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Speed Sensorless Vector Control of an Induction Motor using Spiral Vector Model-ECKF and ANN Controller

This paper presents a speed sensorless vector control of an induction motor using an extended complex Kalman filter, a neural network, a spiral vector model and two sensors for tracking voltage and current of one phase of stator. The spiral vector model uses the spiral vector variables rotating counter clockwise in the complex plane. This model depends only on variables and parameters of one phase of stator and one phase of rotor without Park transformation. The rotor speed, airgap flux and stator current of one phase are estimated by a new variant of the extended Kalman filter in the complex domain. The estimated rotor speed, airgap flux and stator current are used for vector control where all controllers are based on the neural network. Computer simulations have been carried out to test the effectiveness and robustness of the proposed control under noise and several load torques.

I. INTRODUCTION

For high dynamic performance of an induction motor drive the vector control is used [START_REF] Leonarhd | Microcomputer control of high dynamic performance ac drives a survey[END_REF]. Speed transducers such as shaft mounted tachogenerators, resolvers, or digital shaft position encoders are commonly used to achieve the control of speed, torque and flux of induction motor in many industrial applications. However, in some cases it is difficult (e.g. a compact drive system) or extremely expensive, (e.g. submarine applications) to use sensors for speed measurement the mechanical sensor also reduces the robustness of drive and together with the cost of the hardware, causes additional expenses. Ongoing research has concentrated on the elimination of the speed sensor at the machine shaft without deteriorating the dynamic performance of the drive control system [START_REF] Holtz | Sensorless control of induction motor drives, a survey paper[END_REF]. Speed estimation is an issue of particular interest with induction motor drives where the mechanical speed of the rotor is generally different from the speed of the revolving magnetic field. The advantages of speed sensorless induction motor drives are reduced hardware complexity and lower cost, reduced size of the drive machine, elimination of the sensor cable, better noise immunity, increased reliability and less maintenance requirement. The operation in hostile environments mostly requires a motor without speed sensor [START_REF] Holtz | Sensorless control of induction motor drives, a survey paper[END_REF].

To replace the speed sensor, the information on the rotor speed is extracted from measured stator voltages and currents at the motor terminals. Generally we use four or six sensors for measuring the stator voltages and currents that are necessary for Park transformation. The main contributions of this paper are: • The development of a new vector control of an induction motor without Park transformation and with two sensors one for stator voltage and one for stator current. The reduction in voltage and current sensor number augmented the advantages of the sensorless control as mentioned above. To be able to develop this vector control of an induction motor, the author propose to use the spiral vector theory for modeling the induction motor in both steady and transient state.

The obtained model only depends on variables and parameters of one phase of stator and one phase of rotor, see the model order is reduced from six equations (three for the stator and three for the rotor) to a pair complex equations (one for stator and one for rotor) without matrix coordinate transformation.

• To estimate the rotor speed and airgap flux we propose to use the extended complex Kalman filter "ECKF" based on the developed model. The ECKF is more attractive than the real one from the point of view of modeling and stability consideration for more details about ECKF see [START_REF] Nishiyama | A nonlinear filter for estimating a sinusoidal signal and its parameters in white noise: on the case of a single sinusoid[END_REF].

• To obtain the robust direct vector control we propose to replace the classic controller "PI controller" in the vector control by the artificial neural network controller.

This paper is organized into six sections. Section 2 the induction motor model by spiral vector theory is developed, the following section proven the application of spiral vector model to the airgap flux orientation control. The rotor speed and airgap flux estimation by the ECKF is discussed in section 4. In the section 5 the ANN controller are used in the direct vector control. In the last section, the computer simulation tests under different scenarios are given to show the effectiveness of the proposed control.

II. INDUCTION MOTOR MODEL BY SPIRAL VECTOR THEORY

A. Spiral vector theory

The spiral vector theory is an exponential time function with a complex index. It can express almost all kinds of state variables, which appear in electrical engineering, and is the most natural form solutions of circuit equations of electric circuits and performance equations of electrical machines. The spiral vector theory can express both steady and transient state solutions. When spiral vector expressions are used, the steady state theory and transient state theory of AC circuit, which have been separated because of different expressions of state variables, are unified. Both steady state and transient state analyses of AC machines becomes simpler and easier [START_REF] Yamamura | Spiral Vector Theory of AC Circuits and Machines[END_REF].

The spiral vector variable can be expressed in the following form:
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In the complex plane, the variable "i" depicts a spiral, rotating counter clock-wise, as shown in Fig. 1.

