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This paper deals with the observation of the capacitor voltages in multi cell converters using sliding-mode techniques with only the measurement of the load current and the input voltage. Our aim is to develop a sensorless control scheme of these converters in

INTRODUCTION

In the field of high voltage power conversion, a new multilevel topology has been introduced in the 90s: the multicell converters [START_REF] Meynard | Multilevel conversion: high voltage choppers and voltage-source inverter[END_REF]. These kind of converters are very interesting since they enable to reach high power / high voltage applications. With a phase-shift of21t/ p between the control signals of a switching frequency !d, the harmonics of the output signal are multiple of p!d if the capacitor voltages vc. (k = 1... p -1) are stabilized to kE / p (p is the number of cells). The switched voltage in each cell is thus reduced to E / p .

In a p-cell converter, a closed loop control of the p -1 voltage capacitors may be used to keep them to their optimal value kE / p when a fluctuation in the input voltage source appears.

A synthesis of different control laws have been proposed by several authors (see [START_REF] Gateau | Toward modelling and nonlinear control of series multicell converters. application to chopper operation[END_REF][START_REF] Tachon | Control of series multi cell converters by linear state feedback decoupling[END_REF]) and require the knowledge of the state. Usually, a differential voltage sensors are used to measure the capacitor voltages but the presence of these sensors increases the drive cost and encumbrance. As an example, the control of a threecell three-phase inverter requires, at least, 6 floating voltage sensors plus two current sensors.

In order to reduce these sensors a sliding mode observer (SMO) using the load current measurement and an instantaneous model is studied. For the sake of simplicity, the SMO design will first carried out for a two-cell chopper. Thereafter, the extension to a threecell chopper is derived.

THEORETICAL ASPECTS

In this section, the multicell chopper model and the sliding-mode theory are reviewed. 1319

Multicell Chopper Model

The instantaneous model of a general p-cell chopper (figure 1) with a passive load Rand L can be described by a p-order nonlinear differential equation system with p -1 capacitor voltage variables and 1 load current variable: order to reduce the cost and encumbrance.
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where x = (VCI" ", vC p _l'iL)T, ba = R/L, bl = I/L, ai = I/Ci, Oi = Ui+1 -Ui and E the input voltage source. u = {u I, ... , up) T denote the control signal vector (Ui E to, I}).

Brief Review of Sliding Mode

Consider a nonlinear system described by the following equations:

{ i = f(x,t) y=C•x (2)
where x(t) E IR n is the state vector, y(t) E IR m is the output (the measured state) and C is a (m x n) output matrix.

The objective of a sliding-mode observer is, first, to design an equilibrium surface SEE IRM such that the estimation error trajectories restricted to the equilibrium surface have a desired stable dynamics. In the second step, the observer gains are determined in order to drive the estimation error trajectories to SE and maintain them on the set for all subsequent time. In [START_REF] Hung | Variable structure control: A survey[END_REF], SE is called eventual sliding surface and it corresponds to the intersection of m basic sliding surfaces of dimension n -1.

According to [START_REF] Slotine | On sliding observers for nonlinear systems[END_REF]), a sliding-mode observer for (2) is given by:

{ ~ = ((i;!) -A• Is (3) y=C•x
where i E IRn denote the estimated state, ( our best model of f, A is a n x m gain matrix to be specified, and Is is the m x 1 vector: Is = (sign(jI),sign(j2), . .. ,sign(jm»T (4) Yi = 1; -Yi = cii -Yi are the output estimation errors and Ci is the corresponding row of the m x n C matrix .

These output estimation errors define m switching surfaces:

(5) From ( 2) and (3), and denoting i = i-x and M = ((i,t)f(x, t), the estimation error dynamics are 1320 ~=i-i=f(i,t)=M-A.ls (6)

Let's now choose the Lyapunov function V(s) = 1/2 sT s. According to the Lyapunov's direct method [START_REF] Slotine | Applied nonlinear control[END_REF], the sliding manifold

SE = {i / s = C . i = O} is attractive if V(s) = sTs = sT (C(M-A • Is» < 0 (7) 
During sliding phase, the switching term in ( 6) is acting to keep s = 0, hence, s = O. From the second condition, the equivalent switching vector is obtained:

(8) Thus, by replacing ( 8) in ( 6), one obtains the equivalent dynamics of the observation errors on the reduced order manifold SE :

{ ~=(l-A(CA)-IC)M (9)
ci=O where 1 detotes the (n x n) identity matrix.

APPLICATION TO A TWO-CELL CHOPPER

In this section a sliding mode observer is developed for a two-cell chopper using the load current measurement. The estimated voltage are then used for sensorless control strategy (figure 2).
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Observer design

The instantaneous model of the chopper is:

{ XI = I1 (x, u) = a&2 X2 = h (x, u) = -bOX2 -ObIXI + U2blE Y=X2 (10) wherexl = vc, X2 = h, bo = R/L, bl = I/L, a = l/C, 0= u2
-UI and u = (ul,u2l (u; = {O, I}).

Note that the input signals UI and U2 result generally from a PWM control technique and must be phaseshifted by 1t (figure 3) in order to suppress the harmonics at switching frequency [START_REF] Meynard | Multilevel conversion: high voltage choppers and voltage-source inverter[END_REF].

The observability matrix of the system ( 10) is given by:

0_[0 I] --obl -bo (11)
Thus, one can see that the converter is observable for all 0 = U2 -UI f; 0. This is quite logical since during these sequences, the floating capacitor is not connected to the load. The inputs for which U I = U2 are thus singular.

SMO of ( 10) is given by:

{ :£-I = Cl OX2 -AI sign(s) :£-2 = -boi2 -0 blxl + u2b lE -A2sign(S) (12)
where AI, A2 denote the observer gains and (-) denote the estimate of (.). The sliding surface is:

From the equations (I 0), ( 12) and adopting, for convenience, the notation p q = pqp q, the estimation error dynamics are:

{ ~I =~I-XI =il/l-AIsign(x2) (13) X2 = X2 -X2 = il/2 -A2sign(X2)
where,

il/l = Oax2 ilh = -bOX2 -ObIXI + uzlJIE
The stability analysis of the system (13) consists of determining A2 to ensure the reachability of the sliding surface s = O. Thereafter, A I is determined such that the reduced-order system obtained when s = s = 0 behaves as desired.

Using the Lyapunov function V(s) = 1/2 s2, the attractivity of s is assured if the first time-derivative of V is negative, i.e,

V(s) = ss = hi2 = xz (ilh -A2sign(X2» < ° (14)
This yields to the condition:

A2 >Iilh 1

(IS)
where 1 . 1 denotes the absolute value of (.).

Assuming that the state and parameter estimation errors are bounded, the attractivity condition (I S) becomes:

Az >1 bOX2 lmax + 1 blxl lmax +Emax I hI lmax (16)
On the sliding surface, the equivalent switching term is obtained using the invariance property of s. That is

s = s = ilh -A2 (sign (X2))eq = 0 ( . (_)) ilh -bOX2 -OblXI + u2 Eh l => sIgn X2 = -= --'-------- eq A2 A2
Substituting the above expression of (sign(x2))eq in ( 13), the reduced-order dynamics of the observation errors take the form:

(17

)
where

d = ~: (X2hO -(U2E -&I)hl) + &ix2
For simplicity, the parameter errors are neglected in the following, i.e. d = O. The robustness of the observer according to these parameter uncertainties will be evaluated later in simulation.

When 0 =1= 0, one sees that the dynamics of XI depends on the gain AI. However, during the sequences where o = 0, the system is not observable and the gain A I must be canceled. Therefore, the following expression of AI is proposed:

The observation error dynamic in sliding mode is then given by:

(18)

where 't is the desired time-constant of the reducedorder system. Thus:

(19)

Simulation results

In this section, simulation results are presented for a two-cell chopper. The converter parameters are:

1321 C = 40pF, R = lOO, L = I.SmH, /d = 16kHz.
where Id is the switching frequency.

The control strategy used here is the linear state feedback decoupling (Tachon et a1. 1997).

Assuming that the parameter errors do not exceed IS% for Land SO% for R and that the observation errors do not exceed 900 V for vc and 100A for fr, one can find: A2 = 2.S 10 6 Moreover, by imposing the time-constant 't = 100,us, the gain Al is given by: Al = -37.5 10 6 0

Figure 4 shows the simulation results obtained during a startup of the converter with zero initial conditions. The initial conditions of the observer are i(O) = (500V,60A)T. In order to reduce the chattering arround the sliding surface, the hard discontinuous sign function in ( 13) is substituted by a saturation function with a boundary layer of 2 E = I A [START_REF] Slotine | Applied nonlinear control[END_REF][START_REF] Blaabjerg | Sensorless control of switched reluctance motor with variable-structure observer[END_REF]) (see figure 5).

These results show that the sliding surface is reached very quickly and that the observation error in the sliding mode converges to zero with a first-order dynamics.

In figure 6, simulation results are shown when parameter errors are made on C, Land R respectively.

One can see that the most sensitive parameter for the observer is the load resistor since an estimation error of +30% slows down the observer and involves an overshoot on the actual voltage vc. However, in steady state, the observation error remains zero and the actual voltage is equal to its reference E /2 .

APPLICATION TO A THREE-CELL CHOPPER

In this section, application of the sliding-mode observer is shown for a three-cell chopper. The objective is to observe the floating voltages vC I and 1322 VC2 using a load current measurement i L. The observed state is then used for a sensorless control of the converter as shown in figure 7.

