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ABSTRACT
Our main purpose is to build a simulation describing the
persons movements in a public area during a crisis situa-
tion. Our running example is about the evacuation process
of a supermarket during a fire. The main difficulty of such
works comes from the fact that it is generally impossible
to obtain precise descriptions of persons behaviors. After
several works on individual emotions we are convinced that
emotion is well adapted to explain such actions in a situa-
tion crisis. In the aim to test our hypothesis, we present here
a first simulation (without any emotion management) that
is a first step of our main purpose. This simulation aims
to describe the well-known fact that, in crisis situation, hu-
mans tend toward to help each others. Thus, we test the
impact of group constitution on survival rate and on aver-
age time. The simulation has been implemented with the
platform GAMA.

CCS Concepts
•Computing methodologies→Agent / discrete mod-
els;

Keywords
MAS; GAMA platform; group; crisis situation; evacuation
process; simulation

1. INTRODUCTION
Simulations are interesting for at least two reasons.
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Firstly, they allow to represent real situations and their dy-
namics with respect time as, for instance: population move-
ments among a country, rises in river levels in a given re-
gion, dynamics of forests, etc. To know how to describe in a
computer model such situations supposes that the computer
model is based on a possible mechanism describing the dy-
namics of these situations with respect time. In other words,
simulations allow to validate (when the results of these sim-
ulations are in accordance with the results of real situations)
a given model as being a plausible model of both those sit-
uations and their dynamics.

Secondly, when a simulation gives results that are in ac-
cordance with a given real situation, it allows us to make
some changes in the simulation in the aim to observe what
could be the resulting real situation if these changes were
made in the real world. For instance, in a simulation of rises
in river levels, what could be in the real world the effects of
building a sea wall here or there? In other words, simula-
tions provide a helpful tools allowing to anticipate effects of
actions in the real world.

Our main purpose is to build a simulation describing the
persons movements in a public area during a crisis situation.
Our running example is about the evacuation process of a
supermarket during a fire. The main difficulty of such works
comes from the fact that it is generally impossible to obtain
precise descriptions of persons behaviors. Thus, we cannot
built a simulation in a classical way (that is, from precise
data that validate the simulation results) and we need to
find some paradigms in the aim to explain the actions of
persons that are trying to escape from the crisis area. After
several works on individual emotions [11, 3, 1, 10, 5, 2] we
are convinced that emotion is well adapted to explain such
actions in a situation crisis.

In the aim to test our hypothesis, we present here a first
simulation (without any emotion management) that is a first
step of our main purpose. This simulation aims to describe
the well-known fact that, in crisis situation, humans tend
toward to help each others [7, 6, 4]. An interesting side of
this phenomena is that a lot of humans group together and
help each other (see Section 2 for more details). We present
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in the following this first simulation and its main results.
The rest of this article is organized as follows.

In Section 2 we explain what are humans actions in crisis
situations. We also talk about some related works, in par-
ticular about humans behavior during a crisis. In Section 3,
we present a description of our current simulation (initial
parameters and their dynamics). In Section 4, the results of
the simulation are given and analyzed. We then talk about
future works and conclude.

2. RELATED WORKS
There are a lot of researches about people behaviors in dis-

asters [15]. In such crisis situations, people want to gather
together although they don’t know each other before the
crisis. Or the people in the group try to search for another
member in the group before exiting. They try to share in-
formation or help each other to move out of the dangerous
region.

A lot of studies (see [8] for instance) show that when the
danger increases, mutual aid between humans exposed to
this danger also increases. The persons share emotions and
information, and they help each other, even if they were
strangers each other just before the crisis. There are a very
few cases of selfish behaviors. One of the faces of this mutual
aid is the constitution of groups of persons. People in a
group of friends or in a family try to stay together each time
it is possible. Sociological studies show that groups increase
our chances to be saved [6] (evolutionary condition).

Such studies show also that there is not mass panic and
that crowds behaviors are meaningful: people in emergency
situations try to have the same actions as others (coping
mechanism) rather than being passive victims.

