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Kalman and redundant observer comparison for sensorless PMSM velocity control

This paper presents a comparison made on two observer for control of PMSM without mechanical sensor. The well known Kalman filter is presented and applied to a PMSM. The structure estimating currents, velocity and position is exposed. A redundant observer structure is described. This completely different structure allows to build emf, velocity and position estimation. The two structures are compared and the synthesis of correction coefficients are discussed as well as results obtained for variable speed control of a PMSM drive. Critics and difficulties are listed and robustness of the two structures is analyzed to conclude on performances of the two observer structure and facility to be implemented. I.

INTRODUCTION

Due to emergent applications using synchronous machine a lot of researches try to optimize the control of such drives and mainly to suppress the mechanical sensors. Permanent Magnet Synchronous Machine (PMSM) and its inverter are well known and provide a good weight to power ratio and a safe brushless behavior that open the application field. Position or variable speed control is now easy using complex inverter control laws. Applications are very different e.g. : traction in electrical vehicle, speed control for pumps or position for little air plane flaps. To control a PMSM in such different conditions the converter must feed the machine with current directly linked to the rotor position. So a mechanical sensor is used and provides maintenance and viability problem. To avoid this, an observer can compute an estimation of the rotor position to be used in the control law. There is different principle and observer structure : Luenberger, Kalman, Nonlinear, MRAS, Redundant etc [START_REF] Peyras | Robust observer for sensorless control of synchronous drive with uncertain parameters[END_REF] [START_REF] Caux | Robust Development of Matsui's Observer[END_REF].

Each observer structure is based on a main principle and must be tune to converge using some correction coefficients. Depending on the structure principle the correction coefficient synthesis is more or less difficult and quite different. The structure itself is more or less easy to implement and is more or less robust with uncertainties on their parameters. We did not discuss open loop estimation structure, Model Reference Adaptive Systems (MRAS) or other method based on artificial intelligence (Neural Network, Fuzzy Logic etc). Specific techniques based on PMSM geometry, saliency, saturation or inductance variation or third harmonic analysis exist [SR][SI] but are not developed, to focus our attention only on State Space observation and back EMF based structure. For Luenberger, the structure is based on a state space representation of the drive and a linear correction using coefficient vector L and errors made from measured and estimated variables. The coefficients fixe also the dynamics of the observer which must converge quicker than the dynamics of the system. So a linear pole placement is sufficient to define the correction parameters. The main problems are the sensibility on all parameters used in the states space equations used and on the measured made and used to generate the error signal. Nonlinear structure have been designed to force the observer convergence whatever the parameters used is. In this way a convergence condition using the nonlinear observer and the system must be established. Using Lyapunov condition or such other criterion allows to define correction coefficient to the nonlinear element which add or subtract a correction to the estimations in a nonlinear way to maintain a minimal error from real to estimated values. The problem is to obtain an accurate observation of velocity and rotor position, whatever the speed is (nominal, low or standstill) with an initial position estimated roughly to start in the right sense and a robust behavior ever if the coefficient used in the model are not well known. Our goal is to compare two important structure based on classical PMSM model :

-Kalman Observer [K] -Redundant Observer [M]
After a classical representation of the PMSM drive with no saliency and sinusoidal FEM, a description of the two structures is given in II. Equations used and structure is given to focus attention on differences between Kalman and redundant observer. A complete study to define each correction coefficients is made in III. Simulation results are given to show effectiveness of each structure. Comparison on convergence ability and robustness are given in the last part IV.

II. THE TWO STRUCTURES ON PMSM DRIVE

A. Smooth pole PMSM representation

Equations describing the PMSM behavior are well known and depend on the machine characteristics. Here a sinusoidal and smooth pole Permanent Magnet Synchronous Machine is used and is fed by an inverter driven by current currant controller and Pulse Width Modulation (PWM) techniques see Fig 1 .  2-dimensionnal vector representation in rotor reference frame must be used to control current and torque of such drive. So Park transform is used to establish the main equations in d-q space but in this way rotor position is used to obtain the right d-q representation. Park transform P() given in (1) allows to have the power transferred in d-q axis and the equivalent equations (2) to describe voltage and currant.
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In our case Ls=Ld=Lq is the line inductance, r is the magnet flux, Rs is the line resistance.

