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C0: linear cable capacitance Cg: capacitance representing the winding to ground distributed capacitive coupling (common mode capacitance for HF motor) Ct: capacitance representing the turn-to-turn distributed capacitive coupling for HF motor model E: bus voltage f0: cable characteristic frequency G0: cable linear conductance Is, Ir: motor current in complex representation (stator, rotor) l: cable length L0: linear cable inductance Ld: HF motor phase leakage inductance Ls, Lr: LF motor phase inductance (stator, rotor) Msr : modulus of motor mutual inductance np : motor number of poles R: stator and rotor HF phase resistance R0 : linear cable resistance Re: resistance representing the eddy currents inside the magnetic core and the frame of the HF motor Rf: resistance representing the dissipative effect on Cg Rs, Rr: LF motor phase resistance (stator, rotor) Sci, (i=1,2,3): inverter switching orders tp: wave propagation time V21: turn-to-turn motor voltage (V2 motor -V1 motor) Vi0, (i=1,2,3): inverter line voltage ViN, (i=1,2,3): motor line voltage Vs: motor voltage in complex representation Tnom: nominal torque TPWM: PWM period (1/fPWM) Zm: motor equivalent impedance Zv: drive output impedance s

INTRODUCTION

The PWM is a technique that has drawn much attention in Power Electronics since its introduction in years 60. It is used for energy conversion. Its bases are in telecommunications domain (signal processing). Little by little the PWM technique has become essential in Power Electronics because of the evolution of the power switches. This evolution meant an improvement of switching times, of voltage and current strength of the switches, an increase of the power domain where converters could be used, and a better precision. On the other hand this evolution brought a lot of new problems, such as an increase in the switching looses or acoustic noise, bearing currents or over-voltages. When used for speed variation, the quality of a motor drive depends directly on the PWM method.

Concerning the problem of over-voltages, dangerous voltage transients exceed the limit of 2 pu bus voltage. These voltage transients are caused by short PWM pulses, which are passing through a long cable to an AC motor (Figure 1). Their levels depend on the modulation technique, cable length and type, AC motor impedance, inverter output rise time (very short because of the IGBT switches generally used in industrial applications). In fact, a single voltage transient does not destroy a motor, but rather a repetitive PWM shape that produces voltage transients can destroy it.

Taking into account the cable connected to the motor, this paper proposes an algorithm that assures admissible pulse width to the inverter by "zero-voltage movement" and, in general, the expected average line voltage (very important when some DPWM methods are used at low motor speed). All over-voltage transients are therefore reduced under the limit of 2 pu. This reduces the degradation of the machine insulation [START_REF] Kerman | Interaction of Drive Modulation & Cable Parameters on AC Motor Transients[END_REF], [START_REF] Stone | Which Inverter-Fed Drives Need Upgraded Stator Windings[END_REF] and avoids the motor breakdown.

The "inverter -cable -motor" system is simulated as shown in the first section of the paper, using RLCG lumped parameters cells in Matlab/Simulink. The main characteristic of the over-voltages reduction algorithm is the propagation time:
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This is analysed via a comparison between two long cable study approaches: transmission lines theory (transport delay) and distributed parameters modelling. The direct link between the two models is shown.

The paper shows that each model is suitable for simulation when good simplifications are made when studying a well-defined problem (e.g., the over-voltage transients in our case).

In the second section, we propose a method for the online estimation of the cable characteristic frequency f0. The estimation is realised by the motor drive. Its real-time acquisition limits are taken into account.

Experimental results validate this technique.

In the third section, we use the propagation time in order to reduce the over-voltage transients. The propagation time is obtained from the estimated frequency f0 (tp=1/4f0).

LONG CABLE MODELLING

General considerations

A basic approximation in the model of the line is that the wires are considered homogenous, parallel, rectilinear and infinite. The model is a two-terminal-pair network. It is shown that a  RLCG-cells model or a T RLCG-cells model are almost identical with a  RLCG-cells model (Figure 2). The cable is characterised by 4 elements [START_REF] Escané | Etude d'un circuit à constantes réparties, Réseaux électriques linéaires[END_REF]: linear resistance R0, linear inductance L0, linear capacitance C0 and linear conductance G0. Every unity length of the cable produces the same effects and phenomena as the entire cable. We have:
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One cell-cable model

The general R, L, C, G parameters of the line are therefore obtained by integration of parameters of all the unity cells so that R, L, C, G include in their values the cable length: R=R0dx, L=L0dx, C=C0dx, G=G0dx.

