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Abstract
In this paper, the authors present two fixed frequency control laws for the multicell chopper. The first
is based on the partial linearizing feedback method associated with a linear control in series. The
second is a fixed frequency control law involving a sliding mode approach. A broad part of this work
is devoted to the characterisation of these two control laws in steady state and in transient state for a
three-cell chopper.

Introduction
The multi-cell converters have been developed to increase the converted power. With an appropriate
control, the performances in transient can be exceptional [1]. The goal of the control is to balance the
flying capacitor voltages to a fraction of the voltage source (kE/p) and to adjust the current to a
reference called Iref  with the largest possible bandwidth. The fixed frequency control laws for this
converter are in general based on an average state equation [2], [3]. It is a non-linear state equation,
with an input-output coupling. In this paper, two controls laws are presented. The first is based on
linearizing feedback based on the average model, leading to a linear and decoupled transformed
model. The linearizing function is computed and the linear control of the new model is defined in the
general case. Some results of simulation are presented in the case of a three-cell chopper. In order to
improve the bandwidth of the output current, a fixed frequency control law is defined :the fixed
frequency sliding mode control. It is based on the use of switching functions defined for a variable
frequency control associated with a modulator and PI regulator. Simulation will show the very good
performances obtained with this control, in transient and in steady state.
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Fig. 1 - Structure of a p cells chopper

Modelling

Figure 1 presents a p-cell chopper. The instantaneous state equation is the one of the equation (1). It is
a non linear equation with an input-output coupling.
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It is a square system because the number of input is equal to the number of state. The state vector is
defined as (2).
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The output of the system are equal to its states (h is the identity function). The inputs are the states of
the switches (ui). They can take two values: one if Ki is on (K'i is off), and zero when K'i is on (Ki is
off). The matrix A, and G(x) are defined by the equation (3).
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From this model it is possible to generate an average model that represents an average state variable
evolution. It is the same type of equation as (1) but in this case, it is not the instantaneous value which
are involved but the average value of each state (4). The inputs are now the values of the duty cycles
applied to each cell. This model is always non-linear and the output is still coupled to the duty cycle.
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Using the average model of the chopper causes a loss of information. Indeed, the natural balancing of
the floating voltage vck could not be explained by [4].

Linearizing feedback
The goal of the linearizing function is to transform (4) in a linear state equation. We want to control
the chopper with large variations of the output current, and for this reason we choose to use a
decoupling feedback. Figure 2 presents its structure. By using the two functions α  and β, we obtain a
linear system comprising p-1 parallel integrator and one first order system. The partial linearizing
feedback is interesting because the decoupling function does not depend on the load which may vary
in a very large range.

In our case, the matrix β is equal to the inverse of matrix G and α is equal to zero. The linearizing
feedback exists if the rank of G is equal to p. The equation (5) defines the value of the determinant of
G.
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Fig. 2 - Structure of the partial linearizing feedback

The rank of G will be of p if the output current i and the input voltage E are different from zero. It is
always true in the chopper mode. In this case, the system is also controllable. So, we can define a
linear control based on the new system of state equation (6).

VxAx +><>=< &                                      (6)

It should be noted that the new inputs have units. Those controlling the flying voltages are written in
volts per second, and those adjusting the current are in amps per second.

Linear control

Let's consider that the values of passive element are known exactly. In open loop, we can write the
transfer functions that link the input vi to the output xi as :
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with RL /0 =τ

The flying voltages can be controlled with a proportional regulator (Kk), and the output current with an
IP (Kp, τi) regulator. In closed loop, the system will be constituted of p-1 first order transfer function
(for the flying voltages) with the same dynamic (τν) and a second order transfer function for the
current ( m,ωn).
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The parameters of the regulator are easy to calculate and they are defined in table I.
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Table I : Values of the regulator’s parameters

Control of a three-cell chopper

The function β is defined by equation (9). The nominal value of the components are: C=10 µF, L=1.5
mH, R= 20 Ω. The frequency of switching is equal to 16 kHz.
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Let us first examine the voltage loop. The worst case for the proportional regulator is when the
capacitor is known with the bigger uncertainly. We want to have the more dynamic control of the
voltages. So, the gain must be calculated when the capacitor is the smallest. For the control of the
current loop, the problem is identical. The regulator must be calculated for the smallest value of the
inductor.