To the electrical model, the mechanical behavior must be added using the number of pole Npol and load characteristics inertia J, damping f, resistant torque Cr:
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To be compact a state space representation :X°=A.X+B.U and Y=C.X can be written to be also used in observer scheme as : All simulations presented before and after to verify the coefficients performance and the use of observer in a speed control scheme have been implemented in POSTM5 software [Dg]. This software been build and distributed by our laboratory and contains accurate model on the electrical and mechanical model of synchronous machine and its load. Structures of the machine is used and inverter characteristics with its PWM strategy is also include to obtain a simulator close to reality. This program is open to include control and observer strategy in C and the generated code can be easily used without any modification in DSP programming linked to a real PMSM drive.
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In this paper the PMSM used has : Npol=4, Rs=, Ls= 0.053H, Kf=rac(3/2).r=1.18Wb. Nominal current In=2.7A Maximal speed 1000rd./s. J= and f= . Now the two observer structures can be established. Kalman observer uses the complete state space representation [START_REF] Vas | Sensorless vector and direct torque control[END_REF] and stochastic correction based on noise analysis. Redundant observer only use electrical equations (2) and a controller to force not only the back emf estimation to converge to reality but also velocity and position estimation.

B. Kalman observer principle

In the PMSM control case, d and q current are computed with 2 phase current measurements and the state space representation (5) can be sampled to obtain a discrete state space representation to be used in the observer scheme given in Fig 2. [Vas] Kalman algorithm has shown better performance when position is included in the space vector because external integration of the observed velocity provides convergence problem. The discrete matrix are used in the 2-step Kalman algorithm shown in Fig 3 . In a first step the state Xk+1 is predicted using PMSM model and precedent computation. In a second step, the feedback correction weight matrix K (filter coefficient) is used to have an accurate prediction of the state Xk+1/k. This is obtained by computing K depending not only on the error made but also with an adjustment using weight P (covariance state matrix) which allows to estimate accurately X with respect to Q and R covariance matrices corresponding respectively to state noise and measurement noise. Of course initialization X0, P0 and PMSM parameters must be correct and near the real one. Estimation is made with P, Q and R coefficient matrix adjusted after noise analysis on the devise as explained in the next part. No extension to parameters estimation is discussed in this paper because the matrix order increases strongly and complexity is too high and provide difficulties to be implemented on a real device (with sample frequency around 20kHz commonly used in this kind of drive).

C. Redundant Observer principle

Using equation ( 2) in d-axis, we can note that if there is no error in the Park transform the back emf expression can be expressed in 2 different ways : using the first electrical part of the equation to write femd1 [START_REF] Mobarakeh | A globally converging observer of mechanical variables for sensorless MPSM[END_REF] or the second one using velocity to write femd2 [START_REF] Slotine | Applied Nonlinear Control[END_REF]. ). .
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Of course, using the estimated wrong position in the Park transformation to obtain ( 6) and ( 7) introduce errors but these errors affect in different way the 2 terms. The error femd is directly linked to the position error  and is the base of this observer structure [Mat]. So we can use the error between ( 6) and ( 7) and pass it trough a Proportional and Integral controller to force this error in a closed loop to converge to a null error mean a correct estimation of back emf, velocity and position. This is achieved with the following observer scheme Fig 4. This observer must also start with an initialisation 0 near the real one. Convergence can be assured by a correct choice for the Kp and Ki coefficients. This structure can converge to a non null error value, in this case this non null steady error value is directly linked to an error made in the model, an error on the PMSM parameter (Rs or r) details can be found in [EPE]. That's why a parameter correction can be simply added to avoid this kind of error. Now the coefficients tuning can be describe and results compared.