In the disaster of September 11, 2001 at World Trade Cen-
ter in American, a research based on a reading of 745 ac-
counts coming from the 435 survivors shows that the evac-
uation process happened: with calm and order behavior for
a majority of people (57%); with cries and anxiety or ner-
vousness (31%); with pushes and shoves (29%). Moreover,
22% of people found have been helped by others.

To understand more about group behaviors during evacu-
ations, authors in [12] created a simulation and applied the
prototype of SAFEgress to estimate the influence of group
behaviors in a real case of disaster, a fire in a nightclub
in 2003. This fire caused 100 deaths on 452 people in the
club. The result of this simulation showed that the evac-
uation time of group is higher than that one of individual
(256s compared to 167s). The duration of evacuation time
varies non-linearly. And the behaviors group (stay with or
searching for other group members) influence on the choos-
ing of exit door. The people in group choose the regular exit
(front entrance, bar exit) more than individual people that
have used for instance the available windows to exit. The
authors use this argument to demonstrate that agents be-
longing to a group run away together. The simulation also
demonstrates that evacuation time for 352 single persons
(that are not belonging in a group) is less than evacuation
time of the same number of persons belonging in groups.

Authors in [12] continue with the interesting article [13]
after one year. This article gives more details about the
behavior of agents in crisis situation. This simulation is
still based on the simulation tool SAFEgress with 3 be-
havioral models (individual, group and crowd) [14]. There
are many static attributes corresponding with 3 levels of

agents. For instance, with individual agent, there are phys-
ical profile attributes (age, gender, body size, travel speed,
personal space), familiarity and knowledge of exit. With
group, there are group intimacy level (this value is high for
family group), group-seeking, group leader(s), group influ-
ence (level influence of member to the others in the group).
Crowd has 2 attributes: social order (the exhibit deference
behavior) and assigned roles (responsible for executing ac-
tion like share information). For updating the behavior, an
agent pass through 5 stages process: perception, interpre-
tation, decision making, execution and memorization. This
agent can base on the knowledge of building, visual per-
ception and social cue to detect the way to go out. A lot
of social behaviors are implemented: following building exit
signs, following familiar exit (query the new shortest path
to known exits), navigating with social group (group seek-
ing), following crowds (follow the way with highest number
of neighbors move on that). The result of this simulation
demonstrates the significance of knowledge, social behaviors
and incorporating perception of occupant in the simulation
of disaster.

3. MODEL DESCRIPTION
We present in the following a description of our simulation

that have been implemented with the GAMA1 platform [9].
GAMA is a (open-source) generic agent-based modeling and
simulation platform. It provides a lot of powerful tools to
develop easily models in particular using geographical data.
We use this feature in the model to define the environment.
In addition, GAMA allows the modeler to run simulation in
either an interactive or a batch mode. This will allow us to
launch experiment design in order to explore the model.

In GAMA, the basic assumption to build a model is to
consider any entity involved in the model as an agent. The
GAMA meta-model does not consider specific entities such
as actors, passive entities or resources. So every humans,
walls, doors and so on will be modeled and implemented as
an agent. This provides a coherent framework for all the
entities in the model.

3.1 Environment description
Let AGT be the set of all the agents used in the simu-

lation. ENV ⊆ AGT is the set of all the agents used to
describe the environment. ENV = DOORS ∪ WALLS ∪
OBSTACLES . DOORS = {door1, door2, ...} is the finite
set of doors; WALLS = {wall1,wall2, ...} is the finite set of
walls; OBSTACLES = {obstacle1, obstacle2, ...} is the finite
set of obstacles (such as supermarket departments for in-
stance) that can be avoided by agents. The different dimen-
sions of the components of the environment are represented
with respect to a dimension scale κd: the length lR in the
real world is represented by the length l in the simulation,
and l = κd.l

R.
Similarly, for every n ∈ N, each time point in the real

world tRn is associated with a time point tn in the simulation.
Suppose that two successive steps happen respectively at
tn−1 and at tn, then ∆tn = tn − tn−1 is the time used by
the simulation for going from the step n − 1 to the step n.
But we can also say that ∆tn corresponds to some time in
the real world (noted ∆tRn ): it is what we call the simulated
real time unit and ∆tn = κt.∆t

R
n where κt is the time scale.

