of 5% while the load inertia parameter is increasing towards the maximum inertia value. Although the stability of the system is guarantied in all the load inertia range variation. The same situation appears for the curve 2, although the overshoot evolution is giving a more satisfying result. Observing curve 4, the criterium is respected in almost all of the inertia load variation range. The exception appears in the case where the load inertia approach the minimum value of the inertia range variation. At this moment the system becomes unstable (dashed line).

The three sets of parameters do not provide satisfying results, while the compromise between stability and the robustness criterium is not fulfilled.

4) To calculate the optimum PID parameters the two most satisfying sets of PID parameters are used as reference. This means that the optimum value K popt has to lie necessarily between K p2 and K p3 .

[K p2 K popt K p3 ] (17) 
Moving from the minimum value of the range K p2 until the maximum value K p3 , K popt is detected. K popt will be find in the point where the system is still marked by stability. To verify the strategy, simulations of the closed-loop controller are conduced. In the simulated results, shown in Fig 5, K p is changed from K pmin (K p1 ) to K popt . In each case, the load inertia is moving from J lmin to J lmax . With the variation of these two parameters, the overshoot of the system response provides a surface. T i parameter is also studied. The variation of this parameter is chosen in the way that the system stays stable. Each surface corresponds to a different value of T i . The arrow in the picture points to the region where the overshoot is the lowest whatever the inertia is, which corresponds to K popt . The reason why T i parameter is included in this analyse, is to show that even T i vary, the optimum region does not change.

B. State Space Controller

In this section a state space technique is used to assign closed-loop poles. State feedback gains are computed using LQ approach. An integration is commonly added to this classical scheme, the integral term K i on the load speed error is needed to eliminate steady state errors if torque disturbances occur.

Considering that the dynamics of the system are given by:

˙ x = A x + Bu (18)
with, the state vector : x = [ω m ω l θ m θ l x i ] t where x i is the state of the integral term. The full state vector x is measured (or observed). The matrix A and B are respectively expressed as:

A = A ∅ 4 * 1 -C 0 , B = B 0
with A and B the matrixes of the state space model given by (11). The vector of control input u is written as:

u = -K x (19) with K = [k 1 k 2 k 3 k 4 k i ].
K is the the matrix gain of the state space law. The integral term k i is computed also in matrix K so k i is negative that explain sign (-) used in the block diagram of Fig. 6 representing the LQ controller. From (18), the quadratic cost function J LQ and the control input u are given as follows:

J LQ = ∞ 0 ( x t Q x + u t Ru)dt (20) u = -K x (21) with R > 0 et Q ≥ 0 .
The weighting matrixes Q and R to satisfy the control objectives of the system are given by:

Q = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 0 0 0 0 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ (22) R = (γ) (23) 
where α: weight for reference tracking performance, β: weight for steady-state error management, γ: weight for control input limitation, The major problem of this control design is the selection of the weights in the quadratic cost function. The weight factors α, β and γ can be selected by trial and error method using offline MATLAB simulation according to design specifications. For this purpose some importants characteristics about α, β and γ must be discussed:

• α imposes the contraints to the load speed dynamics. For high value of α the system response is slowing. The load speed overshoot is directly correlative with α. • β gives the steady-state error dynamics. For high value of β the system response becomes fast (short rising time). • γ is used to limit the maximum control input (motor torque) of the system. High values of γ results in high contraints of the maximum T m . Therefore the settling and the rise time is increased. To determine the optimum LQ weights the following strategy is developped:

1) The highest load inertia is used like reference.

• load inertia reference : J l = J lmax The system parameter values are composed by the nominal motor parameters and load inertia.

2) Using the trial and error method and the knowledge of the weights characteristics, a set of LQ parameters is defined. 3) The system eigenvalues are analyzed when the load inertia is varying from J lmin to J lmax . 4) If the robustness criterium, the maximum motor torque permitted, the condition of stability and the aim of high rise and settling time are achieved the optimum LQ weights are found. If not return to step 2. The Fig. 7 shows the closed-loop poles of the PMSMEL with LQ control. The system becomes unstable ( (s) > 0) for J lmin . The instability is due to the small weight fixed for control input (γ = 0.001), no contraints about T m and β has a high value (fast dynamic). β is extremely important to determine the system stability or instability in the case where (γ/α > 100, γ and α < 0). Where the relation (α/γ > 100, γ and α > 0 ), the dominant closed-loop poles are placed near the real axis origin, system response is considerably slow. To accelerate the system response β has to be extremely high. The Fig. 8 shows the closed-loop poles of the PMSMEL system for the α, β and γ optimum weight values achieved. The system is ever stable, and no overshoot is observed for every value of the load inertia. 
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IV. COMPARISONS OF THE 2 CONTROLLERS

To investigate the effectiveness of the two optimum proposed controllers, PMSMEL system simulation are conduced. The motor and load parameters are reported in Appendix.