III. OBSERVATION COEFFICIENTS

A. Q and R Matrix in Kalman observer

The main difficulties is to define the initial value of the prediction covariance matrix P0 (initial prediction weight) and the covariance matrix Q and R. This 3 matrixes must be defined symmetric and positive but that provide about lot of coefficients impossible to define due to lack of possible measurement to identify noise cross-effects. It is mainly accepted to consider only diagonal matrixes that in our case let 10 coefficients to be tuned.

Q=diag(a,b,c,d), P0=diag(e,f,g,h), and R=diag(i,j)

The easy way to start is to have equal coefficient for diagonal matrix form. The method to determine the noise and state covariance matrices Q, R, P are trial-error based. That's why some other method are added to define these coefficient (e.g. adaptive, fuzzy logic). Value are only linked to the noise level which must be identified and conclusions made on different Q and R values tested. Changing Q and R values affects both the transient duration and steady state operation of the Kalman filter. If Q is higher than R (strong system noise or uncertainties on the model) the correction weights K increase and the filter transient performance is faster. On the other hand if the covariance R is high (noise on measurements) K is low and transient is slower. And finally the only conclusion is if Q is too high and R too small instability can arise.

B. Kp and Ki coefficient in redundant observer

To compute the 2 requested coefficient the approach is completely different and can be based on the stability analysis of the closed loop made and on the steady state behavior of the PMSM driven with the estimated position. The closed loop redundant observer structure allows to study the stability and to fix limitation on the PI coefficients to be stable. Details can be found in [Mat] and [Mob] to obtain the following relationship ( 9) and [START_REF] Urbanski | Rotor Speed and Position observer for PMSM Sensorless control system[END_REF].
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where b > 0 [START_REF] Urbanski | Rotor Speed and Position observer for PMSM Sensorless control system[END_REF] Of course these 2 relations are not restrictive an it is evident that Ki must be positive and Kp must depend on the rotation sign. A positive position error detected must decrease the estimated velocity if the estimated q-d axis turns forward the real one but if the rotor turns in the other sense the speed estimation must be increased to reach the real axis. That is taken into account in the control scheme (Fig 3) to correct the speed estimation in the right manner.

Her we consider the velocity error =r-est and in our observer scheme the velocity estimation is based on the velocity estimated in q-axis and corrected by the controller : est=c+estq Writing equations of the 2 exits of the redundant observer scheme system, ( 11) is obtained : 
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An expression linking the velocity error and kp, ki is obtained :
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Using Fig Y and projection of back emf vector to have an expression of its femd and femq component and using [START_REF] Dagues | Post simulation softwares: study and teaching of numerical control of static converters electrical machine assemblies[END_REF] laws must be extracted to define the 2 observer coefficients.

A -kp definition With simple projections of all current and voltage vestor of equation ( 6) and ( 7) and assuming a little position error (sin = and cos=1) in constant velocity (steady st ate is reached) Using our drive characteristics (18) provides kp>>0.31 and with a fix ki the limitation is tested. a b c curves have non desired oscillation and long convergence time. Near the limit d response is quite correct and with a bigger kp (e) is exponential and quicker (tests have been made in this case with greater ki that accelerate the convergence). But initial magnitude is not controlled and depends aloso on the initial error at the beginning of the observation process.
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With no assumption and computing the same equations with sin and cos expression. Curve (a) did not respects the limitation expressed in M and the initial error increases and there is no convergence. For (b) and (c) near the limit convergence is obtained with non expected behaviour and with a greater ki the response is better to obtain curve (d) and (e) where accurate quick convergence is obtained. Of course from a practical point of view kp and ki can not be too high because amplification of noise or nonlinearities provide instability and HF oscillations.

Using this relation, PMSM parameters the limitation is found with the maximal initial position error to have convergence. If not, the PMSM can not starts or turns in the wrong sense, this phenomenon is avoided with a rough initial position detection method and correct kp, ki.

