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Abstract 
In this paper, the authors present three different sliding mode controls for a two-cell chopper. First, the 
synthesis of the control is treated. By the study of the limit cycle, the authors have developed a new 
control in steady state that imposes a phase shift of π between the control signals of the switches. 
They also present a sliding mode control at fixed frequency. 
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Introduction 
The multi-cell converters have been developed to increase the converted power. A p-cell converter 
with an optimal phase of p2π  between the interleaved control signal (frequency fd) can create 
improved output signals : the fundamentals of those signals have a frequency of pfd. 
With an appropriate control, the performance in transient could be exceptional [1]. The fixed frequency 
controls for this converter are in general based on a decoupling of the input [2], [3] (linear or non-
linear). With those methods, a too dynamical control may saturate the duty cycles in transient, which 
would cause one or several of the state variables to remain constant during the time where the duty 
cycles are saturated. 
We will present here three different sliding mode controls. The first control is directly derived from the 
synthesis of the switching functions. By studying the limit cycle, we found a second control giving a 
phase of π between the control signal of the switches [4]. In a third part, we will present a new fixed 
frequency control based on the switching functions that we have defined. We will show that the 
performances are close to those obtained with a variable frequency control. 

Model of the converter  
We will study a two-cell chopper of which structure is presented on the figure 1. 
In open loop, the phase between signals u1 and u2 is π. It produce an optimal waveform of the output 
current : the frequency if doubled (figure 1). 
The instantaneous model of the chopper is non-linear : 

2(x)u2g1(x)u1gAxx ++=&

 With :  
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Fig 1- Structure of a two-cell chopper, and open loop signals of the converter for a duty cycle α=0,75 

In our case, the values for the passive components are : E=800 V, C=40 µF, L=10 mH, R=20 Ω 
Such a model of the converter can be controlled if the condition of accessibility is true on all the space 
state [8] : 

0
LC
Ei

(x)])
2

g(x),
1

det([g ≠−=  if i ≠ 0 A 

This means that when the output current is equal to zero, the voltage could not change, so can not be 
controlled. We will use this model for the synthesis of the two switching functions. 

Synthesis of the control 
The control has three goals : 

• To control the voltage V1 at 2E   
• To control the current i at Iref. 
• To obtain optimal waveform for the output signals (Vb and i) i.e. a phase of π between u1 and 

u2. 
We used the Lyapunov criterion for the synthesis of the control [5]. This method of synthesis has been 
defined in [6]. Let's consider a Lyapunov function as : 

0xQTxV(x) >=

 With : 
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To have a stable system, the function )x(V&  should be negative [5]. Let's calculate this function : 

xQTx)x(V && ∆∆=

  )
2

u)x(
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1

u)x(
1

g)x(f(QTx)x(V ++∆=⇔ &

 We now consider that the equivalent controls U1eq and U2eq exist. Under the equivalent control, the 
converter is on open loop and so it is stable (this is a dissipative system). We can then write the control 
signal as : 
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 Because, the converter is stable on open loop we can say that : 

0)eq2U)x(2geq1U)x(1g)x(f(QTx <++∆

 To have a stable system, we need to respect (if the equivalent control exists): 

0iu)x(iQgTx <∆∆

 To respect this condition, we could take the switching surfaces respecting the following equation  : 
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The control signal is given by : 

))x(is(iu Φ=  with 
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The function Φ  is a simple hysteresis of a height of two ε . 
We can note that the equivalent controls exist if the Lie derivatives of the switching function are 
different of zero [7]. It means that the voltage V1 must be different of 0 and E when the current must 
be different of 0. 
We make the following test :  

• Initial condition are V1(0) = 0 V, i(0) = 0 A, with ε  = 1A 
• Slope of input voltage of 8.105 V/s and a current reference of 30 A (duty cycle α=0,75) 
• A step of the current Iref = 15 A at 4 ms (α=0,375) 
• A step of load of 100% at 6 ms (α=0,75) 
• A step of reference Iref = 10 A at 8 ms (α=0,5) 
• A variation of the reference Iref = 10 +5 sin(2π f t+ϕ ) A during 5 ms with f = 200 Hz and ϕ 
= 10.05 rad (α from 0,25 to 0,75) 
• A variation of the input voltage of –25% with a current Iref = 10 A at 15ms (α=0,66) 

This test will be applied to at all the other controllers in the rest of this paper. 

  

Fig 3 – The state trajectory in the plane V1 – i 
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Fig 4 – The voltage V1 and 2
E  

  

Fig 5 – Currents i and Iref I 

In steady state, the performances are not optimal. The errors on the voltage and on the current are 
quasi almost cancelled. But we can see on figure 3 (zoom 4) that the limit cycle is not symmetrical 
about 2E . It shows that the phase between the control signal is not of π. In this case, we cannot 
obtain optimal waves form for the output current i. 

Study of the limit cycle : 

To understand why the phase was not always of π, we have studied the installation of the limit cycle.  
When the control signal switch, the state variables verify :  
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A linear relation exists between the two state variables. The study could be reduced to a first order 
system [9]. So we can investigate the installation of the by studying the voltage recurrence for example 
(which the easier case).  
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Fig 6 – Notation for the study of the limit cycle  
Consider a limit cycle with four vertices as show on figure 6. To study the installation of the limit cycle 
we should find the function that links the voltage V10 to voltage V14 (c.f. figure 6) [4]. A numerical 
method allows us to find this function. Let us define function F who links V10 to V14. 
The slope of this function is close to 1, so that we present here, not the function F, but the difference of 
it with the identity function. In our case, when this difference is growing, it shows that the slope of F is 
greater than 1 and the opposite. As can be seen on figure 7, the absolute value of the slope of F is 
greater (respectively lower) than 1 if the duty cycle is lower (respectively grater) than 0,5. So the fixed 
point of this series will be stable only if the duty cycle is greater than 0,5. This is the reason why a 
symmetrical limit cycle only exists for reference current corresponding to a duty cycle greater than 0,5. 

  

Fig 7 – F(V10)-V10  function of V10 for a duty cycle : lower and greater than 0,5. 

Such a control has been implanted on an analog card using on analog multipliers (AD 734). It has been 
tested on an analog simulator of the studying two-cell chopper. The simulated converter is the one 
defined at he beginning. 
The test done is  

• Initial condition V1(0)=0 V and i(0)=0 
• Start up with an equivalent current reference of 34 A (duty cycle equal to 0,74), and a 

source of 800 V. 
• At 2.8 ms a step of the current reference from 34 A to 4.8 A (duty cycle equal to 0,12). 
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Fig 8 – The voltage V1 and the current i with their reference for a 2 cell chopper and limit cycle of the 
chopper for two reference currents 

We can observe the good performance of the law in transient (figure 8). As can be seen on voltage Vb 
on the figure 8 the voltage V1 is correctly balanced from the start up to the current step. On the same 
voltage waveform, we can see that in steady state the frequency is twice that of V1. It means that the 
phase of the control signals is π when the current reference is 34 A. When Iref is equal to 4,8 A, voltage 
V1 is not balanced. In this case, the control signals are to be in phase. In this case, the limit cycle is 
unsymmetrical (figure 8). 

In conclusion, these experiences show that the previous study is correct 
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Some new controls 
We found out a new control of a two-cell chopper that can give optimal output waveforms. The same 
switching function is used for the transient, but for the steady state, we decided to use the control 
presented on figure 10. 
This control has been found by studying the stability of the limit cycle on the particular case of the 
triangle [4]. In steady state this control, we will used the lower triangle for a duty cycle greater than 
0,5, and the lower triangle on the other case. 

 

Fig 10 – Principle of steady state control  

In this case, it can be shown that the limit cycle is always stable for any values of the duty cycle or of 
the hysteresis band control (as shown on figure 11) [4]. 

  

Fig 11 – V14-V10 in function of V10 for duty cycle lower than 0,5 and greater than 0,5. 

The same test sequence as in the previous section is carried with this control. 

  

Fig 12 – State trajectory in the plane V1 – i 
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Fig 13 – Voltages V1 and 2
E  

  

Fig 14 – Currents i and Iref  

Figures 12 to 14 present the state variables of the chopper. With this control, the transients are identical 
to the previous control. But now the performances in steady state are better. The symmetrical limit 
cycle on figure 12 (zoom 1 – 4) shows that the phase between the control signal is always π. 
We can see that, in this case, the shape of the current is smaller than on figure 5. The frequency of the 
output signal is twice the frequency of the switching signal. 
The error on the steady state current is due to the fact that we use a triangle that is not centred on Iref. 
It could be significantly reduced by adding or deducting a constant to Iref (ε /2 or -ε /2). 
In conclusion, we always obtain very good performances in transient, and an optimal waveform for the 
current i for any value of the current reference (i.e. the duty cycle) or of the height of the hysteresis. 

Fixed frequency control 

For this control, we used the same switching function S1(x) and S2(x) (c.f. equation 4). Those function 
are now treated by two P.I. correctors delivering the duty cycle 1u  and 2u (c.f. figure15). 

To avoid over-switching, the correctors bandwidth is reduced by a low-pass filter (a Saley Nackey 4th 
order filter). This control is non-linear. So the dynamic in closed loop is non-linear too. It will only 
depend of the slope of the switching functions. 
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The gains are chosen for a large dynamical in front of the switching functions. The integrator's gains 
are lower in order to not disturb the sliding mode and to allow cancelling the static errors on the two 
state variables.  

 
Fig 15 – Principle of the fixed frequency control in sliding mode 
We make the same test with this control.  
The results are presented on figures 16 to 18. We can see that in transient the results are not as good 
as with the other strategy due to over shoot (about 10% of the voltage). But, in steady state, the phase 
control gives optimal waveforms on the output current. The two state variables are stabilised for any 
value of their references (figures 17 and 18), of the input voltage (figures 17-18 zoom 6) and of the 
load (figure 17-18 zoom 3). 

  

Fig 16 - State trajectory in the plane V1 – i  

  

Fig 17 - Voltages V1 and 2
E  



 10 

  

Fig 18 - Currents i and Iref  

This control has been realised with analog circuits. The figure 19 presents some results.  
The test done is  

• Initial condition V1(0)=0 V and i(0)=0 
• Start up with an equivalent current reference of 38 A (duty cycle equal to 0,95), and a 

source of 800 V. 
• At 9.2ms a step of the current reference from 38 A to 12 A (duty cycle equal to 0.3). 

The voltage V1 is always balanced about E/2, so the frequency of the voltage Vb is twice the one of V1 

(c.f. figure 19). The shape of the output current is optimal.  
There are three advantages to this control in front of the two above. The first : the frequency of the 
control signal is constant. The second : with this control we are sure to have an optimal waveform for 
the output current by controlling the phase between the two signals. The third, the dynamic is near from 
the one imposing by the Lyapunov design. 

   

Fig 19 – Experimental results on an analog simulator of a two-cell chopper 

 Conclusion 
We saw that the synthesis of the switching functions with Lyapunov criterion gives a control with very 
good performances in transient and not in steady state. 
By studying of the limit cycle, we find a special control in steady state with a variable  frequency that 
ensures optimal waveform of the output current. It creates a small error on the output current. 
The control with a fixed frequency shows that with the sliding mode, we could obtain very good 
transient performances and an optimal waveform for the output current. The implantation is not difficult 
to do with analog circuit. The dynamic is near from the one imposing by the Lyapunov design. 
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