R Bensaid 
email: bensaid@leei.enseeiht.fr
  
M Fade1 
email: fadel@leei.enseeiht.fr
  
Floating Voltages Estimation In three-cell Converters Using A Discrete-Time Kalman Filter

This paper aims at reducing the number of sensors in multicell converters by estimating the capacitor voltages using a load current measurement. To achieve this purpose, we first develop a simple discrete-time model which correctly represents the behavior of the converter in closed loop operation. A discrete Kalman filter (KF) is then detailed for the state estimation in a three-cell converter. Simulation results in the presence of measurement noises are presented to validate this observer. The experimental results for the real-time implementation of the KF are then presented to confirm these simulation results.

I. INTRODUCTION

Traditionally, the standard voltage-source converter structure is composed of only one switching cell per phase and is typically controlled using Pulsewidth Modulation (PWM) techniques. This two-level standard converter is a simple and low-cost voltage-source but it has important technological and functional limitations which restrict the power range.

Multicell converters [l] are an emerging topology that can attenuate some of these limitations. In fact, in a p-cell converter the switched voltages are reduced to E / p (where p denotes the number of cells and E the input voltage). Furthermore, the output voltage quality increases as the number of cells increases. TO obtain this performance and to reduce the total harmonic distortion of the output voltage wave-fom, the capacitor voltages w c i (i = 1,. . . , p -1) must be balanced to and the control signals phase-shifted by T .

Closed loop control of the p -1 capacitor voltages can then be used to maintain their optimal values and to improve dynamic response. Different control strategies can be found in the literature (see [2], [3] for PWM control and [START_REF] Pinon | Commande par mode glissant d'un hacheur deux cellules: tude de I'installation des cycles limites[END_REF] for a sliding mode control approach) but these require a state measurement.

In order to reduce the number of sensors in these converters, the authors proposed in, a discrete-time observer using a load current measurement based on a deterministic approach (Luenberger observer) [ 5 ] . The major drawback of this observer is its weak robustness via the measurement noises, due to the high values in the gain components. Consequently, these noise phenomena have to be taken into account for through the elaboration of a more realistic model involving stochastic process concepts.

In this study, based on the state-space averaging techniques, we first present a simplified model of the three-cell converter. A development of a discrete-time Kalman filter (KF) for the capacitor voltages estimation is then proposed. Simulation and experimental results using a sensorless control strategy will be presented to validate the observer.

MODELISATION OF THE THREE-CELL CONVERTER

Generally, modelisation of static converters is difficult because these systems involve continuous elements (inductor, resistor, capacitor) as well as discrete elements (switches). Furthermore, in the multicell converter case, natural balancing dynamics cannot be modeled if one neglects all the harmonics in the converter (like in a classical average model [6]). The designer must thus take into account these harmonics at switching frequency and multiples to represent correctly the behavior of the multicell converter [7].

For an observer design purpose, the model must be at the same time, precise enough to represent correctly the system behavior and sufficiently simple for a real-time implementation. Moreover, it is necessary that the simplified model remains observable. In the case of multicell converters studied here, observability in steady state operation (when all duty-cycles applied to the converter are equals) depends directly on whether the model contains or not harmonics at switching frequency (and multiples). Thus, we can't use the classical average model over one switching period to observe the floating-capacitor voltages with a current measurement. In the other hand, the exact discrete-time model developed in [START_REF] Bensaid | Observer design for a three-cell chopper using a discrete-time model[END_REF] is too complex and require a heavy computational load.

In this paper we propose a simplified model based on average values over one thud of switching period. We will show that this model represents rather well the behavior of the converter when the natural balancing dynamics are neglected (i.e. in closed loop operation). In this section a simple discrete-time model based on a state average technique is obtained for a three-cell chopper (Fig. 1).

We assume a fixed switching period Td and suppose that all the source voltage E remain constant during the time interval [kTd, (IC + 1)TdI. The instantaneous model of the chopper in the state space representation has the following description: switches are perfects. we that the duty cyc1es and

We then obtain three continuous models per period Td:

(x)' = AL . (x)' + BL . E , j = 1 , 2 , 3 (3)
where:

0 0 4-4 AkL = c 2 _ _ RI LI L1 X = A(u) . x + B(u) . E (1)
where, and (x)' denote the average value of the variable x over Td/3.

Thereafter, these models are sampled with a period of T d / 3 using a second order approximation to obtain three discretetime equations per switching period, expressing the state at time ( k + $)Td according to the state at time (k + 9 ) T d :

0 - A(u) = 0 - c 1 0 j j -1 ~( k + -) = FL . ~( k + -) + GL . E ( k ) (4) 3 3 x = (wcI, w c z , i ~) ~,
E the input voltage source and U = ( U I , UZ, ~3 ) ~ the control signal vector. with:
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The average model over Td/3 is then obtained by replacing the instantaneous variables in (1) by their average values over one third switching period. Of course, this is valid only if the the-constants of the system are larger than Td/3.

Thus, on the time interval [kTd, (IC + l)Td], we calculate three new duty-cycle vectors a ' = (a?, ai, a{))T 0 = 1 , 2 , 3 ) where I denote the 3 x 3 identity matrix.

_ _ .
which represent the average of the control signals U i=1,2,3 over each interval of Td/3 duration (Fig. 2):

Finally, a global model, sampled at switching period Td is obtained from the preceding equations:

x(IC + 1) = Fm(a) . ~( k ) + Gm(a) . E ( k ) (6) ~i d t , i , j = 1 , 2 , 3 ( 2 )
where:
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The quantities (cy:)i,j=1,2,3 can easily be computed according to the duty-cycles ai applied to the converter (see table I). In section 11, it has been assumed that the system can be represented perfectly by a deterministic state space model (6). In practice this is not the case, due to the presence of disturbances for which modeling would be difficult and result in complex equations. For handling system uncertainties of this nature a stochastic model is used. This stochastic model is obtained by adding a Gaussian white-noise vectors to the deterministic model: The process noises w(k) and the measurement noises w(k)
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are characterized respectively by the covariance matrix Q(k)

and the variance R ( k ) :

E { w ( k ) v ( i ) } = 0, V k and i E N.' (9) 
where E{ .} denote the expectation operator.

Taking into account the system noises, the Kalman filter algorithm will adapt the observer gains in order to minimize the trace of the error covariance matrix.

The KF equations are as follows [81, [91:

K(k) = P-(k) . CT (C . P-(k) . CT + R(k))-' ?(k) = ? ( k ) + K(k) . ( ~( k )
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where K(k) is the Kalman gain vector, ? ( k ) is the state estimate, and the estimation error covariance is:

P-(k) = E { f -( k ) . P ( k ) } P ( k ) = E { % ( k ) . %

T ( k ) }

? ( k ) denote the prior estimate that represents our best estimate prior to assimilating the measurement y(k), while S ( k ) denote the updated (or a posteriori) estimate after the measurement y(k). P-(k) and P ( k ) are respectively their associated error covariance matrices.

Iv. CAPACITOR VOLTAGES ESTIMATION

In this section the application of the Kalman filter for the capacitor voltages estimation in a three-cell converter is presented. Since the model matrices depend on the duty-cycles applied to the converter, the estimator is time varying and the Kalman gains must be evaluated on-line.

In the simulation results presented in Fig. 4, only a load current measurement is used for the capacitor voltages estimation. The supply voltage E must also be measured to impose the correct capacitor voltage references (vel,,, = E / 3 , wclref = 2E/3). The converter parameters are assumed to be known accurately and are given in the appendix. The current measurement has a Gaussian white noise added to account for imperfections in an experimental system. The measurement noise variance is given by: The estimated state 2 is used for a linear state feedback decoupling control strategy. The control sequences used here are given in the appendix. We see that the estimated capacitor voltages are able to track the actual floating voltages quickly even in presence of measurement noises.

v. REAL-TIME IMPLEMENTATION AND EXPERIMENTAL

RESULTS

The overall structure of the system is shown in Fig. 5. It contains a 3 kW three-cell chopper, two sensors for the source voltage and load current measurement, and an ADSP 21062 DSP system board including a XILINX 4010E FPGA and 14 A/D converters. The DSP operates at 32 MHz and has a single cycle instruction of 3 1.25 ns. The PC is used to program the board (DSP/FPGA) and to communicate with the DSP in real-time.

The DSP software contains the algorithm of the linear state feedback control strategy, the model calculations and the recursive KF algorithm.

The three-cell PWM modulator is implemented in the FPGA.

At each switching period, the P G A interrupt the DSP which starts the A/D conversions and executes the sensorless control algorithm. At the end of the algorithm the DSP writes the new duty-cycles values into the FPGA registers in order to be used by the modulator in the next switching period. This real-time algorithm is resumed in Fig. 6.

The converter parameters are: The sampling and the switching frequencies are equals.

C1 = Cz = 100pF Ri = 26R fd = 5.213kHz
The experimental result presented in Fig. 7 shows the efficiency of the stochastic filtering algorithm as well as the good performances of the floating-voltages-sensorless control. In this test, the converter starts with a discharged floating capacitors while the initial conditions for the observer are ?(O) = (lOOV, 200V, 10A)T. The reference current is i ~~~f = 6A.

Experimental result in Fig. 8 shows the behavior of the measured and the estimated floating capacitor voltages when the supply voltage E vary suddenly from 350 V to 200 V. We see that the estimated and measured voltages are identical and the actual voltages are maintained to their optimal values: u c l = E / 3 and ucz = 2 E / 3 . In Fig. 9, whereas the observer reached its steady state operation, we impose to the converter, at time t o = Os, this current control sequence: 

VI. CONCLUSION

It is demonstrated that it is possible to replace the capacitor voltage measurement in a three-cell converter with a state observer using a load current measurement. To achieve this purpose, a novel discrete-time model based on an averaging tech-niques is proposed. This simple model allows the reduction of required computational load and facilitates a real-time implementation of the observer. Since the physical signals in the practice are noisy, a recursive Kalman filter is adopted to take these random phenomena into account in the state estimation. Simulation results show that the estimated voltages converge quickly towards the actual capacitor voltages, even in the presence of measurement noises. Experimental results obtained for a 3 kW three-cell chopper confirm the usefulness of on-line estimation using a Kalman filter. 
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  APPENDIX CONVERTER PARAMETERS USED IN SlMULATlONS CONTROL SEQUENCES USED IN SIMULATIONS a t t = O : at t = 5 ms : at t = 7 ms : at t = 8 ms : start of the converter with E = 1800 V, i ~~~f = 100 A step of the reference current of -50 A step of the input voltage of -300 V step of the reference current of +30 A

TABLE I

 I THE AVERAGE OF THE CONTROL SIGNALS OVER ONE THIRD SWITCHING PERIOD

a;