1http://gama-platform.org
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As we aim to study the influence of group in evacuation
process, we do not add fires yet. We just suppose that, at
the beginning of the simulation, human agents must find an
exit and go out of the supermarket and they just have, for
doing that, the simulated real time quantity TR

max (that is
equal to the time used by n simulation steps, where n is an
integer). We note Tmax = κt.T

R
max . When TR

max is passed, we
stop the simulation and consider that the humans remaining
in the supermarket are dead (the fire has totally burned it).

Let n ∈ N an integer describing the total number of sim-
ulation steps. The simulation steps sequence can be formal-
ized as follows:

s0 → s1 → ...→ sn−1 → sn (1)

where sn is the simulation state after the execution of n
steps, s0 is the initial state, sn is the final state. We suppose
that each step sn happens at the simulated real time tRn , and
that for every n ∈ {1, ..., n − 1},∆tRn = ∆tRn+1 = ∆tR. So,
for every n ∈ {0, 1, ..., n}:

tRn − tR0 = n.∆tR (2)

Similarly, we have:

tn − t0 = n.∆t (3)

A corollary is that TR
max = n.∆tR and Tmax = n.∆t.

In the following, we only use dimension and time point of
the simulation. When we refer to simulated real dimension
or time point, we will explicitly specify it.

3.2 Humans description
Let HUM be the set of human agents such that HUM ⊆

AGT . In the following, i, j, k are three human agents of
HUM . Each agent i ∈ HUM is associated with a 8-tuple
Statet

i = 〈spd t
i, spd

norm
i , spdmax

i , ρti, ρ
max
i , distti, D

t
i ,CD

t
i〉.

Statet
i describes the state of agent i at time t. So, Statet0

i is
the initial state of agent i. The components of Statet

i that
do not depend on time are constants (their value does not
change during the execution of the simulation).
• spd t

i is the current walking speed of agent i at time
t, spdnorm

i is the normal walking speed of agent i when this
agent is walking, spdmax

i is its maximal walking speed (agent
i cannot walk faster), and we have both 0 ≤ spd tn

i ≤ spdmax
i

for every n ∈ {0, 1, ..., n} and 0 ≤ spdnorm
i ≤ spdmax

i .
spd t

i = 0 means that agent i does not walk at time t. spd t0
i

is randomly initialized (the real speed limit has been fixed
to 10 km/h). (Note that spdnorm

i is constant and is used
for giving a walking speed to the agent when this agent has
previously walked slower or faster.)
• ρti is the visual field radius of agent i at time t. So,

at time t, agent i can only perceive the objects (walls, ob-
stacles) and the persons that are at a distance d such that
0 ≤ d ≤ ρti. In normal situations, ρti = ρmax

i . But it is
possible that the visual field radius of agent i is lower than
ρmax
i , due to some obstacles or smokes for instance. So, for

every n ∈ {0, 1, ..., n} we have 0 ≤ ρtni ≤ ρ
max
i .

• The maximal distance covered by agent i at time tn
is spd tn

i .∆tn. But as an agent may meet with obstacles,
the distance disttni that it has really covered may be differ-
ent, and 0 ≤ disttni ≤ spd tn

i .∆tn. More precisely, if there
is an obstacle on the way followed by agent i, and if the
distance between i and this obstacle is d, then disttni =
min(d, spd tn

i .∆tn).

• Dt
i is the set of exit doors known by agent i at time t.

During the simulation execution, it is possible that agent i
discovers some other doors and then, Dt0

i ⊆ D
tn
i ⊆ DOORS .

• As soon as agent i learns that a known door in Dt
i is

closed, this door is added to the set CDt
i ⊆ DOORS (the set

of closed exit doors known by agent i at time t). Conversely,
each times that agent i detects that a door has been opened,
this door is removed from CDt

i if the agent believed that this
door was closed.

Note that agent i believes that each door in ODt
i = Dt

i \
CDt

i is open although it may not be the case because at time
t, agent i may be unaware of all the open doors. Moreover,
if for some reasons an exit door has been blocked, an agent
can search another doors.

The above properties apply for every human agent. We
now distinguish between two kinds of human agents: leaders
and customers. Let LDR ⊆ HUM be the set of human
leaders and let CUST ⊆ HUM be the set of customers.
These both sets of humans as initially built as follows:

LDR ∩ CUST = ∅ (4)

LDR ∪ CUST = HUM (5)

In other words, an agent i is a leader (respectively, a cus-
tomer) if and only if i ∈ LDR (respectively, i ∈ CUST ).

Leaders are human agents with special knowledge. They
are typically security agents that know both all the existing
doors of the supermarket and how each door can be reached
with a minimal time. Conversely, the set of exit doors known
by a customer may be empty, it may contain some doors, or
every doors (if this customer knows the supermarket very
well or if the customer has discovered some doors during
the execution of the simulation). Leaders can be heads of
customers groups (but customers cannot).
• In crisis situation, the leaders can guide the customers

towards the exit doors. If and only if agent i is a leader, we
extend Statet

i with the set FOLLt
i ⊆ CUST that contains

every agent that follows i. We define LStatet
i (the state of

the leader i at time t) as the extension of Statet
i by the set

FOLLt
i.

• If and only if agent i is a customer, we extend Statet
i with

the agent leader ti ∈ LDR (the leader that agent i follows at
time t). When leader ti is undefined we write that leader ti =
∅.

Note that initially, CDt0
i = ∅ for customers, but for lead-

ers, it possible that CDt0
i is not empty.

3.3 Groups description
As we have said, a group is defined by a leader and a set

of agents. Formally, for every i ∈ LDR:

Groupt
i = FOLLt

i ∪ {i} (6)

is the group of agents at time t with the leader i. By defini-
tion, i ∈ Groupt

i and then, Groupt
i 6= ∅.

It follows from above definitions that for every i ∈ CUST :

leader ti 6= ∅ if and only if i ∈ Groupt
leaderti

(7)

In other words, the customer i has a leader at time t if and
only if i is a member of the group leaded by this leader at
time t.

We have defined above several walking speeds for each
agent, but what is the walking speed of a group? (Gener-
ally, the walking of each agent of a group is different.) We
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consider here that the “group effect” entails both that some
persons will walk faster than their current walking speed and
that some other persons will walk slower than their current
walking speed. An explanation is that the slowest persons
will be helped and motivated by others. Conversely, the
fastest persons will spend time to help the slowest persons.
So, we define the group walking speed spd t

Groupt
i

of a group

Groupt
i at time t as an average speed:

spd t
Groupt

i
=

∑
j∈Groupt

i
spd t

j

#(Groupt
i)

(8)

where #(Groupt
i) is the number of agents in Groupt

i. Note
that the group can evolve during the evacuation process
(agents can join or leave the group), and then, the walk-
ing speed of a group can also evolve.

Now, we could suppose that the current walking speed
of agents that are member of a group is the group walking
speed. But what happens if we suppose that this speed is
greater than the maximal speed of some agents? We adopt
the following heuristics. For every i ∈ LDR:

spd t
i =

{
spdnorm

i if leader ti = ∅
min(spdmax

i , spd t
Groupt

i
) else

(9)

and for every i ∈ CUST :

spd t
i =

spdnorm
i if leader ti = ∅

min(spdmax
i , spd t

Groupt
leadert

i

) else (10)

On one hand, it follows from these definition that some
agents may walk slower than other members of the group
and then, these slowest agents can lost the group (they are
removed from this group). On the other hand, the faster
an agent walks, the more it will probably be a survival. An
important consequence of that is to find the “good” group
walking speed, that is, the speed that will allow to save the
most of humans as possible. This quest is at the core of this
work: we have tested a lot of group walking speed by using
λ.spd t

Groupt
i

instead of spd t
Groupt

i
for λ ∈ [0.0, 2.0]. (See below

for the results.)

3.4 Obstacle avoidance algorithm description
As said above, agent can avoid obstacle when they meet

one. The algorithm to avoid obstacle is described in Figure 1
and Figure 2.

The main idea is as follows. We define
−→
V obstacle by the

two following points: the current position of the agent and
the intersection position (that is defined by the intersection
between the current path followed by the agent towards the
target, and the obstacle).

So, we are now able to define
−→
V normal . This vector is

defined from the current position and from a point defined

by: the fact that the angle between this vector and
−→
V obstacle

is equal to 90 degrees; and the fact that its norm is equal to
a fixed value (the same for all the human agents).

We can then define
−→
V direction as the vector composition of−→

V obstacle and
−→
V normal . The guess position depends on the

speed of each agent.
In Figure 1 the guess position has no intersection with

the obstacle and then the next position of the agent is the
guess position. But it is shown in Figure 2, it is possible

Figure 1: Obstacle avoidance algorithm in case guess
position has no intersection with the obstacle.

Figure 2: Obstacle avoidance algorithm in case guess
position has an intersection with the obstacle.

that the guess position interacts with the obstacle again. In

this case, we arbitrarily choose
−→
V direction as being parallel

with the obstacle.
There certainly exists more finest algorithm of obstacle

avoidance. But in this simulation, both the number of agent
and the number of obstacle can be great. So, the number
of avoidance computing can greatly increases and we must
solve all the conflictual paths in real time. So, we think this
algorithm is a good compromise solution.

3.5 Evacuation algorithm description
In crisis situations, leaders and customers will try to reach

an exit door. The leaders that have more information about
both the supermarket and its current situation(for instance:
where is the fire, what could be the best direction to go out
of the supermarket, etc.) will be the first out. With the
help of a built-in GAMA algorithm, they can easily move
by avoiding obstacles and reach exit doors.

Because their knowledge is both more unclear and more
incomplete than the knowledge of leaders, customers have
less probability to find an exist door before the fire deadline.
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So, their action policy is more complex. A simple evacuation
algorithm for customers is described below:

perce ivedDoors = doorsDetect ( ) ;
i f ( ! empty ( perce ivedDoors ) ) {

t a r g e t = c lo s e s tDoor ( perce ivedDoors ) ;
} else {

perce ivedLeader s = l eade r sDe t e c t ( ) ;
i f ( ! empty ( perce ivedLeader s ) ) {

t a r g e t = c l o s e s tLeade r ( perce ivedLeader s ) ;
} else {

i f ! empty ( knownDoors ) {
t a r g e t = c lo s e s tDoor ( knownDoors ) ;

} else {
i f ( isAlongWall ) {

t a r g e t = nextStepAlongWall ( ) ;
} else {

i f ( ! i sTargetWal l ( ) ){
perce ivedWal l s = wa l l sDetec t ( ) ;
i f ( ! empty ( perce ivedWal l s ) ) {

t a r g e t = c l o s e s tWa l l ( perce ivedWal l s ) ;
detectFirstCornerOnTheWall ( ) ;

} else {
t a r g e t = nextStep ( ) ;

}
}

}
}

}
}

i sAvo idObstac le = checkToAvoidObstacle ( ) ;
i f ( i sAvo idObstac le ){

nextPos i t i on = getPos i t ionAvo idObstac l e ( ) ;
} else {

nextPos i t i on = ta rg e t ;
}

// move
goTo( nextPos i t i on ) ;

Note that this algorithm is for customers only. Some
methods (such as doorsDetect() or leadersDetect() for
instance) are related to the visual field radius of each agent
i at time t (ρti). So, detection process may be different for
two customer staying at the same place.