2OO'~------------- (a 
The instantaneous model of the converter is given by: given by a PWM technique and must be phase-shifted by 2rt/3 in order to suppress hannonics at switching frequency Id (figure 8). Since the input vector u is piecewise constant, the observability matrix derived from ( 20) is given by: eJ = [-:SI -:~ boblOI bob l02

{ il =fi(x,u) = atOtX3 i2=i2lx,u) = a2~x3 i3=f3(X , U) = -bOX3-btOtXt-bt02X2+btEu3 y=X3 ( 20 
One can see that rank«()) :s 2. Thus, for a given input vector D, the system is not observable. In fact, for each sequence, the single observable voltage corresponds to the voltage across the equivalent capacitor connected to the load. This voltage is given by:

~= OIXI +~X2
However, in [START_REF] Bensaid | Observer design for a three-cell chopper using a discrete-time model[END_REF], it was shown using an exact discrete-time model at switching period, that the system is observable by the load current measurement. In other words, it was shown that after one switching period Td , the observability of ~ = OIXI + 02X2 during each sequence involves the observability oh, andx2 at the end of these sequences.

The observer gain~ wiE then be detennined so that the observation error ~ = ~ -~ = O,XI + ~Xl converges to zero.

Sliding-mode observer design

According to (3) the SMO for (20) takes the form :

{ £1 = al0lx3 -Alsign(s) £2 = a2~X3 -A2sign(S) £3 = -hoX3-hI0IXI-hI02X2+hIEu3 (21) -A3sign(S)
where AI , A2 , A3 denote the observer gains and n denote the estimate of ( . ) . The sliding surface is:

s =X3 -X3 =X3
Adopting, like before, the notation P q = P q -P q, the observation error dynamics are:

where { i' 1 = it -x, = !!..II -Alsign(X3) i'2 = i2 -X2 = !!.. /2 -A2sign(X3) i' 3 = £3 -X3 = !!. . 13 -A3sign(X3) !!../I = 015\i3 , !!../2 = ~iiiX3, !!../3 = -bOX3 -01 blxJ -OzbJX2+ U3b ,E (22) 
Considering the Lyapunov function V(s) = 1/2 s2 = 112 X3 2, the attractivity condition of the surface s = 0 is:

Thus, assuming that the observation and parameter errors are bounded, the expression of the gain that assure the attractivity of the surface s = 0 is given by: A3 > I bOX3 lmax + I blxl lmax + I blX2 lmax + I bl lmax Emax (24)

On the sliding surface, the equivalent sign function is derived from the invariance property of s (i.e. s = s = 0). We obtain:

( . (-)) !!..j3 sIgn X3 eq = - A3 (25) 
Substituting ( 25) in ( 22), the reduced order dynamics of the observation errors in sliding mode take the fonn :

where AI --

dl = aJolx3 + -(bOX3 -blVo) A3 A2 - - d2 = a202x3 + -(bOX3 -blVo) A3 and Vo = U3E -OIXI -~X2 . ( 26 
)
The tenns dl and d2 represent disturbances which are functions of the parameter uncertainties.

The system (26) has two poles: , ,

P2

The gain AI (resp. A2) must be canceled when the corresponding capacitor voltage x I (resp. Xl) is not observable, i.e. when 01 = 0 (resp. 02 = 0). Thus: AI = AIOI, Al = A202 Hence, if the parameter errors are neglected (d I = d2 = 0), and assuming that Al = A2 = A, the dynamics 

Simulation results

Simulation results are obtained for a three-cell chopper with the same parameter values as before (with Cl = C2).

A non interacting control strategy using a proportional (P) regulator for the voltage loops and an integralproportional (IP) regulator for the current loop is adopted here [START_REF] Gateau | Toward modelling and nonlinear control of series multicell converters. application to chopper operation[END_REF]).

If the parameter errors are neglected and assuming that the observation errors are bounded by I x I max = (600V, 1200V, lOOA) T, one finds from ( 24) that A3 = 1.8 10 6 assure the attractivity of s = O. Thus, from

Figure 9 shows simulation results obtained when the converter starts-up with zero initial conditions and E = 1800V. The initial conditions of the observer are i(O) = (600V, 1200V, l00A) T and 't = 40,us. To reduce the chattering around the sliding surface, the sign function can be substituted by a saturation function with a boundary layer of2E = lA (figure 5).

It can be seen that the observation errors converge quickly to the sliding surface (1. = O). On this surface, the remaining observation errors converge to zero with a dynamics depending on 'to Figure 10 shows the behavior of the observer when parameter errors on Cl, C2 , Land R are considered.

As for the two-cell case, one can see that the load resistor is the most sensitive parameter for the observer.

CONCLUSION

In this paper a simple sliding mode observer for two-cell and three-cell choppers was designed. A simple and generalizable expression of the observer gains is proposed. These gains are naturally canceled 150,.---------;".----, ,.
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each time the corresponding voltage becomes non observable. Simulation results confirm the effectiveness of this observer for a sensorless control of the converter. it was also shown that the observer is robust regarding to the uncertainties on the capacitor and inductor parameters but less robust regarding to the load resistor. Thus, an adaptive algorithm for the estimation of R should be implemented if the resistor cannot be measured on line.
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 10 Fig. 10. Robustness of the SMO according to model uncertainties, (a) ~=+100%, ~=-37%, (b)