Don Chintan Pathak

Mackenzie Chargeval

Frédéric Amblard

Kevin Chapuis

Alexis Drogoul

; Benoit

Dominique Longin

D Mackenzie

framework for simulating and analysing charging station deployment scenarios using agent-based modelling. 1st

Keywords: electric vehicles, fast-charging, electric vehicle supply equipment

ChargEVal -a multi-user framework for simulating and analysing charging station deployment scenarios using agent-based modelling

Component models in ChargEVal

The various components of ChargEVal are described below.

Long Distance Travel Demand Model

The necessity of charging on a route is directly proportional to the number of EV trips passing through the route. The trip counts between origin-destination (OD) pairs were estimated using INRIX data, as reported in previous work by Jabbari et al. [START_REF] Jabbari | Estimating potential demand for long-distance electric vehicle travel in Washington State[END_REF]. The OD matrix is composed of around 300k+ rows for indicating trip counts from all origin ZIP codes to all destination ZIP codes within Washington.

Vehicle Choice Decision Model

The vehicle choice decision model (VCDM) provides the probability of a traveller using an EV for a long-distance trip, depending on various trip and vehicle characteristics. Ge [START_REF] Ge | Discrete Choice Modeling of Plug-in Electric Vehicle Use and Charging Behavior Using Stated Preference Data[END_REF] estimates several discrete choice models generated through stated preference surveys. For the purpose of implementation in ChargEVal, a latent class logistic regression model is used that makes a vehicle selection between a personally owned internal combustion engine vehicle (ICEV), a rental ICEV, or a personally owned battery electric vehicle (BEV).

Charging Choice Decision Model

While the vehicle in en route its destination, it might need to charge along the way. The choice of charging at a charging station can modelled by a binary logistic regression model. Among the various models developed by Ge [START_REF] Ge | Discrete Choice Modeling of Plug-in Electric Vehicle Use and Charging Behavior Using Stated Preference Data[END_REF], ChargEVal currently uses the static choice decision model.

EV Infrastructure Agent-based Model (eviabm)

The EV Infrastructure Agent-based Model (eviabm), is an agent-based model for modelling the utilization of EVSE in the state of Washington. As such, it has the following attributes:

Agents:

Electric vehicles in the state of Washington: We consider all the electric vehicles registered in the state of Washington as our EV agents. While some EVs maybe travelling outside the state and some out of state vehicles maybe traveling within Washington, for the present study, we ignore these vehicles.

Washington road network:

The EVs move on roads and travel is restricted to state roads. Currently, we ignore the elevation of the roads, but in future, the roadway elevation can be included, and the energy model can account for the changes in elevation.

Electric Vehicle Supply Equipment / Charging Stations:

The charging stations are the agents where the EVs charge when they are charge depleted. The instantaneous power drawn, and total energy consumed are the EVSE utilization outputs from the simulation that we are interested in.

Environment:

Currently, a two-dimensional simulation is bounded by the state of Washington.

Time:

A single simulation runs for 24 hours in 1-minute time-steps. This means that we simulate EV travel around the state for a period of one day at a time and update the states of our agents each minute. 0. The Nginx webserver serves the web UI's EV Infrastructure Designer (evides). A Grafana instance is used for centralized monitoring and logging of the system. 1. Upon authentication, a user can place and configure new charging stations via the evides and submit a simulation request. 2. The simulation request is written to the database. 3. The database generates an insert notification, which is picked up the Simulation Manager (simman)). 4. The simman queues the incoming simulation request and processes them in order. 5. A trip generation (tripgen) virtual machine is launched. 6. Upon completion of tripgen, the tripgen EC2 instance is terminated and an eviabm EC2 instance is launched. 7. Upon completion of the eviabm, the eviabm instance is terminated, and a success email is sent to the user with a link to the resview.

Software Description

System Architecture

Figure 1: ChargEVal System Diagram

The distributed nature of the deployment makes it harder to debug and maintain. However, this design ensures (almost) infinite number of simulations can run in parallel with the only bottleneck being the database, which can be scaled up or down as demand varies. Another important consideration of the design is the high uncertainty in system demand. It might take time for the framework to be popular, and the programmatic control of infrastructure allows for provisioning only the necessary compute thereby minimizing the system cost.

Main Application Host

The ChargEVal application is hosted on a Linux machine, currently on an AWS EC2 instance. An instance of size T3a.large or higher is recommended for this setup. This machine uses a Docker Compose stack to host the component services.

Nginx

A Nginx container routes all the web-requests to the individual containers by reverse proxying the requests to the respective ports.

EV Infrastructure Designer (evides)

The evides (Figure 2) is the user-interface (UI) created using R Shiny for inputting the details (location, type, count etc.) of the prospective charging stations and then submitting a simulation request.

Simulation Manager (simman)

The simman is the controller in ChargEval written in NodeJS. The purpose of the simman is to watch for inserts into the database. New simulation requests are queued and processed in order. Since the next steps in the simulation -namely trip generation and agent-based simulation are both long-running CPU intensive processesthey are run in dedicated virtual machines launched asynchronously, leaving simman available to process incoming requests. AWS SDK for JavaScript [START_REF]AWS SDK for JavaScript[END_REF] is used for launching and terminating AWS EC2 instances for tripgen and eviabm processes. The simman process is shown in Figure 3.

Redis

A Redis container is used to persist the state of the queue in simulation manager.

Results Viewer (resview)

The user gets an email at the registered email-id when a simulation has been successfully solved. The email contains the link to resview, a R Shiny web-app. resview allows the user to browse through the results of all the simulations that they submitted and have been solved. Being able to view the detailed output of several simulations allows the user to compare the performance of charging station deployment scenarios. The Summary Stats tab shown in Figure 4 is the first view to appear on a simulation run date-time selection from the dropdown. Tabs BEVs and EVSEs show the states of EV and charging station agents respectively, throughout the simulation.

Trip Generation (tripgen)

The agent-based model simulates the long-distance EV trips happening in the state of Washington over one day. The longdistance travel demand model described in 1.1 is used along-with the vehicle choice decision model (1.2) to generate the EV trips on a typical day in the state of Washington. The trip generation process starts by estimating the number of EV trips between any given pair of origin and destination zip codes and then, for each trip, simulating whether it is made in an EV or a conventional vehicle. It then inserts the generated trips and associated vehicle information into the relevant database table, to be used later by eviabm.

EV Infrastructure Agent-based Model (eviabm)

The EV Infrastructure Agent-based Model (eviabm) is implemented in GAMA [START_REF]GAMA Platform[END_REF]. GAMA was considered suitable for this project as it supports spatially explicit agent-based models. The GAMA eviabm is run in a headless mode in a dedicated virtual machine. The agent definitions for the corresponding simulation are read from the database and simulation outputs are written back to the database.

The eviabm system overview is shown in Figure 1. We see that all agents, EVs, charging stations, and roads are children of the global agent "World". All agents have attributes and possibly actions and states, which together define the agent's characteristics. Some of these are built-in like location and speed, while some are user-defined like vehicle ID, capacity etc. Figure 5 shows the object-oriented nature of a GAMA model, and intuitively transfers to the real world. Depending on the problem at hand, we can define agents in as much detail as we choose.

Finite State Machine Control

Finite state machine (FSM) is a commonly used control paradigm and divides the system into several states and transitions. Agents begin the simulation in a certain state and transition into any (one of the) other states when a certain condition is fulfilled.

It is important to note that, at any time-step agents can be in only one state.

FSM control is suitable to model the EV operation as we have deterministic and finite states the vehicle can be in (resting, driving, charging). The benefit of FSM control for our use case is that it helps in managing the complexity of operation and allows for easy testing. While modeling the infrastructure and driver behavior, FSM control allows us to observe in which state our agents are at any time step of the simulation and hence, we can get greater observability aiding in debugging. FSM control is also flexible, i.e., if we decide to add more complexity to the operation by adding more states (e.g., waiting in queue); we can do that by changing the transition conditions. The state diagram for our system is shown in Figure 6.

To parse the state diagram, first observe the start and finished states. Other states in the system are "Resting", "Driving", "Locate Charger", "Drive to Charger", "Queue for Charging" and "Charging", dark rectangular blocks. These are connected to diamond shaped decision boxes, that are the transition conditions, and the statements above the connecting lines are actions, or behaviors that are undertaken by agents at every time step, like "Go to Target", "Update States" etc. While some decision questions like "Is T > T_rest?", or "Is current location the target?" are easily answered in the ABM framework; some other eviabm specific decision questions like "Does charging make sense?" are not so directly answerable and will depend on the trip and car related conditions as well as individual preferences. The linkages between these conditions and preferences are captured in behavioral models.

Centralized Monitoring and Logging

Monitoring and logging are needed to ensure smooth and efficient operation of a software framework as well as during debugging and optimization. Dockprom [6] is used to capture detailed metrics like CPU, memory, and disk-space consumption over time for all the running services. Loki docker driver is used to ship the logs from the docker services to an instance of Loki. Metrics and logs are displayed in dashboards in Grafana [START_REF] Grafana | [END_REF] and updated every 5 seconds for fine-grained monitoring and logging of the application host resources. Other dashboards display live updates to the database as well as the metrics and logs from ephemeral tripgen and eviabm instances.

Submitting new simulation requests

New simulation requests can be generated either through the UI evides or programmatically. evides features a map that allows point and click placement and configuration of chargers suitable for first time users, or where geographical context is helpful. Programmatic submission is enabled by allowing the user to directly make the insertion into the database. This allows one to use any programming language, like say Python, to make the inserts. This mode is helpful when several simulations need to be submitted with minor changes. Another use-case for the programmatic approach, is when the candidate locations and configurations are chosen through some mechanism outside of ChargEVal. A few example scripts are provided in the repository to demonstrate how this can be achieved.