GAMA supports many useful functions to implement this
algorithm like function get closest agent from a list or get
closest point on obstacle. The code in the function reflex
will be executed each step of simulation. Here is the simple
code for evacuation of customer in GAMA.

r e f l e x detectTarget {
t a r g e t <− detec tClose s tDoor ( ) ;
i f ( t a r g e t != n i l ){

ta rge tLoca t i on <−c l o s e s tPo in tObj ( s e l f , t a r g e t ) ;
do quitFromSuperMarket ;

i f ( currentLeader != n i l ){
do removeFromGroup ;

}
} else {

t a r g e t <− detec tC lo s e s tLeade r ( ) ;
i f ( t a r g e t != n i l ){

ta rge tLoca t i on <− t a r g e t . l o c a t i o n ;

// In case change c l o s e s t l eade r
i f ( currentLeader != ta r g e t ){

i f ( currentLeader != n i l ){
do removeFromGroup ;

}
do jo inInGroup ;

}

} else {
i f ( isInGroup ){

do removeFromGroup ;
}

i f ( l ength ( knownExitDoorList ) > 0){
t a r g e t <− closestKnownExit ( ) ;
t a rge tLoca t i on <− t a r g e t . l o c a t i o n ;

} else {
i f ( isAlongWall ){

ta rge tLoca t i on <− nextStepAlongWall ( ) ;
} else {

t a r g e t <− detec tC lo se s tWal l ( ) ;
i f ( t a r g e t != n i l ){

i sDetectWal l <− true ;
t a rge tLoca t i on <− l i s tC l o s e s tP o i n t ( ) ;
do detec tF i r s tCornerWal l ;

} else {
ta rge tLoca t i on <− nextStep ( ) ;

}
}

}
}

}

i sAvo idObstac le <− checkToAvoidObstacle ( ) ;
i f ( i sAvo idObstac le ){

nextPos i t i on <− getPos i t ionAvo idObstac l e ( ) ;
} else {

nextPos i t i on <− ta rge tLoca t i on ;
}

do goto t a r g e t : nextPos i t i on speed : speedCustomer ;
}

3.6 Additional simulation parameters
As said above, the simulation needs to use some additional

parameters such as the sets of agents, customers and leaders,

the different scales, etc. (see above) or the norm of
−→
V normal

for instance (see Section 3.4). Moreover, we have defined
the following parameters in order to explore their impact on
the results of the simulation.
• n is the total steps number of the simulation. The default

value is 400.
• spdGroupEnabled has a Boolean value enabling or dis-

abling the fact that walking speed of group members is set by
the group walking speed (see Principle (10)). A false value
means that every agent walk with its own current speed,
even if it is a member of a group. The default value is true.
• As said at the end of Section 3.3, λ ∈ [0.0, 2.0] allows us

to control how much the group walking speed influences the
current walking speed of persons. λ = 1 (the default value)
means that the individual speed is 100% of the group speed.
• #(LDR) and #(CUST ) are the number of leaders and

of customers respectively. The default value of #(CUST ) is
100. Generally, #(LDR) has several values during a test.
• r is the ratio of customers knowing all the doors. So,

if agent i is one on these agents then Dt0
i = DOORS ; else

Dt0
i = ∅. The default value is 0.2.
Moreover, the algorithm described in Section 3.5 can be

modified with the three following parameters:
• leadersEnabled has a Boolean value enabling or disabling

the fact that customers follow leaders. The default value is
true.
• wallsEnabled has a Boolean value enabling or disabling

the fact that, when a customer is close to a wall, this agent
will follow this wall (if neither door nor leader are detected).
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The default value is true.
• As it has been explained in Section 3.5, when an agent

does not detect anything (door, leader, or wall) this agent
chooses a random direction and walk towards this direction
as long as possible. keepDirectionEnable has a Boolean value
enabling or disabling the fact that this direction is kept as
long as possible or not. When this parameter is false, the
agent randomly chooses a new direction at each step of the
simulation. The default value is true.