Depending on noise level presents in the current measurement, high ki, kp value are not allowed. So classical value kp from ]0 5] respecting (18) allows a convergence from 0 to nominal current and velocity as quick as ki is high. ki must be higher than kp respecting (M) and must be inferior to 10 to avoid noise amplification and instability.

IV. COMPARISON IN SPEED CONTROL SCHEME

Classical speed control scheme is used here to compare the 2 observers performance. The internal current control uses the estimated position and PI velocity-controller to drive the PWM inverter. The controlled current is considered effective to establish the speed controller only on the mechanical equation describing the load supposed to be known. For the speed error generation a speed reference profile is generated and the estimated velocity is used to track this reference see Fig 11. Given a positive and negative speed reference we can identify the closed loop behavior of the sensorless drive. Knowing the initial position and the machine's parameters the control is effective (Fig 12). But with the same PMSM machine and same current and velocity controllers the two observer structure have some differences. Using the above coefficient synthesis we can note that both observers converge quickly and track accurately position and velocity.

On the position error Fig 13, the redundant observer track quickly the real position. Its structure is based on back emf estimation and velocity correction and after the position is obtained. So in a speed control scheme with a good parameters knowledge the redundant structure works in a good way and the speed converge quickly. On the other hand in the Kalman observer structure the current position and velocity are corrected each time and an error on one of the 4 components affect the correction of the other and the convergence is accurate but longer.

Remark: peaks in Fig5 or Fig6 observer position are only due to 2 modulo in the position computation and are not significant of any bad estimation. V. CONCLUSIONS Two observer's structure have been presented. Classical Kalman observer and a redundant observer that constitute two good position and velocity estimation structure. Based on the PMSM sinusoidal and smooth pole model the two different structure have been designed. The stochastic Kalman principle and the closed loop redundant observer principle have been exposed. The synthesis of all requested coefficient have been discussed to obtain an accurate convergence. Without avoiding initial position problem or parameters uncertainty the observers have been used in a speed sensorless control scheme. From the synthesis to the speed control results the redundant observer provide good and easy to use performance. The redundant structure is easy to implement with only two electrical equation and a PI controller. The PI controller in the observation loop depend on the PMSM characteristics but can easily be chosen to provide quick accurate convergence not only on rotor position but also on speed and back emf voltage.

Redundant observer has shown good performances in current, speed and position control scheme. Its structure also allows a parameter correction in case of wrong knowledge of the electrical part. An initialisation phase is requested for both observers. An experimental setup has been build to support different real implementation and real experimentation to confirm the redundant observer performances.

Figure 3 .Figure 5 .

 35 Figure 3. Kalman algorithm : Prediction -Correction -Estimation

Figure 1 .

 1 Figure 1. Classical PMSM control using inverter and mechanical rotor position sensor

  the 2 first line can be the same because the acts on d and q current and treat the same kind of information and in this study, the most important is the correction made on the third (velocity estimation). So the noise level measured indicates how high must be the coefficient to allow convergence. For 2 different noise level on current measurement adjustment must be made to recover the same performance as shown on Fig X. Q=diag(0.1,0.1,0.1,0.1), P0=diag(0.1,0.1,0.1,0.1) and With no noise little coefficient R=diag(0.01,0.01) is sufficient and if a 1A white noise is added on the 2 current R must be also fixed to diag(1,1) to converge in the same way.That is the principle of the Kalman observer but also the main difficulties and there is no solution to start well a real device without several measurement and adaptation. When P, Q and R are correct, the position velocity shown on Fig Y is quite correct and with a little initial position error and PMSM parameter knowledge the convergence is obtained but with no specification of the time response of the observer or stability analysis possibility.
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 8 Figure 8. Position error in sensorless speed control scheme.

  In a classical control scheme Id=0 so we can write :
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  Of course convergence is obtained when errors  and  are near 0 so =0 is search :
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		Deriving this equation and considering that the drive
	turns : est0 (constant)
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  Here a relation between kp and ki and PMSM parameters is obtained without real restriction. For the drive studied in this paper the relation (M) must be satisfied when the machine turns with a constant non null velocity.
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