B. Induction motor model

Generally the spiral vector theory is used to describe the model by transfer function [START_REF] Yamamura | Spiral Vector Theory of AC Circuits and Machines[END_REF][START_REF] Muni | A PC based internal power factor angle controlled interior permanent magnet synchronous motor drive[END_REF][START_REF] Deaguiar | The concept of complex transfer function applied to the modeling of induction motors[END_REF]. In this paper we use this theory to develop a state space model.

The first step, in the estimation process is the definition of a suitable machine model. When the spiral vector theory is used for modeling the induction machine, it can be represented by a non-linear third order differential equation. This model takes into account both electrical and mechanical transients. Only the variables and the parameters of one stator phase and one rotor phase are considered. By separating the slow mechanical modes from the fast electrical ones, linear time varying electrical modes can be deduced. It is assumed that the stator and motor windings are electrically and geometrically symmetrical, the airgap is uniform, the field distribution is uniform and that the effects of field saturation, eddy currents and hysteresis are negligible. In that case the induction motor may be represented by the model of the three-phase stator and rotor windings shown in Fig. 2 (instead of the D-Q model), and the following model per phase can be derived:

The per phase voltage equations are:
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The stator and rotor currents of symmetrical spiral vector are:
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Inserting ( 5) and ( 6) into the expressions for stator and rotor flux (3), ( 4) and [START_REF] Holtz | Sensorless control of induction motor drives, a survey paper[END_REF]. After all calculation, we obtain the induction motor model by spiral vector theory in any reference frame. This model contains only variables and parameters of one stator phase "a" and one rotor phase "r", which are segregated from the other phases. The spiral vector model only needs the voltage and the current of one phase to achieve a vector control and induction motor identification [START_REF] De Aguiar | The concept of complex transfer function applied to the modeling of induction motors[END_REF][START_REF] Menaa | Identification of Induction Motor by Tacking Account of Spiral Vector Theory[END_REF][START_REF] Menaa | Vector control of induction motor by spiral vector theory[END_REF]. ( ) ( )
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III. DIRECT VECTOR CONTROL

The air gap flux orientation control based on the spiral vector model consists of choosing a model in the reference frame attached to the revolving field, the air gap flux vector 0 Φ is aligned with the real axis in order to achieve, as in a separately excited dc machine, decoupling control between the flux and the produced torque [START_REF] Menaa | Vector control of induction motor by spiral vector theory[END_REF][10]. The torque is then controlled by the imaginary part of the stator current of the phase "a". At the same time, the flux is controlled by the real part of the stator current of the phase "a", called the flux producing current [START_REF] Menaa | Vector control of induction motor by spiral vector theory[END_REF] [10]. To obtain the model in the reference frame fixed in the revolving field, set: ) 9), the obtained model referred to the revolving field is as follow: [START_REF] Loron | Application of the extended Kalman filter to parameters estimation of induction motors[END_REF] As airgap flux orientation requires that 0 0 ) Re( Φ = Φ and 0 ) Im( 0 = Φ , ( 12) and ( 13) become:
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Considering the airgap flux and the rotor speed as reference, the airgap flux orientation equations obtain the following form:
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In most applications, speed sensors are necessary and essential in speed control loop. However sensors have several disadvantages in terms of drive cost, reliability, and noise immunity [START_REF] Holtz | Sensorless control of induction motor drives, a survey paper[END_REF]. Several papers deal with the speed estimation. The most used in the last decade is the EKF, but generally these papers treat the speed estimation. In this paper we present for the first time the simultaneous estimation of the airgap flux, and rotor speed by the ECKF in the direct airgap flux orientation control. Fig. 3 shows the obtained sensorless direct airgap flux orientation control diagram.

IV. SPEED ESTIMATION BY ECKF

The ECKF is a variation of nonlinear Kalman filter in the complex form. It has been shown in [START_REF] Nishiyama | A nonlinear filter for estimating a sinusoidal signal and its parameters in white noise: on the case of a single sinusoid[END_REF] that the ECKF is more attractive than the real one "EKF" from the point of view of modeling and stability consideration. The ECKF is more used in the power system estimation [START_REF] Dash | Frequency estimation of distorted power system signals using extended Kalman filter[END_REF] [START_REF] Flores | Positive and negative sequence estimation for unbalanced voltage dips[END_REF] but not in electrical machine estimation. The Kalman filter algorithm and its extension are a special kind of observer that provides optimal filtering of the noises in measurement and inside the system if the covariances of these noises are known. When the Kalman filter is used, the state space model of an induction machine in the stator reference frame is required; for obtaining the model in stator reference we put

a 1 i i = , jθ e i i r 2 =
and 9), thus obtaining the following induction machine model in the stator reference frame:
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After all treatment and simplification, we obtain the following state space model of an induction machine in the stator reference frame, which is a function of the airgap flux. ( )
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The discrete time varying model is deduced from the continuous model by applying the Euler formula (first order). It is given by: To take into account the system uncertainties and disturbances, the following stochastic model is introduced: We proceed in the same way forV(k) .
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The ECKF allows simultaneous estimation of complex states and rotor speed. The rotor speed is considered as extra state in an augmented state vector. This augmented model is non-linear because of multiplication between states. Thus, it must be linearized along the state trajectory to give a linear perturbation model. The standard complex Kalman filter is then applied on this linearized model. The extended complex Kalman filter only requires machines quantities which can be easily measured (stator voltage and stator current). In this new approach we need only the voltage and current of one phase of stator, but in the D.Q model we need the voltage and current of two phases of stator [START_REF] Loron | Application of the extended Kalman filter to parameters estimation of induction motors[END_REF]. An extended induction machine model results if the rotor speed is included as additional state variable. The extended model can be expressed as follows:
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Then, linearizing the above system around the states and applying an ECKF, we obtain a nonlinear recursive filter based on the ECKF for estimating a complex state and rotor speed of an induction machine as follows:
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Estimation of error covariance matrix
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(23e) *: conjugate, t: transpose, I: unit matrix.

V. ANN CONTROLLER FOR DIRECT VECTOR CONTROL

The artificial neural network's "ANN" are non linear methods and adaptive in nature, giving robust performance with parameter variation problem [START_REF] Lin | Power electronics converter control based on neural networks and fuzzy logic methods[END_REF][START_REF] Kim | Speed-sensor less vector control of an induction motor using neural network speed estimation[END_REF][START_REF] Mohamadian | Training of network controller indirect orientation control[END_REF].

We propose to replace the entire PI controller in the direct vector control by the ANN controller Fig. 3. The input layer of the ANN controller has three neurons and hidden layer has six neurons and the output layer has one neuron corresponding to command values Fig. 4. The sigmoid functions are used at hidden layer and the linear function is used at the output layer. The Levenberg Marquardt algorithm is used for training the ANN. 

VI. SIMULATION RESULTS

The simulation results tests were carried out using the direct airgap flux orientation control scheme of Fig. 3 without any speed measurement. The control is realized when we track one voltage and one current without any geometric transformation to the opposite of vector control based on the D.Q model where it's necessary to track two voltage ( bs as and v v

) and two current ( bs as and i i

) to apply Park transformation. To Test the performance of the proposed control, the simulations were performed on an induction motor of 2kW, 1425rpm and sampling time 0.1ms. Fig. 5 shows the machine start-up and between ( s t s 2 ≤ ≤ 1 ) we applied the load torque to the motor shaft; we note that all variables track their references with small error. Fig. 6 shows different scenarios used to test the performance of the proposed control algorithm under load torque variation, system noise and measurement noise variation. In the first part (

) 7 . 0 < ≤ 0 s t s
the simulation test between zero speed and 125rad/s without load torque, the rotor speed, airgap flux and electromagnetic torque track their references. In the second part (

s t s 4 < ≤ 7 . 0
), the simulation test in the field weakening range is shown and for the time range (

3 2 ≤ ≤ t s
) a load torque of 10Nm is applied to the rotor shaft, the estimated speed, estimated airgap and electromagnetic torque track their references and are not affected by the load torque and noise variations. In the third part ( 7 4 < ≤ t s

), the simulation at low speed is shown and between ( 6 5 ≤ ≤ t s

) a load torque of 5Nm is applied to the shaft, we note that the estimated rotor speed and estimated airgap flux track their references quickly and the load torque not affect the rotor speed and airgap flux. In the last part, inversion speed test (-125rad/s) is shown and between ( s t s 9 8 ≤ ≤

) the negative load torque (-10Nm) is applied to the motor shaft, we note that all variables track their references quickly and are not affected by the load torque change and the noise variation.

These results show that the proposed control is robust in different region (rated speed, field weakening region, low speed and negative speed).

VII. CONCLUSION

This paper shows that is possible to release a sensorless robust direct vector control of the induction motor by only two sensors to the opposite of the direct vector control based on the D.Q model where it is necessary to use four sensors for Park transformation.

This result is possible only when we use the spiral vector model. The rotor speed is estimated by a new variant of EKF in the group complex. The ANN controller gives robustness to the direct vector control. The obtained results show that the expected performance is attained and motivate further experimental implementation of the developed control. 
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