4. SCENARIOS AND RESULTS
In the following, we fix the value of some parameters and

give the results that we analyze. The follows from 20 to 200
iterations of the simulation for a given set of parameters.

Influence of the three algorithm parameters.
Here, we want to test the effects on the survival rate, of

some changes in the behavior algorithm of the customers
and of some leaders numbers.

The eight different scenarios that we have tested are gen-
erated by enabling (> value) or disabling (⊥ value) the
three algorithm parameters (leadersEnabled , wallsEnabled ,
and keepDirectionEnable); see Table 1.

Table 1: Case for testing algorithm
Algorithm number 1 2 3 4 5 6 7 8
leadersEnabled ⊥ ⊥ ⊥ ⊥ > > > >
wallsEnabled ⊥ ⊥ > > ⊥ ⊥ > >
keepDirectionEnable ⊥ > ⊥ > ⊥ > ⊥ >

For each scenario number (1 to 8), #(LDR) ∈ {0, 4, 8} for
a total of 24 scenarios. (The other parameters have their
default value.) In all cases, the survivals rate is presented in
Figure 3.

Figure 3: Relation between algorithm parameters,
leaders number, and the survivals rate.

Following the results presented in Figure 3 we can observe
that scenarios 2, 4, 6, and 8 give the better results. In all
this scenarios, keepDirectionEnable is true. So, randomly
walking decreases the chances of agent to be saved.

Moreover, if agents do not follows leaders (scenario 1 to
4), to increase the leaders number does not proportionally
increase the rate of survival, which it is not the case in sce-
narios 5 to 8.

Finally, both wallsEnabled and keepDirectionEnable are
true (scenarios 4 and 8) the survivals rate is maximal.

Ratio of initially known doors and leader number.
Here: #(LDR) ∈ {0, 2, 4, 6, 8, 10}; for every i ∈ CUST ,

r ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. So, there are different 36 sce-
narios. In all cases, the ratio of survival is almost 100%,
but the average time to exit of customers is different. The
results are presented in Figure 4.

Figure 4: Impact of known doors ratio and leaders
number on the average time to exit.

When doorsRatioi increases, the average time to exit de-
creases. Moreover, when #(LDR) increases, the average
time to exit does not necessarily decreases, and in some cases
it increases. It mean that the value of doorsRatioi is more
important to exit than #(LDR).

Study of the group walking speed influence.
We analyse first the influence of the group walking speed

on the survival rate. So, λ ∈ {0.4, 0.8, 1.0, 1.2, 1.6} and
#(LDR) ∈ {0, 2, 4, 6, 8, 10}; n = 50. The other parame-
ters have their default value. (There 30 different scenarios.)
Results are given in Figure 5.

Figure 5: Survival rate according to the group speed
and the leaders number.

The main result of this scenario is that, when the group
walking speed is too slow (λ < 1.0) the survival rate de-
creases. We explain this result by the fact that, when λ <
1.0, the current walking speed of customers is slower than
their normal walking speed, and then it takes more time to
evacuate the area, and then the survival rate decreases. In
other cases (λ ≥ 1.0), the more there are leaders, the more
the survival rate increases. In other words, it is better for the
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survival rate to be alone rather than to be in a slow-moving
group.

Number of customers.
Here we analyze how the number of customers may influ-

ences the average time to exit. #(LDR) ∈ {0, 2, 4, 6, 8, 10}
and #(CUST ) ∈ {50, 100, 200, 400, 800, 1600}. Here, the
survival rate is always equal to 1. See Figure 6 for the re-
sults. It seems that the average rate to exit should not be
influenced by the number of customers.

Figure 6: Influence of the customers number on the
average time to exit.

Influence of the visual field radius.
In crisis situations, the visual field radius can greatly fluc-

tuate (obstacles, lack of light, fire smoke, etc.). In the fol-
lowing, we analyze how the visual field radius influences the
survivals rate and the average time to exit. We consider
that the visual field radius is the same for all the humans,
and that it does not change during the simulation: ρti = ρtj
for i, j ∈ HUM , and ρti = ρt−1

i for every t ∈ {1, 2, ..., n}. We
note ρ this unique visual radius.