Illustrative Example

Problem description

While the exact locations of charging stations to be deployed are determined with careful considerations of multiple criteria, as an example, consider the case of deploying 5 new charging stations. The two deployment scenarios (Figure 7) will both consider charging stations in charging station deserts, i.e., locations where there are no charging stations nearby. In scenario 1 these charging stations will be deployed in far-off locations where there are no charging stations nearby, whereas in scenario 2 they will be deployed in locations where there is high unserved traffic on the roads nearby. The two scenarios are then compared against the base case scenario which is the situation as is, i.e., without the 5 new charging stations.

Comparison of results

Comparison of the results between the base case, scenario 1, and scenario 2 can be seen in Figure 8. The number of vehicles in the simulation and hence the electric vehicle miles travelled (eVMT) are higher for scenario 1 and 2 compared with the base case. This is because as more charging stations are added to the system, more trips are feasible as per the vehicle choice decision model (1.2). More trips also mean a greater count of charging sessions. The quantification of impact of charging station addition can help in comparing scenarios. For example, scenario 2 has a more positive impact on vehicle counts, charging sessions, eVMT etc. and may be more profitable in the near term than scenario 1, as the charging stations in scenario 2 are near areas of high-demand. However, this example demonstrates the dichotomy of motivations between public and private agencies. While the latter is merely concerned about profit making, the former is more likely to also consider factors like long term environmental impact and equity. While charging station deployments in far-off locations may appear less profitable with current vehicle population, charging stations in the vicinity affect people's vehicle ownership decision [START_REF] Zou | Effects of Charging Infrastructure Characteristics on Electric Vehicle Preferences of New and Used Car in the United States[END_REF] and new purchases in the region will then have an impact on the EVSE utilization in the region. It should be also mentioned that the utilization in far-off locations maybe less accurate as currently, ChargEVal travel demand model does not consider inter-state travel.

Impact

ChargEVal allows for agent-based simulation of EVs and EVSEs around the state of Washington and predicts charging station utilization for existing as well as proposed stations. ChargEVal incorporates a data-based approach for travel demand prediction and behavioural models for vehicle choice and charging choice. The charging utilization prediction can be used to model the economics of the station as well as impacts on associated systems such as the electric grid. The models are parameterized, and the parameters are customizable through the database, allowing for studies in variation of parameters with ease. Some common parameter variation studies include variations of the random number generator seed, critical distance used to determine infeasible trips, rental car cost, simulation timestep, and more. The software architecture of ChargEVal allows for several users to submit multiple simulation requests in parallel without having to worry about the underlying compute infrastructure or implementation, making the research accessible to a wider audience. The open-source and well-documented nature of the software allows users around the world, in public or private agencies to deploy ChargEVal for their geography and vehicle system of choice. For example, while the current implementation focuses on passenger vehicles in the US state of Washington, with minor tweaks in the database and local travel demand model estimations, ChargEVal can be used in a totally different geography and scale (city, county etc.) and vehicle systems like fleets, trucks, etc. Upgrades, outreach and commercial application of the framework are being actively pursued.

Figure 1

 1 Figure 1 shows the ChargEVal system diagram. The arrows show a typical simulation request flow. It can be summarized as below (corresponding step numbers on the image):0. The Nginx webserver serves the web UI's EV Infrastructure Designer (evides). A Grafana instance is used for centralized monitoring and logging of the system. 1. Upon authentication, a user can place and configure new charging stations via the evides and submit a simulation request. 2. The simulation request is written to the database. 3. The database generates an insert notification, which is picked up the Simulation Manager (simman)). 4. The simman queues the incoming simulation request and processes them in order. 5. A trip generation (tripgen) virtual machine is launched. 6. Upon completion of tripgen, the tripgen EC2 instance is terminated and an eviabm EC2 instance is launched. 7. Upon completion of the eviabm, the eviabm instance is terminated, and a success email is sent to the user with a link to the resview.

Figure 2 :

 2 Figure 2: EV Infrastructure Designer (evides)

Figure 3 :

 3 Figure 3: SImulation Manager Process Flowchart

Figure 4 :Figure 5 :

 45 Figure 4: Results Viewer -Summary Stats tab

Figure 6 :

 6 Figure 6: Finite state machine diagram for EVI-ABM

Figure 7 :

 7 Figure 7: Locations of new charging stations for scenario 1 (left) and scenario 2 (right). The roads in the scenario 2 are overlaid with an estimated unserved traffic index. Thicker lines indicate higher levels of unserved traffic.

Acknowledgements

We would like to acknowledge our sponsors -Washington State Department of Transportation for funding the ChargEVal framework development and hosting; and PacTrans for funding the outreach and tech-transfer for ChargEVal. The prototype development of ChargEVal was facilitated using advanced computational, storage, and networking infrastructure provided by AWS cloud computing credits funded by the Student Technology Fund at the University of Washington. This work would not have been possible without their generous support. We would also acknowledge the eScience Institute at the University of Washington for providing valuable feedback on software design and development. Last, but not the least, I would like to acknowledge the generous and very timely support from the GAMA community in achieving a realistic simulation of all agents. Figure 8: Comparison of EV counts (in simulation, finished and stranded) (top-left), charging session and waiting session counts (top-right), eVMT (bottom-left) and total EVSE utilization (bottom-right) for base-case, Scenario 1, and 2.

Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.