The time response of the optimum PID controller system to a step in the load speed reference is shown in Fig 9 .(a). The overshoot and settling time goes up when the load inertia augment. The criterium of robustness is not achieved (5% overshoot maximum). However, the closed-loop system is stable for every load inertia variation. The optimization only keep the stability but the system performances (response time, overshoot) vary.

Fig 9 .(b) shows the system response with the LQ controller. The closed-loop system is ever stable and excellent performance of robustness is achieved. The dynamic response is easy controllable. The maximum control input effort necessary is 0.99Nm.

V. LQ CONTROLLER ON COMPLETE PMSM-EL DRIVE

To verify the results obtained with the best LQ controller, a complete PMSMEL control experimental setup (Fig. 10) is simulated. The mechanical part is not the only element simulated but also the complete PWM inverter and its current control is implemented. The three-phase voltage source inverter (PWM Inverter) is composed by a set of 3x2 IGBTs with a carrier frequency of 20kHz. The maximum DC Source voltage available is 600 volts. To drive such device 3 duty cycles must be generated to obtain the ON/OFF switch orders. These states are obtained comparing 3 voltage references to a 20kHz symetric slop. The 3 references are computed through a 2 to 3 dimensional transformation. The Park transformation and the rotor position feedback is used to generate the dq-axis current (i d , i q ). This transform allows to control 2 constant current value in a fixed frame rotating with the machine. Moreover, in this frame only the q axis current produces an effective torque so, a classical current control fixing (i d = 0) and (i q = Iref ) is sufficient. The current control is achieved only by DC bus and 2 machine lines current measurements. The scheme is implemented with an anti-windup structure (Parameters in appendix). The Fig. 11 shows the load speed response for a load speed reference equal to 100 rpm. The results obtained is very close to the results shown in Fig. 9. A zoom at steady state shows the effective control of the velocity but the inertia variation allows the current (the torque) to vary in different manner during each sampling period. The less the inertia is the greater the speed variation is in a period (1/20k s). But the control scheme and the sampling period is sufficient to be accurate.

A more complex velocity reference to follow has been generated. It consist in an acceleration slop a fixed velocity +100rpm constant phase, decreasing to -100rpm and return to 0rpm. In all of the load inertia range variation the controller performance is satisfied. Fig. 12. Simulated load speed response, with load inertia variation from J l mim to J lmax . The speed reference consists of a increasing and decreasing ramp reference. Good performance is achieved.

VI. CONCLUSION

This paper describes the robust design and comparaison of classical controllers in PMSM drive in application of elastic load with large load inertia variations.

Classical synthesis of a PID in frequency domain is not robust but an optimisation can be made to remain stable whatever the inertia is (in presence of limited variations). State Space Controller allows accurate pole placement, but actual torque limitation must be considered to have both transient and permanent controlled desired behavior. LQ synthesis allows to fix performances and to limit torque magnitude in the same way. LQ synthesis is difficult due to gains acting directly on outputs performances and input limitation. Testing different coefficients allows to extract the optimal LQ regulator that let the system in stable region and around fixed performances. A robust design of the standard controllers adapted to the load and inertia variation guaranties the system stability and performance robustness. 
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 5 Fig. 5. The overshoot evolution of load speed response for Kp , J l and T i variation.
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 7 Fig. 7. Closed-loop control poles. J l = J lmax . α = 0.1, β = 500 and γ = 0.001
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 9 Fig.9. (a) Simulated load speed step response (optimum PID), with load inertia variation from J l mim to J lmax . Effective robustness on stability, but variation in transient phase. (b) Simulated load speed step response (optimum LQ controller), with load inertia variation from J l mim to J lmax . Effective performance robustness and system stability.
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 10 Fig. 10. The schematic diagram of the PMSMEL control experimental setup.
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 11 Fig. 11. (a) Simulated load speed response of a PMSMEL control experimental setup (ω ref = 100 rpm), with load inertia variation from J l mim to J lmax . In (b) a little load variation is observed.

  VII. APPENDIXThe system parameters used in the simulation. R = 10.7 ohmK t = 0, 8 N.m/A L = 7, 4 mH f m = 20.10 -3 N.m.s/rad p = 4K sh = 1740 N.m/rad J m = 0, 027.10 -3 Kg.m 2 ω np = 8033, 14 rad/s J lo = 20.10 -3 Kg.m 2 PI current control K p = 100 T i = 0, 1 LQ parameters. α = 0.1 β = 500 γ = 0.001