Figure 7: Influence of the algorithm type and of the
visual field radius on the survivals rate.

In the first test, we analyze the effects on the survivals
rate of both the eight changes in the customer algorithm
(see Table 1) and several value for the visual field radius:
ρ ∈ {15, 30, 45, 60} (with respect to the internal units of
length of the simulation). The results are presented in Fig-
ure 7. The survivals rate increases when the visual field
radius increases. The worst results are when the visual field
radius is minimal and the algorithm number is 1 or 5 (that

is, when customers that do not detect anything have a ran-
dom direction at each step of the simulation and that they
not go along the walls). But when the visual field radius in-
creases, the negative effects of algorithm changes decrease,
because the detection of doors and of leaders increases with
visual field radius.

In the second test, we analyse the influence of the same
parameters on the average time to exit (see Figure 8).

Figure 8: Influence of the algorithm type and of the
visual field radius on the average time to exit.

As expected, the average time to exit decreases when the
visual field radius increases.

Finally, the last test concerns the influence of both several
visual fields radius and several numbers of customers, on the
average time to exit. (See Figure 9.)

Figure 9: Influence of the number of customers and
of the visual field radius on the average time to exit.

Here again, as expected, the average time to exit decreases
when the visual field radius increases. Note that the cus-
tomers number does influence significantly the results.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have presented the first results of our

works on evacuation process in crisis situation. We built a
simulation that should be as realistic as possible. It con-
cerns in particular a model based on real distances (size of
the supermarket, visual field radius, dimensions of obtacles,
walking speeds, etc.).
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We evaluated survival rate and average time of exit of cus-
tomers in several situations. These situations fit with differ-
ent sets of parameters values: some changes in the algorithm
of evacuation, the management of groups of customers by
leaders, the impact of the group walking speed, the number
of customers, the visual rate radius, the numbers of doors
known by the customers.

It is interesting to note that the role of leaders is not re-
ally high here as it is in the reality. In this simulation, they
only help customers to go out with the shortest way, but in
reality their role is more complex: they guide customers in
the supermarket, but they also give advices or a psychologi-
cal help, etc. As it has been shown, if a group walking speed
is not great enough, customers should not joint this group
(because they average time to exit will be greater than if
they were alone).

Future works will concern at least three different tasks.
Firstly, we will refine the concept of group. In our opin-
ion, there are preformed groups (such as families, friends,
etc.) whose the nature is different from spontaneous groups
(the group that are formed during the evacuation process).
A preformed group is not just a group of agents that are
physically close. So, agents’ priorities are different accord-
ing as they are members of preformed groups or spontaneous
groups.

Secondly, we will integrate a dynamics in the simulation
environment. In this paper, a fire is break out at the be-
ginning of the simulation (at time t0). We will modify the
simulation in the aim to see to it that the fire spreads in the
supermarket. So, some area are dangerous at some instant,
and are not dangerous anymore at some other instant. Some
doors can be blocked by fire, or can be opened, etc.

Finally, the next step will be to add emotion. Emotion
plays an important role in decision making. It allows agents
to react more quickly (for instance, the stress generally in-
creases the walking speed) but can also modify the reaction
of agents. For instance, they should be more social and more
helpful to others. We expect that emotion should increase
survivals rates. Moreover, emotion provides a concrete ex-
planation of the actions of the agents. It is also true for
groups. In particular, emotion does not only concern indi-
viduals, single agents, but also groups. Some works analyze
the emotion spreading among a group of agents, and the
influence of this emotion on this group global behavior.

We also need to add some realistic details such as fire
in particular positions, the fact that some exits have been
blocked by the fire, or the fact that the visual field radius
may change during the evacuation process. Finally, some
groups may exist before the beginning of a crisis (family,
group of friends). Some works show that these groups have
an impact on the end of the story.
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