For one-cell model: R=R0, L=L0, C=C0, G=G0, so that the cable transfer relation is X1:
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The system model is shown in Figure 2. The drive supplies the V0 voltage, while the motor line voltage is V1. The motor current I1 is given by: (Eq. 3)
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Zm is obtained using either Park's classical equations for AC induction motor at low frequencies or a high-frequency motor model at high frequencies. The two models are detailed in the followings.

n-cell cable model

Long cables cannot be modelled by only one cell. From (Eq.2), the n-cell model is: [START_REF] Escané | Etude d'un circuit à constantes réparties, Réseaux électriques linéaires[END_REF] is written as a function of the partial derivatives with respect to the space and the time (the well-known telegraphers' equations):
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After the derivation with respect to x we obtain:
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where "  " shows the product between operators. Let V(x,s), I(x,s) be the Laplace transforms of v(x,t) and i(x,t) respectively, at an x abscise point. The previous equations can be written as:
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is the propagation constant,  is the attenuation constant and  the phase constant.

We define the characteristic impedance of the cable as follows:
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The transfer functions of the cable, using the limit conditions (Appendix 1), are found as solutions of (Eq.

7):
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Low frequency motor model

Using the notations from Figure 3 and Figure 4 (a), the well-known Park equations are:
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For a steady state operating, r  is constant. When we use the s operator the complex impedance Zm LF becomes:
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If we write the impedance under the following form:
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, we obtain the impedances of the three motor line:
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The matrices A and B are deduced from the Park's transformations. The right term of (Eq. 16) is a [START_REF] Boglietti | Induction Motor High Frequency Model[END_REF][START_REF] Boglietti | Induction Motor High Frequency Model[END_REF] matrix containing the theoretical impedances V1N/Is1, V1N/Is2, …, V3N/Is3.

High frequency motor model

An interesting model [START_REF] Boglietti | Induction Motor High Frequency Model[END_REF] will be used (Figure 4 (b)). R, Rf and Ct are usually neglected.

The high frequency common mode impedance for one phase of the motor is:
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LF / HF motor model

The whole system, with the LF and the HF models is shown in Figure 4 (c). Zm HF corresponds to the HF line impedance of the motor (Eq. 17). The "dq motor" model contains the 9 LF line impedances (Eq. 16).

The motor's HF and LF impedances are well separated along the Bode diagram (Figure 5 (a)) (parameters in Appendix 2). Each term of this total impedance is:

(Eq. 18) HF m k j LF m HF m k j LF m HF m k j LF m k j m Z Z Z Z Z Z Z     ) , ( ) , ( ) , ( ) , (
, j,k=1,2,3.

The HF impedance is almost equal to the common mode impedance. The common mode current (HF model Figure 4 (c)) is added to each line current (LF model). Consequently, the resulting current is the line current supplied by the motor drive. Therefore, the resulting current is the input of the cable model.

Taking into account the high value of ZHF for low frequencies, we consider Zm LF independent from Zm HF.

Hence, neither the influence of the HF current is important at low frequencies, nor the BF current at high frequencies.. The 48 kHz resonance phenomenon is due to two models coupling.

A greater precision of the simulated over-voltage transients is obtained, using the HF motor model. The same common mode effects are observed in simulation and experimentally at the motor end of the cable.

Cable and motor system

By replacing Zm from (Eq. 10), (Eq. 11) and (Eq. 18), the Bode diagram of the current and voltage transfer functions I0/V0 and Vn/V0 are obtained (Figure 5(b)). This explains the over-voltage transients.

The first voltage resonance happens at:
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This cable characteristic frequency is equal to 395 kHz for this example. The other resonance frequencies are approximated by: (Eq. 20)
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The ratio between two adjacent frequencies is constant and independent of the cable parameters. The over-voltages appear at the motor end of the cable, while the over-currents appear at the inverter end of the cable. The over-voltages are reduced for very high frequencies, but the "over-currents" contain all the frequencies and the common mode currents. On the other hand, the first poles of I0/V0 function appear at a frequency, which is dependent only on the cable.

If only 5 RLCG cells represent the cable, the phase or amplitude resonance errors are about 10% compared with the continuous model (only the first few resonance frequencies are important). A 20-cell approximation is an acceptable compromise between the simulation complexity and the error amount (about 2.5% between real and simulated phase and amplitude -Figure 6 and Figure 7).

The simulation results and measurements realised with the motor 2 and the cable 2 (Appendix 2) are compared in Figure 7. Differences may appear due to the bandwidth of the oscilloscope (Figure 7 (a)).

The amplitude of the V12 voltage (Figure 7) is normalised by the bus voltage E.

The cable skin effect can be neglected in order to optimise the simulation time. As its effects are observed on the cable damping time, this is another reason for using HF modelling.

Transmission line approach

Another approach of the over-voltages study is obtained through the transmission line theory: the mismatch between Zc and Zm produces reflections of the wave arriving to the motor or back to drive.