The dynamic of the system in closed loop must be slower than the switching period to respect the
average model assumption used for this law. We chose to have in closed loop the transfer functions
defined by (8) with:

  0.7m  /00002  and    1.0 === srdms nv ωτ                               (10)

This control has been tested on a sequence with variation of Iref, E and the load.
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Fig. 3 Floating voltages Vc1, Vc2 and references
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Fig.6 Evolution of supply voltage

The load changes from +100% to -100% of the nominal value. The supply voltage undergoes a sharp
variation then a sinusoidal disturbance.
The output current is always conform to the reference Iref with any error. This control is slightly
sensitive to the variation of the resistor. Generally, the implantation of this control needs to use
numerical hardware. We now present a technique of control with a simple design and easy
implantation: this is a sliding mode control at fixed frequency.

Sliding mode control with fixed frequency
In a former paper [5], the authors have already presented some variable frequency sliding mode
control. The performances of those controls are excellent in transient. The insensitivity to parametric
variations is also very good. In steady state, a drawback appears. The phase-shift between the cells is
not fixed directly, and it is necessary to use a specific mode of switching in steady state. In this paper,
the authors present a technique to transform a variable frequency control into a fixed frequency control
law. For this, we are going to use the switching functions defined by using the Lyapunov criterion, the
stability of the system in closed loop is preserved. They are defined by equation (11).
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In steady state, the functions Sk represent the error on the current. By adding a modulator, and a PI
regulator, the duty cycle will be fixed in steady state. Figure 7 presents the structure of the control of
the cell number k. The complete structure is composed of p identical blocks. Its outputs are the duty
cycles, and its inputs are the switching functions. Let's note that the modulator is a function that can
give p control signals for the cells with a fixed phase shift (2.π/p) between them.
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Fig.7 Structure of the control law

The regulator is calculated by studying the ripple of the switching function. The value of the gain can
be calculated according to equation (12).
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The value Vsat is the height of the saturation block connected after the integrator, chosen in adequation
with the sawtooth amplitude. The last parameter to define is the integration time constant. The goal of
this is to create a duty cycle and to cancel the error in steady state, normally introduced by the
frequency constant operating mode. So, the constant must be chosen to be slower than the switching
period, in order to converge towards the state of balance without losing the properties of the sliding
mode.

With this type of control, the performances in transient are good but not as good as those obtained
with a free-frequency control. However by fixing the phase-shift between the control signal, the
waveforms in steady state are always optimal. Let's now apply this type of control to a three-cell
chopper using the same benchmark profile as for the partial linearizing feedback control.
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Fig. 9 Output current and reference

The results are slightly different from those obtained with the partial decoupling control law. In the
transient, the performances are good, and for sinusoidal evolution of the current reference the
behaviour is interesting.
By way of comparison we give here the results obtained with a control law in sliding mode in free-
frequency operation. The switching functions are identical to the preceding case.
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0 0.005 0.01 0.015 0.02 0.025
0

5

10

15

20

25

30

35

40
free-frequency sliding mode

 time (s)

Il 
an

d 
Ire

f (
A

)

Fig. 11 Output current and reference



Fixed frequency control laws for multi-cell chopper  M. Fadel, T. Meynard

EPE 2001 – Graz P. 7

This operation is optimal for the dynamic consideration with a very good robustness compared to the
load but the phase shift between the cells is not always guaranteed [5].

Conclusion
In this paper, two control strategies with fixed switching frequency are defined for the control of a
multicell chopper. The first is based on partial linearizing feedback and the second uses the switching
functions according to a sliding mode approach with fixed frequency. Both controls are very good.
The first is better for step reference variations (supply voltage and reference current) and the second is
better for sinusoidal reference and parametric variations. The control law in the sliding mode approach
at constant frequency is easily achieved with analog circuits and the control law with partial
decoupling is more fit for a numerical implementation. These control laws are simply generalizable
when the number of cells increases, they constitute a whole set of solutions making it possible to
answer various problems.
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