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Abstract—In this paper, the authors present a new control
strategy using the sliding mode of the multicell converters
which allows the compensation of the current harmonics in
medium voltage networks. The use of these converters in the
applications of active filtering is interesting since these con-
verters allow to increase the bandwith of the system while
reducing the constraints on the components semiconductors.

Keywords— active filter, multicell converter, sliding mode
control.

Topic: T1 - Power electronics - converter control

techniques.

I. INTRODUCTION

The introduction of multicell converters in power elec-
tronics systems opened new horizons in electrical engineer-
ing. This structure reduces the constraints on the semi-
conductors and reduces the share of reactive components.
When a multicell converter with p cell is controlled using
the same duty cycle on every cell and with a phase shift
of 27” between adjoining cells the ripple frequency of the
output is pfy. Another interesting feature of this converter
is the self balancing of the flying capacitors voltages [1].

In our case we focus our study on the compensation of
the current harmonics in a low voltage network using shunt
active filtering with a sliding mode control. Figure 1 illus-
trates the principle of compensation. The shunt active filter
should inject the current harmonics demanded by the load
so that in the network is a pure sine wave.
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Fig. 1. Principle of shunt active filtering

II. THE SLIDING MODE CONTROL
A. Principle

The sliding mode control consists to force the trajectory
of evolution of the state variables to converge towards a
surface referred to as the ”sliding surface”. On this surface
the order of the system is reduced and the trajectory of the
variables of state slips up to the point of balance (fig. 4).

B. Design of the control law

The control strategy presented here is given by using
the instantaneous model of the system. It is based on the
principle of stability of LyAPUNOV.

Taking the case of a p cell chopper. The state equation of
the system is & = Az + G(z)u. It is noted that the system
is non-linear. The scalar function V(z) = $AzTQAz is
defined positively, its derivative is V(z) = AzTQA%z. V
represents the energy required to reach the point of balance.
The stability criterion is given by the inequality (1) [2].

AzTQG(z)Au < 0 (1)
with : u = Ugq + Au
Ueq equivalent control vectors ;
Au relates the saturation of the control;
@ : diagonal matrix containing reactive elements.

The p switching functions are defined to reach the point
of balance asymptotically stable and verifying (1). They

are given by (2).

si(z) = AT QG(z) (2)

In the case of a three-cell chopper (fig. 2), the instanta-
neous model of the system is given by (3).
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The switching functions obtained with a three-cell con-
verter are given by (4).
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To establish these switching functions, the control du; has
to be positive when s; is positive. To limit the switching
frequency, a hysteresis function is introduced with a width
of 2e.
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The figure (4) represents the three sliding surfaces and
the evolution of the state variables in the plan (ve1, ve2,41)-
There are three operating modes, the reaching mode
(A —B), the sliding on a surface (B —C) where the state
variables are reduced to 2 and finally the sliding on a line
to reach the point of balance (C —D).

In order to operate with fixed frequency, a modulator is
inserted. The connection between the switching functions
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Three-cell chopper with a sliding mode control at variable
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Fig. 3. fonction hysteresis function to limit the switching frequency
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Fig. 4. Evolution of the state variables following the surfaces of slide
for three cells chopper

and this modulator is done with a PI regulator and a filter
(fig- 5).

The simulation results are represented on the figure (6).
The amplitude current reference is 204 and a frequency
of 1kHz. The load current follows correctly the current
reference by ensuring a self balancing of flying capacitors
voltages. We can note the existence of a certain shift phase
in an operation at fixed switching frequency due to the
modulator. Indeed the expression of phase shift between
the input and the output for a PW M control signal is given
by the equation (6) [4].

T fm
Ap=g 7 (6)
fm: frequency of the signal of input.

fa: switching frequency.

Measured shift phase is of 6.50° degree, that given by
the expression (6) is of 5.62° degree.

III. SLIDING MODE CONTROL IN THREE-PHASE CURRENT

In the case of three-phase inverters, two structures of
control are developed: interactiv control and non-interactiv
control. The no-interactiv control presents good dynamics
performances compared to the intercative control.
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Fig. 5. Three-cell converter with the sliding mode control with fixed
frequency
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Simulation at fixed frequency with a reference of 20A and

The no-interactiv control consists to insert three legs side
by side for make the three-phase inverter. The ordering of
three legs is identical, the same control block described for
the single phase inverter is used. This control strategy does
not take account of the interaction between the legs.

A. Variable frequency control

Each control block is made of three ”block of hysteresis”
to obtain the control law. A simulation with a current
reference of 204 and a frequency of 4.5k H z is represented
by the figure (8). The average frequency of commutations
of the switches is equal to the one of the current reference
and is equal to the bandwidth of this control law. The
converter has reached its dynamic limit which depends on
the characteristics of the load. The self balancing of the
flying capacitors voltage is always assured.

If the frequency of the reference exceeds the desired
bandwidth the control is saturated, and commutations of
the switches are done at a same time giving a two-level
output voltage waveform.
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Fig. 7. No-interactiv sliding mode control
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Fig. 8. Current and voltage for variable frequency control with I,, =
20A and f,, = 4.5kHz

B. Fized frequency control

Operation at fixed frequency in a three-phase inverter
degrades considerably the phase-shift between the real and
the desired currents in the load. Indeed for a current ref-
erence of 4.5k H z there is a phase-shift of 16.2° in simula-
tion, with an attenuation of 10%. The switching frequency
is egal to (fqy = 16kHz). The Figure (10) represents the
currents for an operation at fixed switching frequency.

IV. ACTIVE FILTERING ON NETWORK LOW TENSION

The control system of the active filter is composed of
two parts, the calculation of the harmonic currents and
the generation of the control signals for the inverter using
the sliding mode control.

A. Calculation of the harmonic currents

There are several algorithms for the extraction of the cur-
rent harmonics. The method generally used is the method
of the power pq. It allows to establish the components
irefo and ireyg either for compensations of harmonics or

for a compensation reactive power [5].
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Fig. 9. Voltage balancing of the three legs
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Fig. 10. Fixed frequency control with I, = 204 and f,, = 4.5kHz2
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Fig. 11. General scheme for reference current identification

For a current harmonics compensation and to have a
regulation of the DC capacitor voltage, we must impose

DPref = Pac — PCdc and dref = Qac-
Pcde corresponds to the losses in the active filter.

V. RESULTS OF SIMULATION

The results of simulation are obtained for a low voltage
network of 220V. A bridge rectifier is regarded as the pol-
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Fig. 12. scheme of DC voltage regulation

luting load as seen on figure (15), it absorbs a power of
6LW.
Network Vs 220V
Ly | 650uH
Active filter Cqyc | 100uF
Ly | 350uH
Load R.n | 209
Len | ImH
L. | 350uH

Fig. 13. Parameters of the shunt active filter, network and load
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Fig. 14.
b)-source currents

a)-Load current and harmonic current of the first phase,

The comparisons are made under the same operating
The THD is decreased from 25.97% without
active filter to 2.23% with active filter using sliding mode
control (Fig. 16 and 17).

conditions.

VI. CONCLUSIONS

The multicell converters by its dynamic performances
makes it possible to cancel harmonics of high row and to
obtain good performances. The sliding mode control at
fixed frequency has a good bandwidth and it makes it pos-

sible to have a good compensation of current harmonics.
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Fig. 16. Source current and spectrum waves before filtering
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Fig. 17. Source current and spectrum waves after filtering
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