Hence, the amplitude of the direct wave is amplified by the reflected waves. We will use only a simple part of this theory, deduced from the distributed parameters modelling. From the continuous voltage transfer from (Eq. 10), a discrete cable voltage transfer will be obtained, putting in evidence the superposition of direct and reflected waves. This can be simply used in simulation in order to understand better the over-voltage phenomenon.

From (Eq. 10) we obtain:
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is the motor reflection coefficient, whose amplitude goes from 0.6 to 0.9, along the measurements [START_REF] Persson | Transients Effects in Application of PWM Inverters to Induction Motors[END_REF].

Taking into account the Zv drive impedance and using the drive reflection coefficient: 25) and (Eq. 26) are obtained for each x position of the line (drive: x=0, motor x=l).
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we can develop (Eq. 26) as:
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The general form of this last equation is:
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The studied case is for x = l. (Eq. 27) becomes:
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s) wave is the sum of direct waves from the drive (multiplied by v  , each time they come back to drive) and of the reflected waves from the motor (multiplied by m  ). The amplitude of the wave after k reflections is:
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From Figure 8, we can understand better how the wave travels and how it is modified by reflections.

Two important variables have to be mentioned, namely the wave propagation speed through the line [START_REF] Kerman | Interaction of Drive Modulation & Cable Parameters on AC Motor Transients[END_REF], (Eq. 32)
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and the wave propagation time (from drive to motor), respectively:
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, During the time tp, the direct wave (wave dir1) arrives from the drive to the motor and, after another tp interval, it returns to the drive (wave dir1 + wave inv1). The overall wave amplitude at motor input is:
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This last equation offers a quick simulation, using the time delays. The voltage cable transfer function (Eq. 22) becomes:
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This approach gives some simple relations for the resonance frequency f0 (Eq. 19), for the propagation time tp (Eq. 33) and for the over-voltages maximal amplitude (Eq. 37) that be used in the followings sections.
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Comparing the transfer function maximum (Eq. 36):
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and the (Eq. 10) maximum, m  may be obtained. Each one of the two approaches -the distributed parameters modelling and the transmission line modelallows a best phenomena understanding and a research simplification. They could be successfully used for over-voltages simulation, but taking always into account the proposed approximations.

ONLINE CABLE IDENTIFICATION

As the tp time is the main element in the over-voltage study, its accurate estimation could be used for the algorithm against over-voltage transients.

An on-line identification system has been simulated in Matlab/Simulink and tested experimentally on a dSpace real-time system (DS1005 + DS4002 cards) associated to an ATV58 drive.

The line current or the line-to-line voltage are captured and reconstituted, near to their real form. An example is shown in Figure 9. The parameters of the cable are: R0 = 0.07  ; L0 = 0.32 H  ; C0 = 0.19 nF ; G0 = 84 1 

 n ; l=130 m. So that we identify: tp=1.01 s  .

From (Eq. 33) we can also theoretically verify that tp=1.01 s  . It is important to note that tp increases while the length of the same cable increases so that the characteristic frequency is lower and the identification is simpler.

ALGORITHM FOR OVER-VOLTAGES REDUCTION

Most of the studies in the literature have been focused on the type of cable, motor or switches as causes for the over-voltages. In very few studies [START_REF] Kerman | Interaction of Drive Modulation & Cable Parameters on AC Motor Transients[END_REF], it is said that dangerous over-voltages are mainly due to the association of the enumerated parameters to a specific PWM pattern.

The turn-to-turn motor over-voltages are dangerous when their maximum amplitude is greater than 2*E.

Two PWM wave patterns have been identified as causes of damaging over-voltages (Figure 10). In the first case, a short pulse produces an insufficient dwell time for the oscillation that appears at the first transition. This first oscillation is amplified by the second transition and the limit of 2*E is exceeded (Figure 10 (a)). The phenomenon can be easily understood if we watch (Figure 8) considering two amplitude fronts:
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The total amplitude can be greater than twice the bus voltage. The sufficient dwell time for the short pulse depends on the tp time and on the cable damping time. Larger pulses may produce over-voltages in spite of shorter ones (Figure 10 (c)). However, any pulse larger than a tmin time cannot produce an over-voltage transient..

In the second case (Figure 10 (d)) the over-voltage appears during a transition from +E to -E or from -E to + E, with twice the amplitude of the first case transition. This time there is not the addition of two oscillations (its presence is not compulsory), but an oscillation whose maximum amplitude is:
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An output passive filter is able to reduce these over-voltages, decreasing the rising time of the transition (the switching time). But a less expensive software solution is to change the width of the PWM pulses so that oscillations wouldn't superpose each other. This last solution can be implemented under various forms.

Firstly, any pulse that has a width under a certain limit tmin, depending on tp and on the cable damping time, should be suppressed [START_REF] Kerman | Interaction of Drive Modulation & Cable Parameters on AC Motor Transients[END_REF]. As this phenomenon occurs at high speeds, with the three-phase PWM, the consequent error on the supplying voltage can be neglected. But at low speeds and with some DPWM (DPWM0, DPWM1, DPWM2, DPWM3 or GDPWM) method [START_REF] Capitaneanu | General and Algebraic Synthesis for PWM Methods[END_REF], the reduced voltage can stop the motor.

In order to bypass this problem, one solution is to take into account the zero-voltage movement [START_REF] Capitaneanu | General and Algebraic Synthesis for PWM Methods[END_REF]. It consists in adding an equal voltage quantity to the three voltage references of an inverter. In this operation, the value of the motor line voltages are not modified, but only the inverter line voltage (V10, V20, V30) and the neutral to ground voltage:

(Eq. 42)
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This voltage has to compensate the voltage variation due to the pulse suppression. Pulses whose width is situated between: are admissible pulses concerning the first case of over-voltages. Indeed, the two oscillations are then in phase opposition, so that the total resulting amplitude decreases instead of increasing (Figure 10 (c)). All experiments are made using the motor 2 and the cable 2 parameters.
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In conclusion, the first case of over-voltages can be avoided in enlarging or reducing the forbidden pulse width by zero-voltage movement. The forbidden pulses are those whose the width is included between: . Due to the damping properties of the cable, we consider that the pulses, over the limit of 15*tp = tmin, cannot produce over-voltages.

(Eq. 44) tp tp    3 
In the second case of over-voltages, the width of the pulses is reduced (Figure 10 (b)), in order to avoid the polarity reversal or the 2*E transition. When a double transition is discovered (e.g., V10 passes from 0.5E to -0.5E while V20 passes from -0.5E to 0.5E), the pulse width is modified for V20. Instead of a duty cycle of 1, we apply: An experimental validation of the foreseeing algorithm is presented in Figure 11 (a). After the algorithm application, there is no over 2*E oscillation in the region where short pulses appear. We find the algorithm in Figure 13. However, for certain motor speed values, there are cases when the "zero-voltage" value corresponding to:

(
(Eq. 47) PWM T t min 3 / 2   to be added to each line cannot be different from 0. We have to introduce an error. The global error is about 5% reported to the average voltage of a whole sine period and depending on the motor speed, PWM method and cable nature.

In a third case, some over-voltages occur (Figure 12 In order to suppress the over-voltages, which are due to the third case, we choose as a solution the dead time value in the accepted intervals related to tp.

From an EMC point of view, the algorithm improves the leakage currents. Figure 14 shows an example for the comparison between nominal point steady state without the algorithm and after the application of the algorithm. The current is simulated with the model proposed in section 2.7, using the parameters of Motor 2 and Cable 1. The effective value of the bearing current decreases with 19% when we apply the algorithm.

CONCLUSION

In the first section we have shown, by cable modelling, why the over-voltages appear in a long cable linked to a drive (converter and motor). The time delay or the transmission line model is deduced from the general modelling of a line through RLCG distributed parameters. In order to understand the overvoltages phenomenon, the transmission line model is a very useful theoretical tool.

Even if we used some approximations, such as the loss less line, this approach is still valid in a more general framework and can bring to results as the "forbidden PWM pulse times" (section 4).

"Software" solutions can be used to reduce the motor over-voltages. An algorithm is presented in section 4. In the second section of the paper, the main characteristic of the cablethe wave tp propagation timeis identified and the reaction of the system to some PWM pulses with different duty cycles is studied. This tp time is also the key element for the algorithm proposed in section 4 of this paper. By identifying the cable, we can forecast the "dangerous" PWM pulses width and modify them by "zero-voltage" movement in order to prevent over-voltages. The algorithm decreases the bearing currents because the high gradients of these currents disappear.

APPENDIX 1

We are looking for the solution for the system of (Eq. 7) under the form: 

  (a)) because of the dead time. Two transitions of the motor line voltages, without variation of the average voltage, compensate each other and produce an oscillation, not attenuated before the next one. This phenomenon occurs if the dead time value is a forbidden multiple of tp, (Figure 12 (b)).
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The new direct wave (wave dir1 + wave inv1 + wave dir2), coming from the drive after the second reflection, has the same amplitude as the first direct wave. Indeed, the first reflection on the motor is cancelled by the reflection on the drive (wave dir2 = -wave inv1).

After another tp time, a new reflection occurs at the motor end so that the resulting wave takes into account the initial wave (wave dir1) and the reflection of wave dir2 (wave dir1 + wave inv2) and so on.

In order to achieve an oscillation, the time needed for the initial wave is tp  4 (Eq. 33). As the amplitude of the time delay l   is equal to tp, (Eq. 29) can therefore be written as: