
HAL Id: hal-03477573
https://ut3-toulouseinp.hal.science/hal-03477573

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speculative Execution and Timing Predictability in an
Open Source RISC-V Core

Alban Gruin, Thomas Carle, Hugues Cassé, Christine Rochange

To cite this version:
Alban Gruin, Thomas Carle, Hugues Cassé, Christine Rochange. Speculative Execution and Timing
Predictability in an Open Source RISC-V Core. IEEE Real-Time Systems Symposium (RTSS 2021),
Dec 2021, Dortmund, Germany. pp.393-404, �10.1109/RTSS52674.2021.00043�. �hal-03477573�

https://ut3-toulouseinp.hal.science/hal-03477573
https://hal.archives-ouvertes.fr


Speculative Execution and Timing Predictability in
an Open Source RISC-V Core

Alban Gruin, Thomas Carle, Hugues Cassé and Christine Rochange
IRIT - Univ. of Toulouse - CNRS

Toulouse, France
name.surname@irit.fr

Abstract—We present MINOTAuR, a timing predictable open
source RISC-V core based on the Ariane core [28]. We first
modify Ariane in order to make it timing predictable following
the approach used to design the SIC processor [12]. We prove that
the instruction parallelism in the Ariane core does not prevent
from enforcing timing predictability. We further relax restrictions
by enabling a limited amount of speculative execution and we are
still able to formally prove that the core is timing predictable.
Experimental results show that the performance is reduced by
only 10% on average compared to the original Ariane core.

Index Terms—timing predictability, processor architecture

I. INTRODUCTION

Modern real-time systems require an increasing amount
of processing power, leading to the adoption of multi-core
processors as well as single-core processors featuring accel-
eration mechanisms which combine complex pipelines, out-
of-order execution, cache memories and branch speculation.
Since the worst-case execution time (WCET) analysis [1],
[4], [27] of a real-time system requires a precise model of
the timing behavior of the hardware, this complexity makes it
more difficult to compute safe and precise WCET bounds.

The traditional approach to WCET computation involves
successive analyses performed on the control flow graph
of the program. In the presence of conditional branches or
loops, these analyses can identify uncertain outcomes, even
for simple programs: for example, fetching an instruction can
lead to a miss or a hit in the instruction cache depending on the
execution path that led to this instruction. Since the objective
of WCET analysis is to obtain a worst-case bound, one may
think that, in such situations, the problem can be solved by
always considering the worst local case (e.g. cache miss).
However, it has been shown [22] that due to a phenomenon
called timing anomalies, a local best case can lead to the
global worst case (i.e. a longer execution time). As a result,
considering only the local worst cases is not a safe approach.

Timing anomalies make the WCET analysis more difficult
for single-core architectures: it must take into account all
the possible combinations of uncertain outcomes, leading to
a combinatorial increase of the analysis time. Moreover, in
multi-core architectures, the possible occurrence of timing
anomalies further increases the algorithmic complexity of
interference analysis: multiple cores that share a resource

This work was partially funded by the French National Research Agency
(ANR) under the “Investissements d’Avenir” ANR-11-LABX-0040 reference.

may lengthen the execution time of one another due to the
sequential access to the shared resource. Such delays may be
amplified inside a pipeline by timing anomalies. As a result,
the only safe way to temporally analyze a real-time system
implemented on a multi-core processor that may exhibit timing
anomalies is to consider a cycle-accurate representation of all
the possible executions of the programs on the various cores,
which is intractable in practice.

To overcome these difficulties, the strictly in order (SIC)
core [11] approach proposes (i) structural modifications that
suppress the possibility of timing anomalies in an in-order
processor design and (ii) a modelling framework to formally
prove the good timing properties of the modified design. The
key idea in this approach is to impose a strict execution order
in which the progression of any instruction in the pipeline
depends only on how the previous instructions in the code have
already progressed. In-order pipelines that enforce this prop-
erty and do not implement speculative execution are proven
to be free of timing anomalies and timing compositional:
considering only the local worst cases lead to a safe WCET,
and delays due to multi-core interference can be statically
bounded and safely added to the WCET of the interfering
tasks. This allows trading off between the precision and
efficiency of the WCET analysis while keeping its outcome
sound. The SIC core is reported to suffer a 7% drop of
performance compared to the original core.

Our objective in this paper is to leverage this approach
and its formal framework to a more complex core with a
higher baseline performance than the one used in [11]: the
open source RISC-V Ariane [28] core, which implements
the RISC-V instruction set and features some advanced
mechanisms such as dynamic branch predictors and multiple
functional units that allow instruction parallelism. We call
our modified core the Mostly IN-Order Timing predictAble
pRocessor: MINOTAuR.

Our main contributions are the following:
• we provide a formal model of the MINOTAuRβ core

obtained by applying the same restrictions as SIC on the
Ariane core. We prove its timing predictability and we
evaluate its performance on a cycle-accurate simulator:
the loss is 41.2% compared to Ariane.

• we provide a formal model of the MINOTAuR core
derived from MINOTAuRβ by partially relaxing the re-



strictions on speculative execution. We prove that it is
also timing predictable and that the performance gap w.r.t.
Ariane is reduced to only 10% on average.

The remainder of the paper is organized as follows. Sec-
tion II presents the state of the art regarding timing predictable
processors and introduces in more details the SIC approach.
Section III describes the internal organization of the Ariane
core and presents our experimental methodology and first
results. We introduce the MINOTAuRβ core in Section IV
and the MINOTAuR core in Section V. Finally, Section VI
concludes the paper and presents the future work perspectives.

II. RELATED WORK

A. Timing predictability

A processor is said to be timing predictable when it is
free of timing anomalies and timing compositional [11]. A
timing anomaly is a situation where a local worst case (e.g.
conservatively considering a cache access as a miss) does not
lead to the global worst case (i.e. the execution time with that
assumption is not the longest one) [18]. This makes the timing
analysis more complex since all the possible situations have
to be considered. Several authors have investigated this phe-
nomenon, proposing various definitions and means to detect
whether a processor is prone to such timing anomalies [2],
[6], [8], [22], [26]. It turns out that most of the off-the-
shelves cores, even the simplest ones, may suffer from timing
anomalies, which motivates the design of timing-anomalies-
free processors (see Section II-B).

Timing compositionality is a property that simplifies the
timing analysis of a multi-core system [14]. It allows com-
bining the analysis results for individual components instead
of performing a very complex fully-integrated system analy-
sis. An approach to sound and precise compositional timing
analysis for multicore systems is proposed in [10].

B. Timing-predictable processor architectures

Several approaches have been considered to enforce timing
predictability in hardware platforms [3], [20], [21].

The Kalray MPPA-256 processor [5] has been designed with
timing predictability in mind. In addition to its VLIW architec-
ture (initially motivated by power considerations), architectural
choices are supposed to fit the capabilities of WCET analysis:
LRU-replacement caches, in-order execution, prevention of
pipeline hazards, and absence of branch prediction.

PTARM [16] is an implementation of a precision-timed
(PRET) machine [17]. It features a repeatable thread-
interleaved pipeline that exploits fine-grained thread-level par-
allelism. Timing predictability is achieved at the cost of
degraded performance for individual threads, while the instruc-
tion throughput is maintained over the set of active threads.

Patmos [24] features a statically scheduled (VLIW) dual-
issue pipeline and specific timing analysable caches, such as
the method and stack caches. It has been used to build a real-
time-aware multicore system in the T-CREST project [23].
Although it has been designed to be timing predictable, this
has not been formally proven to the best of our knowledge.

In [11], [12], Hahn and Reineke introduce SIC, a strictly
in-order core, and show that it is free of timing anomalies and
timing compositional. We summarize their formal framework
used to prove these two properties in Section II-C. SIC is a
simple 5-stage in-order pipelined processor in which the fetch
of instructions is gated in order to guarantee that an instruction
can never be delayed by a younger instruction.

C. A formal framework to prove timing predictability

In [13] a framework to express the concrete semantics of
a processor pipeline is proposed. It relies on the concept
of progress of an instruction within the pipeline, defined as
the pipeline stage the instruction resides in and the number
of cycles remaining to complete the stage. If S is the set
of pipeline stages, the progress of an instruction belongs to
P := S × N0. A pipeline state can then be described by the
subset C ⊆ I → P , where I is the sequence of executed
instructions. With a partial order ⊏S on S, it is possible to
define an order ⊑P on P:

∀(sa, na), (sb, nb) ∈ P,

(sa, na) ⊑P (sb, nb) :⇔ sa ⊏S sb ∨ (sa = sb ∧ na ≥ nb)

Considering the execution of a given sequence of instructions
I, pipeline state cb has at least the progress of ca if every
instruction in I has a better (or same) progress in cb than
in ca :

ca ⊑ cb :⇔ ∀i ∈ I . ca(i) ⊑P cb(i)

where c(i) denotes the progress of instruction i in state c. The
behaviour of the pipeline is specified by the function cycle :
C → C that relates a pipeline state to its successor.

In [11], this framework is used to model the behaviour of the
SIC pipeline. The progress of an instruction i after one clock
cycle is specified as a function of the current pipeline state c:
the instruction may remain in its current stage or advance to
the next stage (s = c.nstg(i)) when it is ready to (c.ready(i))
and if that stage is clear of any previous instruction (c.free(s))

Based on this model, the authors prove the following major
property for the SIC processor.

Property 1. Update Enable. Let ca and cb be two pipeline
states, i ∈ I be an instruction with equal progress in ca and
cb (ca(i) = cb(i)), and all instructions j < i have progressed
more in cb than ca (ca(j) ⊑P cb(j)). If i advances to the next
pipeline stage in ca, it advances in cb as well:{

ca.ready(i) ⇒ cb.ready(i)
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

Several lemmas and theorems follow from this sole property
and are thus valid for any processor that meets the property.
We reformulate them below to reflect that. Proofs can be found
in [11].

Lemma 1. Progress Dependence. When Property 1 holds, the
progress of an instruction i only depends on the progress of



previous instructions (and never on the progress of subsequent
instructions):

∀ca, cb ∈ C : [∀i : (∀j ≤ i :

ca(j) = cb(j)) ⇒ cycle(ca)(i) = cycle(cb)(i)]

Lemma 2. Positive Progress. When Property 1 holds, the
successor of a pipeline state c has more progress than c:

∀c ∈ C : c ⊏ cycle(c)

where ∀ca, cb ∈ C, ca ⊏ cb ⇔ ca ⊑ cb ∧ ¬(cb ⊑ ca)

Theorem 1. Monotonicity. The cycle behavior of a processor
that satisfies Property 1 is monotonic:

∀ca, cb ∈ C : ca ⊑ cb ⇒ cycle(ca) ⊑ cycle(cb)

Theorem 2. Let i ∈ I be an arbitrary instruction, and
pipeline states ca, cb ∈ C be such that ca ⊑ cb. Then:

f(ca, i) ≥ f(cb, i)

where f(c, i) is the finish time of instruction i starting from
pipeline state c recursively defined as:

f(c, i) :=

{
0 : c(i) = (post, 0)
1 + f(cycle(c), i) : otherwise

with post being a fictive pipeline stage that contains all the
instructions that have left the pipeline.

Following these theorems, the authors of [11] demonstrate
that the SIC processor is free of timing anomalies w.r.t.
uncertain cache behaviour, and timing-compositional w.r.t.
uncertain cache behaviour and uncertain latency to the main
memory. Uncertainties are reflected in the processor model by:

• ichit(i) (resp. dchit(i)): true if instruction i engenders
an instruction (resp. data) cache hit

• memlatf/d: memory latency in case of an instruction
(resp. data) cache miss for instruction i

Theorem 3. Anomaly freedom w.r.t. cache uncertainty. Let
two valuations of dchit (or ichit) be given that differ for an
arbitrary instruction i ∈ I. The valuation that predicts a cache
miss, i.e. the local worst case, will lead to a finishing time at
least as high as the valuation that predicts a cache hit, i.e. the
local best case.

We reformulate the proof of this theorem here to make it
more general.

Proof. Let c be the state that splits upon the cache uncertainty
of instruction i, leading to the hit-case successor state cb
and miss-case successor cw. Without loss of generality, we
consider a data cache miss. We need to show that cw ⊑ cb,
which, with Theorem 2, proves Theorem 3.

• Due to Lemma 1, the progress of instructions j < i does
not depend on the uncertainty of instruction i, so cb(j) =
cw(j).

• For instruction i, we know that cw(i) ⊑P cb(i). In
practice, if s is the pipeline stage where the access
to the cache is performed, cb(i) = (s, lathit) and

cw(i) ⊑P (s, latmiss) with lathit < latmiss. Note that
cw.stg(i) ⊏S s is possible if accessing the memory to
load data into the cache upon a miss is stalled by an
older instruction, e.g. a store.

• For instructions k > i, cw(k) ⊑P cb(k) follows from the
fact that cb.ready(k) is true if cw.ready(k) is true. Thus
if k has progressed in cw, it has progressed in cb as well.

Theorem 4. Compositionality w.r.t. latency prolongation. Let
two valuations of memlatd (or memlatf ) be given that differ
by p cycles for an arbitrary instruction i ∈ I, e.g. due to
shared bus blocking. The valuation that predicts a longer
latency leads to a finishing time at most p cycles higher than
the valuation that predicts the shorter latency.

The proof does not depend on the processor (provided it
fulfills Property 1) and is given in [11].

Theorem 5. Compositionality w.r.t. cache uncertainty. Let
two valuations of dchit (or ichit) be given that differ for an
arbitrary instruction i ∈ I. The valuation that predicts a cache
miss will lead to a finishing time at most p cycles higher than
the valuation that predicts a cache hit. For the SIC processor,
p is twice the memory latency for a data cache miss with a
write-through policy and five times the memory latency for an
instruction cache miss.

The proof given in [11] is specific to the SIC processor.

III. THE ARIANE RISC-V CORE

A. The Ariane architecture

The Ariane core [28] is a RISC-V 6-stage in-order pro-
cessor. The address of the next instruction to be fetched is
computed in the first stage (PC). The instruction fetch (IF)
stage hosts four branch predictors: a branch history table
(BHT), a branch target buffer (BTB), a return address stack
(RAS), and a static predictor (forward branches are predicted
not taken, backward branches are predicted taken). The BHT
and the BTB are updated each time a branch is resolved by
the branch unit (i.e. when it reaches the end of the execution
stage). The fetched instructions are inserted in an instruction
queue which they exit in the instruction decode (ID) stage.
This queue has a capacity of 4 instructions.

A scoreboard contains all decoded instructions until they are
committed. It can contain up to 8 instructions. The issue stage
(IS) inserts instructions in the scoreboard and sends them to
the appropriate functional unit (FU).

The execution stage consists of a load-store unit (LSU),
an ALU, a multiplier/divider and a CSR buffer (that contains
instructions that access Control/Status Registers). The ALU
executes instructions in one cycle. Conditional branches are
handled by a branch unit that uses the ALU to perform
comparisons. The multiplier/divider is composed of a 2-stage
multiplier and a non-pipelined, variable latency (2 to 64
cycles) divider.

The LSU contains a load unit (LU) and a store unit (SU). All
memory instructions spend at least one cycle in a queue (which



can hold at most 2 instructions) in the LSU before being
dispatched to the LU or the SU. The LU sends a request to the
data cache as soon as it receives a valid instruction whereas
the SU keeps them in a store buffer (that has a capacity of
4 instructions). Additionally, atomic operations are kept in a
separate buffer (AMO) of size one.

This design allows executing multiple instructions in paral-
lel with the following restrictions:

• they do not depend on each other
• their functional units do not share the same bus to write

their results to the scoreboard, which prevents conflicts
by design. The LU and SU share a bus, and the rest of
the FUs share another bus.

• ALU, multiplier/divider and CSR instructions cannot be
dispatched as long as a CSR instruction is pending

• the SU cannot accept any instruction as long as the AMO
buffer is not empty. The LU cannot accept any instruction
as long as the AMO and store buffers are not empty.

An instruction is allowed to enter the IS stage only if it is
guaranteed that its FU will be available in the next cycle.

When an instruction has completed its execution, it remains
in the scoreboard until it is the oldest instruction there. It is
then processed by the commit stage (CO): results are written
back to the register file, accesses to the CSR register file are
performed, and entries in the store buffer are allowed to be
written to the memory.

The baseline version of Ariane that we use implements the
RV32IMAC instruction set [25]. It does not rename registers,
has no MMU, no FPU, and has a single commit port. Its
CoreMark score is reported in Table II.

B. Experimental methodology

All the results reported in this paper have been obtained
using a SystemVerilog model of the processor, simulated with
the Questa Advanced Simulator 10.7g1.

As benchmarks, we have used the kernel and
sequential sets of programs of the TACLe benchmark
suite2 [7] as well as the CoreMark3, all compiled with gcc
10.2.0 and optimization flag -O2.

We provide individual results for each benchmark, as well
as average results computed over the set of benchmarks:
the arithmetic mean and a weighted arithmetic mean where
the weight of a benchmark reflects its number of executed
instructions.

The source code for all cores and experiments presented in
this paper is available at [9].

C. Bus conflicts in the Ariane core

A source of timing anomalies for in-order cores is when
an instruction (e.g. a load or a store) that needs to access

1eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
2We had to exclude ammunition, lms, mpeg2, rijndael_dec,

susan which did not compile or execute on the simulator
3www.coremark.org

PC

CO

fqueue iqueue

squeue

EX
IF ID IS ALU

MUL1

DIV

CSR

LSU

MUL2

LU

SU

mqueue

ST

Fig. 1. Model of the Ariane core pipeline

the memory bus is delayed by a subsequent instruction (typ-
ically when the code of this instruction is fetched from the
memory) [14]. We refer to this phenomenon as an inversion.

To get an insight into whether the Ariane core might be
prone to timing anomalies, we have performed measurements
to determine whether we could observe such inversions. Note
that an inversion does not necessarily generate a timing
anomaly in practice. But the fact that inversions happen makes
it difficult to prove the absence of timing anomalies.

We added a new hardware counter (CSR) to the Ariane
processor to count for inversions and used the methodology
described in Section III-B. Results are reported in Table I.
Over 52 TACLe benchmarks, 26 had inversions during their
execution. This reveals that Ariane is potentially subject to
timing anomalies and motivates our work to make it timing
predictable.

IV. MINOTAURβ : A TIME COMPOSITIONAL RISC-V CORE
WITH PARTIALLY OUT-OF-ORDER EXECUTION

A. Model of the Ariane core

Before giving a formal description of the MINOTAuRβ

core, we introduce our model of the Ariane pipeline. This
model is depicted in Figure 1. It includes the pipeline stages
that we mentioned in Section III-A (PC, IF, ID, IS, CO) and the
FUs are grouped in an execution stage, EX. The branch unit
is included in the ALU, which it uses to perform comparisons.
The multiplier/divider is modelled as two entities: a 2-stage
multiplier (MUL1 and MUL2) and a separate divider (DIV). The
CSR buffer is also modelled as a separate FU. The memory
units are represented as a LSU unit followed by separate LU
and SU units.

The Ariane core features several instructions queues that we
model in the following way. We consider that an instruction
that resides in a queue stays fictitiously in a given pipeline
stage when it is not currently processed. For example, fetched
instructions are inserted in the fqueue in stage IF and re-
main there until they enter the ID stage. The scoreboard is
represented by the iqueue which instructions enter in IS and
leave in stage CO. Similarly, memory instructions enter the
mqueue in stage LSU and leave it when they advance to the

eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
www.coremark.org


LU/SU unit. The store buffer is modelled as an instruction
queue, squeue , and a fictive store stage (ST) that represents
the actual sending of write requests to the memory. All this
means that we allow several instructions to reside in the same
stage, even if only the youngest one is effectively processed
by the stage. We keep track of the number of instructions in
each stage using set cardinals (#). Pipeline stages that can
host several instructions (one being effectively processed and
the other being only fictitiously hosted) are shown in light red
in Figure 1.

B. Formal model of MINOTAuRβ

The MINOTAuRβ core is obtained from the baseline Ariane
processor by applying the same restrictions as in the SIC
paper: the branch predictors are disabled so that any branch
will stall the pipeline in the PC stage, and misses in the
instruction cache are stalled (and thus they do not perform
their bus transactions) as long as there is a memory instruction
in the pipeline.

Each instruction i ∈ I is characterized by its category
opc(i) ∈ {branch, store, load, atomic,mul, div, csr} and by
predicates that reflect the outcome of the cache analysis:
ichit(i) (resp. dchit(i)) is true if the cache analysis has
determined that instruction i resides in the instruction cache
(resp. the data accessed by instruction i resides in the data
cache).

The complete formal model of the MINOTAuRβ core is
shown in Figure 2. This model specifies the pipeline structure4

and the cycle function with the help of the following auxiliary
predicates and functions that are defined for a given pipeline
state c ∈ C:

• c.isnext(i, s): true if instruction i is the oldest in stage s
• c.nstg(i): next pipeline stage for instruction i. It depends

on its current stage and sometimes on its category.
• c.cnt(i): number of cycles that instruction i still has to

spend in the stage it currently resides in.
• c.nlat(i): latency of instruction i in its next pipeline

stage. Only memory instructions and divisions have a
non-zero latency in their functional unit. The latency of
an instruction fetch is determined by the latency to the
main memory in case of a cache miss.

• c.pending(i, op): true if an instruction of category op and
older than i has not been completely processed in a given
stage defined by lstg(op). lstg(op) maps each category
of instruction op to the last stage before committing
such an instruction. Stores and atomic instructions are
pending until they have been sent to the memory (in stage
ST). Instructions accessing hardware counters (csr) are
pending until they are committed. All other instructions
are pending until they have been processed by their
functional units.

• c.ready(i): true if instruction i is ready to advance to the
next pipeline stage. For most of the pipeline stages, an in-
struction is ready when it has been completely processed

4The pre (resp. post) stage hosts instructions that have not yet entered (resp.
have left) the pipeline

by the stage and when it is the oldest one in the stage
(this condition is required for stages that fictitiously host
several instructions). In addition, there are restrictions
to advance from PC to IF (no pending branch, and if
the instruction misses in the cache, no pending memory
instruction), from ID to IS (the required functional unit
must be available right after the cycle spent in IS, conflicts
on the result bus must be prevented and the instruction is
stalled if a csr instruction is pending), and from LSU to
LU or SU (loads are stalled by pending stores, and loads
and stores are stalled by pending atomic instructions).

• c.slot(s): for any pipeline stage s that inserts instructions
in a queue/buffer, true when the queue/buffer will have a
free slot in the next clock cycle. This is determined by
counting the number of instructions that reside between
the entering and leaving pipeline stages and by checking
whether an instruction that is already in the queue will
leave it and release a slot. The size of the fqueue (resp.
mqueue , iqueue , squeue) is denoted fq size (resp.
mq size, iq size, sq size) in the model.

• c.free(s): true if stage s can accept a new instruction in
the next clock cycle. Some of the stages always accept
instructions, either because they can host several of them
or because they keep instructions for a single cycle.
Other stages insert instructions in a queue, and it must
be guaranteed that this queue has a free slot. Finally,
for other stages, one checks whether the instruction they
currently host will be able to advance to its next stage.

In order to save space, Figure 2 highlights the variations
corresponding to the MINOTAuRβ core in orange, and the
ones corresponding to the MINOTAuR core in blue. In par-
ticular, in the MINOTAuRβ model, function nstg is equal to
function nstg′. The part corresponding to the modifications
made to the baseline Ariane core is the orange portion in
the c.ready(i) function: (i) the PC stage is stalled whenever
a branch instruction is already in the pipeline (and has not
reached the end of the ALU stage, in which the target address
and/or branch condition are resolved), and (ii) the instructions
do not enter the IF stage if they do not result in a hit in
the instruction cache and if a previous memory instruction is
already in the pipeline.

C. Anomaly freedom and compositionality proofs

Theorem 6. Timing predictability of MINOTAuRβ . The
MINOTAuRβ core is free of timing anomalies and is timing
compositional.

Proof. We prove in the Appendix that Property 1 holds for
MINOTAuRβ . As a consequence, Lemmas 1 and 2, and
Theorems 1 to 4 also hold. It remains to prove Theorem 5
for MINOTAuRβ , which is also done in the Appendix.

D. Performance evaluation

We followed the methodology described in Section III-B to
evaluate the performance of MINOTAuRβ .



S := {pre, PC, IF, ID, IS, ALU, MUL1, MUL2, DIV, LSU, LU, SU, CSR, CO, ST, post}
pre ⊏S PC ⊏S IF ⊏S ID ⊏S IS ⊏S {ALU, MUL1, LSU, CSR, DIV} ⊏S {MUL2, LU, SU} ⊏S CO ⊏S ST ⊏S post

cycle(c)(i) :=

{
(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.isnext(s, i) := c.stg(i) = s ∧ ∀j < i . c.stg(j) ⊐S s

c.ncnt(i) :=

{
c.cnt(i)− 1 : c.cnt(i) > 0
0 : otherwise

c.pending(i, op) := ∃j < i . opc(j) = op ∧ c(j) ⊏P (lstg(op), 0)
c.nlat(i) :=


memlatf (i) : c.nstg(i) = IF ∧ ¬ichit(i)
memlatd(i) : (c.nstg(i) = LU ∧ ¬dchit(i))

∨c.nstg(i) = ST
exlat(i) : c.nstg(i) = DIV
0 : otherwise

c.nstg(i) :=

{
post : c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i)

c.nstg′(i) : otherwise

c.nstg′(i) :=



PC : c.stg(i) = pre
IF : c.stg(i) = PC
ID : c.stg(i) = IF
IS : c.stg(i) = ID
LSU : c.stg(i) = IS ∧ opc(i) ∈ {load, store, atomic}
LU : c.stg(i) = LSU ∧ opc(i) = load
SU : c.stg(i) = LSU ∧ opc(i) ∈ {store, atomic}
MUL1 : c.stg(i) = IS ∧ opc(i) = mul
MUL2 : c.stg(i) = MUL1
DIV : c.stg(i) = IS ∧ opc(i) = div
CSR : c.stg(i) = IS ∧ opc(i) = csr
ALU : c.stg(i) = IS ∧ opc(i) /∈ {load, store, atomic,mul, div, csr}
CO : c.stg(i) ∈ {ALU, MUL2, DIV, CSR, LU, SU}
ST : c.stg(i) = CO ∧ opc(i) ∈ {store, atomic}
post : (c.stg(i) = CO ∧ opc(i) /∈ {store, atomic}) ∨ (c.stg(i) = ST)

lstg(op) :=



LU : op = load
ST : op = store
ST : op = atomic
IS : op = mul
DIV : op = div
CO : op = csr
ALU : op = branch

c.ready(i) := (c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨(c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧(c.stg(i) = PC ⇒ ¬c.pending(i, branch) ∧ (ichit(i)

∨(¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧(c.stg(i) = PC ⇒ (ichit(i)

∨(¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧(c.stg(i) = ID ⇒
((opc(i) ∈ {load, store, atomic} ⇒ c.slot2(LSU))
∧(opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, div) ∧ ¬c.pending(i, csr))
∧(opc(i) = mul ⇒ ¬c.pending(i,mul))))

∧(c.stg(i) = LSU ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))
∨(opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {ALU, MUL1, CSR, MUL2, CO, post}
∨(s ∈ {IF, IS, LSU, SU} ∧ c.slot(s))
∨(s ∈ {PC, ID, DIV, LU, ST} ∧ ((¬∃j < i . c.stg(j) = s) ∨ (∃j < i . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨(∃i.c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

c.slot(IF) := (#{j|c.stg(j) = IF} < fq size) ∨ c.free(ID)
c.slot(IS) := #{j|IS ⊑S c.stg(j) ⊑S CO} < iq size ∨ (∃j′ . c.isnext(CO, j′) ∧ c.ready(j′) ∧ (opc(j′) ∈ {store, atomic} ⇒ c.free(ST)))
c.slot(SU) := #{j|opc(j) = store ∧ LSU ⊏S c.stg(j) ⊏S post} < sq size ∨ ∃j′ . c(j′) = (ST, 0))
c.slot(LSU) := #{j|c.stg(j) = LSU} < mq size

∨(∃j′ . c.isnext(LSU, j′) ∧ ((opc(j′) = load ∧ c.free(LU)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(SU))))
c.slot2(LSU) := #{j|opc(j) ∈ {load, store, atomic} ∧ IS ⊑S c.stg(j) ⊑S LSU} < mq size

∨(∃j′ . c.isnext(LSU, j′) ∧ ((opc(j′) = load ∧ c.free(LU)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(SU))))

Fig. 2. Model of the core. In orange, the MINOTAuRβ version. In blue, the MINOTAuR version.

As expected, we did no longer observe any inversion. Com-
pared to the baseline Ariane core, the increase on the execution
time ranges from 10.92% to 125.21%, and reaches 41.2%
on average (47.5% for the weighted mean). These results are
significantly higher than the 6-7% loss reported in [11]. We
believe that this may be related to the fact that Ariane is much
more advanced than the 5-stage in-order pipeline upon which
the SIC processor was designed. In particular, Ariane includes
dynamic branch predictors (Hennessy and Patterson [15] report
a 30% performance gain using such predictors) and several

queues that allow some instruction parallelism. For example,
the scoreboard (modelled by the iqueue) makes it possible,
to some extent, to execute several instructions in parallel in
different functional units.

In order to estimate the impact of these mechanisms, we
designed a restrained version of Ariane in which we reduced
the size of the iqueue to a single slot and disabled the
dynamic branch predictor. The goal was to make it as close as
possible to the simple pipeline used to build SIC. We refer to
this version as seqAriane. Table I shows that seqAriane runs



Ariane seqAriane sicAriane MINOTAuRβ MINOTAuR
Benchmark Inversions Cycles Overhead Overhead Overhead Overhead
binarysearch 2 2,206 38.08% 67.45% 21.53% 13.83%
bitcount 0 19,924 138.51% 184.80% 49.44% 27.44%
bitonic 0 10,513 150.62% 189.58% 33.21% 7.40%
bsort 0 60,817 210.62% 286.84% 125.21% 1.39%
complex updates 0 21,153 165.05% 190.24% 39.71% 10.17%
cosf 0 325,912 178.51% 203.03% 41.16% 4.68%
countnegative 0 19,268 69.19% 101.87% 36.54% 11.93%
cubic 3 12,907,490 168.08% 190.13% 38.61% 5.93%
deg2rad 0 172,914 160.36% 183.77% 39.67% 5.86%
fac 0 1,247 29.35% 53.97% 24.38% 20.13%
fft 1 2,178,836 167.34% 191.26% 47.29% 11.47%
filterbank 1 50,353,639 172.27% 196.56% 36.12% 5.13%
fir2dim 0 36,012 158.18% 182.58% 36.07% 6.48%
iir 2 6,326 116.20% 146.38% 36.29% 15.40%
insertsort 1 2,101 79.82% 127.27% 41.41% 26.23%
isqrt 0 524,958 141.57% 169.22% 50.71% 0.67%
jfdctint 0 4,884 80.04% 106.94% 25.43% 25.31%
ludcmp 1 62,314 161.09% 194.98% 34.94% 6.23%
matrix1 0 12,748 181.66% 226.58% 54.63% 4.03%
md5 0 7,452,238 166.99% 196.97% 30.53% 4.42%
minver 4 22,826 124.38% 147.55% 28.28% 11.19%
pm 16 120,964,347 192.28% 216.68% 51.10% 4.05%
prime 0 1,478 26.32% 53.59% 31.39% 24.76%
quicksort 2 4,427,652 159.97% 202.32% 48.22% 8.94%
rad2deg 0 171,814 164.44% 189.48% 42.87% 6.45%
recursion 0 3,081 84.45% 131.55% 40.93% 20.35%
sha 0 928,238 189.52% 245.28% 57.01% 3.91%
st 1 1,924,247 183.54% 206.41% 48.90% 8.63%
adpcm dec 3 142,166 79.76% 91.24% 29.94% 1.11%
adpcm enc 0 146,493 76.62% 87.89% 29.34% 3.00%
anagram 4 1,557,582 168.95% 220.02% 41.75% 7.94%
audiobeam 2 4,000,942 159.77% 182.04% 35.35% 4.98%
cjpeg transupp 0 1,993,028 170.43% 218.58% 78.70% 5.23%
cjpeg wrbmp 0 80,845 126.27% 169.87% 30.13% 14.72%
dijkstra 1 35,825,901 143.76% 201.96% 76.49% 9.38%
epic 3 40,198,007 177.47% 200.52% 39.21% 3.65%
fmref 1 7,220,481 168.66% 190.79% 36.28% 3.64%
g723 enc 2 549,627 144.96% 167.91% 54.72% 4.13%
gsm dec 2 1,319,645 150.11% 167.45% 58.10% 12.80%
gsm enc 7 4,109,217 154.36% 183.35% 24.49% 10.51%
h264 dec 2 236,863 111.61% 139.64% 37.81% 22.40%
huff dec 1 113,176 113.22% 143.27% 47.12% 10.62%
huff enc 3 479,586 138.12% 179.34% 34.41% 10.02%
ndes 1 58,675 127.58% 163.45% 22.85% 7.35%
petrinet 0 1,660 20.84% 40.60% 22.11% 19.58%
rijndael enc 5 4,652,960 193.56% 220.88% 10.92% 3.73%
statemate 4 37,468 207.54% 288.99% 36.47% 12.86%
Average 138.1% 171.1% 41.2% 10.0%
Weighted mean 176.5% 205.4% 47.5% 5.2%

TABLE I
RESULTS OF THE TACLE BENCHMARK SUITE RAN ON ALL VERSIONS OF THE CORE. THE OVERHEADS ARE ALL COMPUTED W.R.T. ARIANE.

Ariane seqAriane Overhead sicAriane Overhead MINOTAuRβ Overhead MINOTAuR Overhead
CoreMark score 110.753173 46.541674 57.98% 41.099235 62.89% 71.870817 35.1% 106.670535 3.68%

TABLE II
COREMARK SCORE.

noticeably slower than Ariane: execution times are increased
by 138.1% on average on the TACLe benchmarks.

We also designed another version of seqAriane that im-
plements the gating mechanism used to make SIC timing
predictable (instruction fetches are stalled as long as a memory
instruction or an unresolved branch instruction is pending). We
refer to this version as sicAriane. As expected, the performance
is further degraded compared to Ariane: execution times
reported in Table I show an average increase of 171.1% on

average on the TACLe benchmarks. Compared to seqAriane,
the increase is 14.17%5 which is still higher than the 6-7%
loss reported for SIC. This probably stems from differences in
the microarchitecture. We observe that MINOTAuRβ performs
92.33% better than sicAriane on average on the TACLe
benchmarks. Table II shows that it outperforms sicAriane by

5This value has been calculated from the raw numbers of cycles that we
could not display due to space limitations but that can be derived from the
data given in the table.



74.8% on the CoreMark. This indicates that we were able to
transpose the approach proposed in [11] to a more complex
processor. However, as mentioned above, the performance
of MINOTAuRβ is significantly lower than that of Ariane.
Our intuition is that disabling speculative execution strongly
limits the performance in a core that can efficiently process
instructions. We relax this restriction in the next section.

V. MINOTAUR: A SPECULATIVE TIME PREDICTABLE
RISC-V CORE

In order to reduce the performance loss, we designed a
new version of the MINOTAuRβ core in which the branch
prediction mechanisms are active and speculation is enabled
to a certain extent. However, we decided to disable the RAS
because its behavior could incur timing anomalies6. It is left
for future work to design a RAS which provably does not
incur timing anomalies. The idea is to let the core execute
speculatively as long as the execution does not modify the state
of the hardware (e.g. cache content) other than the instructions
in the pipeline. We refer to the resulting core as MINOTAuR.
In the following, we present how these modifications affect the
model. Then we prove that MINOTAuR is timing predictable,
and finally we show experimentally that the execution time
overhead is considerably reduced.

A. Model

The modifications corresponding to MINOTAuR are high-
lighted in blue in Figure 2.
We say that an instruction is speculated if the pipeline contains
an older, still unresolved branch. We say that the instruction is
misspeculated if the unresolved branch has been mispredicted,
i.e. if the instruction belongs to the wrong path. We introduce
a new predicate, pwrong(i), that is true whenever instruction
i is misspeculated. Using this predicate, we extend the nstg
function so that any misspeculated instruction that has already
entered the pipeline is directly flushed to the post stage (i.e.
exits the pipeline without being executed or committed) as
soon as the branch has been resolved. The actual relaxation
on the speculation appears in the ready function: an instruction
i is allowed to enter the IF stage even speculatively as long
as ichit(i) is true. On the contrary, if the instruction is going
to cause a miss in the instruction cache, it is stalled in the
PC stage as long as a branch or a memory (load , store ,
atomic) instruction is pending. To complete this model, the
free function is extended in the exact same fashion.

Allowing some instructions to enter the pipeline specula-
tively does not affect the timing predictability of the core
as long as these speculated instructions do not modify the
state of the hardware (except for the pipeline contents). In
the next section, we will prove that it is the case in the
MINOTAuR core. However, we point out right away that this

6The RAS incurs two difficulties compared to the other speculative mech-
anisms handled in the paper: first, it is sometimes implemented as a circular
buffer which looses information when too many function calls are nested;
second, it is updated in the early stages of the pipeline, before knowing if
the corresponding function call itself is executed as part of a mispredicted
branch.

property is sensitive to the cache write and replacement policy:
it works with any cache in which hits do not modify the cache
state7 (e.g. direct-mapped caches or random caches such as
the ones implemented in MINOTAuR). This would not be the
case with caches implementing ageing mechanisms, such as
LRU caches. Designing efficient speculation-insensitive LRU
caches is left for future work. Moreover, a speculated store
instruction cannot perform its write to memory (in stage ST,
i.e. after stage CO) before the corresponding branch instruction
is resolved. Thus we do not need to consider the effect of stores
in our proofs.

B. Timing anomaly freedom proofs

We start by proving that caches cannot be modified by
speculated instructions.

Let c ∈ C be a pipeline state and i ∈ I be an instruction.
The state of the instruction or data cache might be modified
by i if and only if the following predicate is true:

c.cmod(i) := (c.stg(i) = IF ∧ ¬ichit(i))
∨(c.stg(i) = LU ∧ ¬dchit(i))

Theorem 7 (Absence of cache state modification during
speculation). ∀i ∈ I,∀c ∈ C, c.pending(i, branch) ⇒
¬cycle(c).cmod(i)

Proof. Let i ∈ I and c ∈ C. By definition, cycle(c).cmod(i)
is equivalent to:

(cycle(c).stg(i) = IF ∧ ¬ichit(i)) (1)

∨(cycle(c).stg(i) = LU ∧ ¬dchit(i)) (2)

We will show that none of these terms hold.
Let us first assume that c.stg(i) ⊏S PC. Then trivially,
cycle(c).stg(i) ⊏S IF. Let us now consider c ∈ C such
that c.stg(i) = PC and c.pending(i, branch). Let us also
assume that ¬ichit(i) (otherwise (1) does not hold). Since
c.pending(i, branch) ∧ ¬ichit(i) ⇒ ¬c.ready(i), we de-
duce that cycle(c).stg(i) = PC. We can recursively apply
the same argument to prove that for all states c′ such that
c′.pending(i, branch), cycle(c′).stg(i) ⊏S IF. From this we
conclude that (1) does not hold.

Now let us assume again i ∈ I and c ∈ C such that
c.pending(i, branch). By definition of pending, we know
that ∃jbr < i . opc(jbr) = branch ∧ c(jbr) ⊏P (ALU, 0).
Then, given the structure of the pipeline, we can deduce that
c.stg(i) ⊑S c.stg(jbr) ⊑S IS. If c.stg(jbr) ⊏S IS, then
trivially cycle(c).stg(i) ⊏S LSU and (2) does not hold. If
c.stg(jbr) = IS, then necessarily c.stg(i) ⊏S IS and once
again cycle(c).stg(i) ⊏S LSU, so (2) cannot hold.

Since this proof does not make any assumption on the
position of jbr in case of nested branch predictions, Theorem 7
remains valid for any instruction i as long as there exists an
unresolved branch instruction which precedes i.

In this proof we showed that no memory access is
performed speculatively: it results that (i) no request to the

7More precisely: for which the effect of cache hits is transparent to usual
cache analysis [19]



memory can be initiated by a speculated instruction and thus
no memory request started speculatively is pending at the time
when the corresponding branch is resolved, (ii) speculated
instructions are not subject to multi-core interference and (iii)
uncertain outcomes of the cache analyses can be treated as
part of the non-speculative execution.

We now prove that MINOTAuR fulfills Property 1. We focus
on the blue parts of the model since the rest is unchanged w.r.t.
Section IV.

Theorem 8 (Update enable in MINOTAuR). The MINO-
TAuR core satisfies Property 1.

Proof. Let ca, cb ∈ C be two pipeline states and i be an
instruction such that ca(i) = cb(i)∧(∀j < i, ca(j) ⊑P cb(j))).
We must prove that:{

ca.ready(i) ⇒ cb.ready(i)
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

We start with ca.ready(i) ⇒ cb.ready(i). The property was
proven in all cases but the two blue ones (see the Appendix),
so we focus only on these two cases here.
From ca(i) = cb(i), we get ca.stg(i) ̸= pre ⇒ cb.stg(i) ̸=
pre and ca.stg(i) = PC ⇒ cb.stg(i) = PC. Moreover, since
∀j < i, ca(j) ⊑P cb(j), it follows that ¬ca.pending(i, op) ⇒
¬cb.pending(i, op). Finally, pwrong(i) and ichit(i) only
depend on the instruction and not on the pipeline state. As
a result, ca.ready(i) ⇒ cb.ready(i).

The same arguments apply to the blue case in free, then
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i)).

Using Theorems 7 and 8, we conclude that the results of
Section IV-C still apply on MINOTAuR, and that we do not
have to consider the hypothetical case of non-determinism in
the caches or memory latencies for speculated instructions.

Next, we prove that the relaxation of the constraint on
speculation does not introduce timing anomalies in the core.
To do this, we consider an instruction sequence I1 :=
i1, i2, ..., ibr, ibr+1, ..., in in which ibr is the only branch
instruction, and we make the assumption that the prediction
on this branch can be either correct or incorrect. I1 itself
represents the execution when the prediction is correct. A sec-
ond sequence I2 := i1, i2, ..., ibr,m1,m2, ...,mk, ibr+1, ..., in
contains misspeculated instructions (mx) which may enter the
pipeline if the prediction is wrong. We denote cbr the state
of the pipeline when ibr enters the IF stage. It is important
to remark that all instructions i ≤ ibr are identical in both
sequences, and that the same is true for instructions i ≥ ibr+1.

Let cw be the state of the pipeline just when ibr has been
resolved (cw(ibr) = (ALU, 0)) if it has been mispredicted (i.e.
the local worst case). Without loss of generality, we assume
that cw is obtained by applying the cycle function l > 0 times
on cbr while following the I2 sequence. Additionally, let cb
be the state of the pipeline just when ibr has been resolved
(cb(ibr) = (ALU, 0)) if it has been predicted correctly (i.e.
the best local case). Since all instructions j < ibr are the

same in I1 and I2 and the pipeline implements the progress
dependence property, cb is also obtained by applying the
cycle function l times on cbr, but this time following the I1
sequence. Since both sequences are identical up to ibr, these
two states correspond to the same number of applications of
cycle since the beginning of the execution. By considering
cw and cb, we can prove progress properties without having
to consider the speculated instructions: we compare cw and
cb only on the instructions that they have in common i.e. the
instructions of I1.

Theorem 9 (Progress at the end of speculation). Pipeline state
cw has less progress on I1 than cb : cw ⊑ cb. More precisely:

∀j ∈ I1,
{

j ≤ ibr ⇒ cw(j) = cb(j)
j > ibr ⇒ cw(j) ⊑ cb(j)

Proof. Instructions j ≤ ibr are all executed non speculatively
and belong to both sequences I1 and I2. Since the pipeline
satisfies Property 1, the progress of these instructions does
not depend on the following instructions. As a result, ∀j ≤
ibr, cw(j) = cb(j), since cw and cb correspond to the same
number of applications of cycle since the beginning of the
sequence.
By definition of state cw, all speculated instructions have been
flushed from the pipeline in this state. Thus in the rest of the
proof, we will only consider the non-speculated instructions
(i.e. we consider only I1).

Instructions j > ibr+1 have not yet entered the pipeline in
state cw: ∀j > ibr+1, cw.stg(j) = pre. Thus, regardless of
their progress in cb, we have cw(j) ⊑P cb(j).
Now, for ibr+1, we can write: cw.stg(ibr+1) ⊑S PC, because
cw is the pipeline state just after branch ibr has been resolved.
If cw.stg(ibr+1) = pre, then cw(ibr+1) ⊑P cb(ibr+1) is triv-
ial. If cw.stg(ibr+1) = PC, then ∀j < ibr+1, PC ⊏S cw.stg(j).
Once again, by the progress dependence property, we also have
∀j < ibr+1, PC ⊏S cb.stg(j), so no prior instruction resides
in PC in state cb. Since ibr+1 was able to leave pre and enter
PC in cw, ibr+1 must also have been able to enter PC at least
in cb if not in a prior state. We thus have PC ⊑S cb.stg(ibr+1),
and thus cw(ibr+1) ⊑P cb(ibr+1).

Theorem 7 guarantees that caches are not modified during
speculation, and we know that by design the dynamic branch
prediction mechanisms are only updated when branches are
resolved, with the information of the correct branch. This
means that any modification of these components that could
impact the execution of subsequent instructions (e.g. cache
content modification) cannot happen during speculation. Using
Theorem 9, we can thus safely apply function f of Theorem 2
to cb and cw and conclude on the absence of timing anomalies
in MINOTAuR. We now proceed with the next theorem which
bounds the timing penalty for a branch misprediction in
MINOTAuR.

Theorem 10 (Bound of the timing penalty resulting from a
branch misprediction). If a predicted branch takes p cycles to
be resolved, then the penalty for a misprediction of the branch
is at most p cycles.



Proof. We use the same notations as for Theorem 9. We
consider the state c′w obtained by applying cycle to state cw
until instruction ibr+1 reaches the same progress than in cb
i.e. until we reach c′w(ibr+1) = cb(ibr+1). Without loss of
generality, we consider that c′w is reached from cw by applying
cycle k > 0 times. We prove that (1) k ≤ p and (2) the time
penalty induced by a misprediction is bounded by k.
(1) cb is obtained from cbr by applying cycle p times. Since
the progress of instructions in the pipeline does not depend
on subsequent instructions, and since the pipeline guarantees a
strict progress, we can derive that ∀j ≤ ibr, cbr(j) ⊑P cw(j).
We thus have the guarantee to reach c′w from cw in at most p
cycles: k ≤ p.
(2) (a) We start by proving that cb ⊑ c′w: ∀j ≤ ibr, cw(j) =
cb(j) and cw(j) ⊑P c′w(j), so cb(j) ⊑P c′w(j). By definition,
we also have c′w(ibr+1) = cb(ibr+1). We wish to show that
∀j . j > ibr+1, cb(j) ⊑P c′w(j). We can proceed by induction
on j. We just stated that all instructions j′ ≤ ibr+1 are at
least as advanced in c′w as in cb. It follows that the progress
of instruction j which just follows ibr+1 is less or equally
constrained in c′w than in cb: j cannot be blocked in c′w if it
is not blocked in cb and thus cb(j) ⊑P c′w(j). We can repeat
this argument for any j > ibr+1 to conclude that cb ⊑ c′w.
(b) By applying Theorem 2, we obtain that ∀i ∈ I1, f(c′w, i) ≤
f(cb, i), which means ∀i ∈ I1, f(cw, i) − k ≤ f(cb, i): we
conclude that the penalty for mispredicting the branch is at
most k cycles.
From (1) and (2) we conclude that the penalty for mispredict-
ing the branch is bounded by p cycles.

Finally we can bound p by the worst-case time that a branch
can take to be resolved: it is the worst-case number of cycles
an instruction can spend between the PC and the ALU stages.
We denote divlat the worst-case latency of a division and
mlat the duration of an access to the memory after a cache
miss. In our core, divlat > mlat. The worst-case traversal
time is observed when the branch enters stage PC while the
instructions residing between stages IF and ID have the worst
possible latency in their functional units (divlat) and the
entrance into the scoreboard is delayed by the worst possible
configuration: a division instruction in the DIV functional unit.
When the first division instruction exits the DIV unit, the
second one is allowed to enter the IS stage, thus one additional
cycle is required. The same is true for all the divisions residing
in the fqueue and for the branch itself. Since divlat > mlat, a
miss in the instruction cache would not contribute to the worst-
case latency. In the end p ≤ ((2+fq size)∗ (divlat+1)+1)
cycles.

C. Performance evaluation

Experimental results for MINOTAuR are available in Ta-
bles I and II. We followed the methodology described in
Section III-B.

Again, we did not observe any inversion, which was ex-
pected due to the gating mechanism that we have implemented.

Due to the fact that we have carefully selected the restrictions
that were absolutely required to prove timing predictability
and relaxed the other ones, the performance loss compared
to the original Ariane core is noticeably low: the increase is
3.68% on the CoreMark, and ranges from 0.67% to 27.44%,
with an average of 10.0% on the TACLe benchmarks. By
relaxing the limitations on speculative execution, we thus
claimed back 30% of the performance on average (compared
to MINOTAuRβ), while keeping the core provably timing
predictable.

The cost in performance may look higher than for the SIC
core at first sight, but as mentioned before, our baseline core
is much faster than the one considered for SIC. From the
numbers given in Table I, we can derive that MINOTAuR
is more than twice faster on average than sicAriane, which
is supposedly comparable to SIC : the execution time on
sicAriane is 148.96% longer than on MINOTAuR.

VI. CONCLUSION

In this paper we presented MINOTAuR, a timing predictable
core based on the open source Ariane RISC-V core. We
first applied the SIC philosophy [11] on Ariane and found
experimentally that the resulting performance degradation was
substantial (41.2% on average on the TACLe benchmarks). We
thus relaxed part of the limitations on branch speculation and
showed that we could still formally prove timing predictability.
The cost for this predictability, i.e. the execution time overhead
of MINOTAuR compared to the baseline Ariane core, is only
10% on average. This shows that timing predictability is
compatible with acceleration mechanisms such as dynamic
branch prediction and parallel functional units, and that timing
predictable cores can achieve high performance. We provide
the SystemVerilog source code of MINOTAuR and all in-
termediate designs presented in the paper. In the future we
plan on extending MINOTAuR with new mechanisms that
will not impair its provable timing predictability: speculation-
insensitive LRU caches whose state is not altered by wrong
branch predictions, a predictable return address stack, and a
scheme that will allow multiple functional units to execute
instructions in parallel.

VII. APPENDIX

A. Proof of Property 1 for MINOTAuRβ

Let us consider two pipeline states ca, cb ∈ C and an
instruction i ∈ I such that ca(i) = cb(i). Let us assume that
all previous instructions j < i are such that ca(j) ⊑P cb(j).
We first prove the following statements:
(a) ca.cnt(i) = 0 ⇒ cb.cnt(i) = 0

This follows from ca(i) = cb(i).
(b) ca.nstg(i) = cb.nstg(i)

This follows from ca(i) = cb(i).
(c) ca.isnext(i, ca.stg(i)) ⇒ cb.isnext(i, cb.stg(i))

• ca(i) = cb(i) ⇒ ca.stg(i) = cb.stg(i)
• Given that ∀j < i, ca(j) ⊑P cb(j), we get s ⊏S
ca.stg(j) ⇒ s ⊏S cb.stg(j).



(d) ¬ca.pending(i, op) ⇒ ¬cb.pending(i, op)
From ca(j) ⊑P cb(j), we get:
• ¬∃j < i . (opc(j) = op ∧ ca.stg(j) ⊏S post) ⇒
¬∃j < i . (opc(j) = op ∧ cb.stg(j) ⊏S post)

• if ∃j < i . (opc(j) = op ∧ ca.stg(j) ⊏S post), then
¬ca.pending(i, op) ⇒ (lstg(op), 0) ⊑P ca(j) ⇒
(lstg(op), 0) ⊑P cb(j)

(e) if ca.isnext(i, ca.stg(i)),∀s . ca.nstg(i) ⊑S s,
#{j < i|ca.nstg(i) ⊑S ca.stg(j) ⊑ s}
≥ #{j < i|cb.nstg(i) ⊑S cb.stg(j) ⊑ s}
• From ca.cnt(i) = 0 and ca.isnext(i, ca.stg(i)), we

get: ∀j < i, ca.nstg(i) ⊑S ca.stg(j).
• Since ∀j < i, ca(j) ⊑P cb(j), the number of instruc-

tions j between stages ca.nstg(i) and s must be lower
in cb than in ca.

(f) if ca.isnext(i, IF), ca.slot(IF) ⇒ cb.slot(IF)
This follows from (e) and from ca.free(ID) ⇒ ca.free(ID)
(that will be shown below).

(g) if ca.isnext(i, IS), ca.slot(IS) ⇒ cb.slot(IS)

• From statement (e), we get that #{j|IS ⊑S
ca.stg(j) ⊑S CO} < iq size ⇒ #{j|IS ⊑S
cb.stg(j) ⊑S CO} < iq size.

• Otherwise, ca.slot(IS) implies that the iqueue is full8,
that is #{j|IS ⊑S ca.stg(j) ⊑S CO} < iq size.
Then #{j|IS ⊑S cb.stg(j) ⊑S CO is either equal
to or lower than iq size. If it is equal, that means
that IS contains the same instructions in ca as in
cb. If ∃j′ < i . ca.isnext(j

′, CO), we must have
cb.isnext(j

′, CO) because ca(j
′) ⊑P cb(j

′). Other-
wise, we have #{j|IS ⊑S cb.stg(j) ⊑S CO < iq size.

• Based on these observations and on ca.free(ST) ⇒
cb.free(ST) (shown below), we prove the statement.

(h) if ca.isnext(i, ID), ca.slot(LSU) ⇒ cb.slot(LSU)

• From statement (e), we get that #{j|ca.stg(j) =
LSU} < mq size ⇒ #{j|cb.stg(j) = LSU} <
mq size

• Otherwise, ca.slot(LSU) implies that the mqueue is
full, that is #{j|ca.stg(j) = LSU} = mq size.
Then #{j|cb.stg(j) = LSU} is either equal to or
lower than mq size. If it is equal, that means that
stages LSU contains the same instructions in cb as
in ca. If ∃j′ < i . ca.isnext(j

′, LSU), we must have
cb.isnext(j

′, LSU) because ca(j
′) ⊑P cb(j

′). Other-
wise, we have #{j|cb.stg(j) = LSU} < mq size.

• Based on these observations and on ca.free(LU) ⇒
cb.free(LU) and ca.free(SU) ⇒ cb.free(SU) (shown
below), we prove the statement.

(i) if ca.isnext(i, ID), ca.slot2(LSU) ⇒ cb.slot2(LSU)

• From statement (e), we get that #{j|opc(j) ∈
{load, store, atomic} ∧ ca.stg(j) ∈ {IS, LSU}} <
mq size ⇒ #{j|opc(j) ∈ {load, store, atomic} ∧
cb.stg(j) ∈ {IS, LSU}} < mq size

8We have voluntarily omitted this condition in the model for the sake of
readability

• Otherwise, ca.slot2(LSU) implies that the mqueue is
full, that is #{j|opc(j) ∈ {load, store, atomic} ∧
ca.stg(j) ∈ {IS, LSU}} = mq size. Then
#{j|opc(j) ∈ {load, store, atomic} ∧ cb.stg(j) ∈
{IS, LSU}} is either equal to or lower than mq size.
If it is equal, that means that stages IS and LSU
contain together the same instructions in cb as in
ca. If ∃j′ < i . ca.isnext(j

′, LSU), we must have
cb.isnext(j

′, LSU) because ca(j
′) ⊑P cb(j

′). Other-
wise, we have #{j|opc(j) ∈ {load, store, atomic} ∧
cb.stg(j) ∈ {IS, LSU}} < mq size.

• Based on these observations and on ca.free(LU) ⇒
cb.free(LU) and ca.free(SU) ⇒ cb.free(SU) (shown
below), we prove the statement.

(j) ca.slot(SU) ⇒ cb.slot(SU)

• From statement (e), we get that #{j|opc(j) = store∧
LSU ⊑S ca.stg(j) ⊑S post} < sq size ⇒
#{j|opc(j) = store ∧ LSU ⊑S cb.stg(j) ⊑S post} <
sq size.

• Otherwise, ca.slot(SU) implies that the iqueue is full,
that is #{j|opc(j) = store ∧ LSU ⊑S ca.stg(j) ⊑S
post} <= sqsize. Then #{j|opc(j) = store∧LSU ⊑S
cb.stg(j) ⊑S post} is either equal to or lower than
sq size. If it is equal, that means that stages LSU, SU,
CO and ST contain together the same store instructions
in ca as in cb. If ∃j′ < i . ca(j

′) = (ST, 0), this
instruction has either the same state in cb or it has
left the queue. In both cases, this ensures that a slot
will be available in the squeue next cycle.

We get ca.ready(i) ⇒ cb.ready(i) from statements (a), (c),
(d) and (i).

If s ∈ {PC, ID, IS, DIV, LU, SU, ST} ∧ ¬∃j.ca.stg(j) = s
then, since ∀j < i, ca.stg(j) ⊑P cb.stg(j), we get
¬∃j . cb.stg(j) = s and thus cb.free(s). Otherwise, if
∃j . ca.stg(j) = s ∧ ca.ready(j) ∧ ca.free(ca.nstg(j))), this
instruction is either in the same configuration in cb, or it has
more progress in cb than ca and thus ¬∃i . cb.stg(i) = s, which
leads to cb.free(s).
From this observation and from statements (f), (g), (h) and (j),
we get ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i)).

B. Proof of Theorem 5 for MINOTAuRβ

Let c be the state that splits upon the cache uncertainty of
instruction i, leading to the hit-case successor state cb and
miss-case successor cw. Let mlat be the latency of an access
to the memory after a cache miss.

• We first consider a data cache miss. As long as store and
atomic instructions are pending, i is stalled in the LSU
stage in the pipeline states following cw. Let T denote
the number of cycles until pending store/atomic instruc-
tions finish their execution. The number of these pending
instructions is upper bounded by the size of the squeue.
Then T ≤ sq size ∗mlat. After T cycles, the load that
was stalled can advance to the LU stage. After mlat



additional cycles, it reaches progress c′w(i) = (LU, 0)
which is equal to cb(i). We must now show that cb ⊑ c′w.
It follows from:
– instructions j < i are not affected by the uncertainty

on instruction i and thus progressed at least as much
in c′w than in cb.

– by the definition of ready and free, it follows that
instructions k > i that progressed in cb could also
progress at least during the cycle transition leading to
c′w.

The claims follows from cb ⊑ c′w and Theorem 2.
The maximum penalty of a cache miss is given by
p = (sq size+ 1) ∗mlat.

• We now consider an instruction cache miss. Instruction
i is stalled in the PC stage as long as a memory in-
struction is pending. There can be as many as iq size+
2+mq size+ sq size such pending instructions. After
T = (iq size + 2 +mq size + sq size) ∗mlat cycles
at most, the instruction cache miss can be served with
an additional mlat-cycle latency. The remainder of the
proof is analogous to the data cache case.

REFERENCES

[1] absInt. absInt aiT. https://www.absint.com/ait/index.htm.
[2] M. Asavoae, B. Ben Hedia, and M. Jan. Formal executable models for

automatic detection of timing anomalies. In 18th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. von Hanxleden,
R. Wilhelm, and W. Yi. Building timing predictable embedded systems.
ACM Transactions on Embedded Computing Systems, 2014.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open
Toolbox for Adaptive WCET Analysis (regular paper). In IFIP Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems
(SEUS), 2010.

[5] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager.
Time-critical computing on a single-chip massively parallel processor.
In Design, Automation and Test in Europe (DATE), 2014.

[6] J. Eisinger, I. Polian, B. Becker, S. Thesing, R. Wilhelm, and A. Metzner.
Automatic identification of timing anomalies for cycle-accurate worst-
case execution time analysis. In IEEE Design and Diagnostics of
Electronic Circuits and systems, pages 13–18, 2006.

[7] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sorensen, P. Wägemann, and S. Wegener.
Taclebench: A benchmark collection to support worst-case execution
time research. In 16th International Workshop on Worst-Case Execution
Time Analysis, 2016.

[8] G. Gebhard. Timing anomalies reloaded. In 10th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2010). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[9] A. Gruin, T. Carle, H. Cassé, and C. Rochange. Gitlab repository
for minotaur sources and experiments. https://gitlab.irit.fr/minotaur/
MINOTAuR.

[10] S. Hahn, M. Jacobs, and J. Reineke. Enabling compositionality for
multicore timing analysis. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, 2016.

[11] S. Hahn and J. Reineke. Design and analysis of SIC: A provably
timing-predictable pipelined processor core. In IEEE Real-Time Systems
Symposium (RTSS), 2018.

[12] S. Hahn and J. Reineke. Design and analysis of SIC: a provably timing-
predictable pipelined processor core. Real Time Systems, 2020.

[13] S. Hahn, J. Reineke, and R. Wilhelm. Toward compact abstractions for
processor pipelines. In Correct System Design, pages 205–220. Springer,
2015.

[14] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in
execution time analysis: definition and challenges. ACM SIGBED
Review, 12(1):28–36, 2015.

[15] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. 5th edition, 2011.

[16] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A pret
microarchitecture implementation with repeatable timing and competi-
tive performance. In 30th IEEE International Conference on Computer
Design (ICCD), 2012.

[17] I. Liu, J. Reineke, and E. A. Lee. A pret architecture supporting
concurrent programs with composable timing properties. In Asilomar
Conference on Signals, Systems and Computers, 2010.

[18] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically
scheduled microprocessors. In IEEE Real-Time Systems Symposium,
1999.

[19] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded
Systems, 3(1), 2016.

[20] T. Mitra. Time-predictable computing by design: Looking back, looking
forward. In Annual Design Automation Conference, 2019.

[21] T. Mitra, J. Teich, and L. Thiele. Time-critical systems design: A survey.
IEEE Design and Test, 35(2), 2018.

[22] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A Definition and Classification of Timing Anomalies.
In 6th International Workshop on Worst-Case Execution Time Analysis
(WCET’06), 2006.

[23] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi.
T-crest: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture, 2015.

[24] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, and C. W.
Probst. Towards a Time-predictable Dual-Issue Microprocessor: The
Patmos Approach. In Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, 2011.

[25] ThalesGroup. Cva6-softcore-contest. https://github.com/thalesgroup/
cva6-softcore-contest.

[26] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing
anomalies in superscalar processors. In Fifth International Conference
on Quality Software, 2005.

[27] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems, 7(3), 2008.

[28] F. Zaruba and L. Benini. The cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-ghz 64-bit RISC-
V core in 22-nm FDSOI technology. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2019.

https://www.absint.com/ait/index.htm
https://gitlab.irit.fr/minotaur/MINOTAuR
https://gitlab.irit.fr/minotaur/MINOTAuR
https://github.com/thalesgroup/cva6-softcore-contest
https://github.com/thalesgroup/cva6-softcore-contest

	Introduction 
	Related work
	Timing predictability
	Timing-predictable processor architectures
	A formal framework to prove timing predictability 

	The Ariane RISC-V core
	The Ariane architecture
	Experimental methodology
	Bus conflicts in the Ariane core

	MINOTAuR_beta: a time compositional RISC-V core with partially out-of-order execution
	Model of the Ariane core
	Formal model of MINOTAuR_beta
	Anomaly freedom and compositionality proofs
	Performance evaluation

	MINOTAuR: a speculative time predictable RISC-V core
	Model
	Timing anomaly freedom proofs
	Performance evaluation

	Conclusion
	Appendix
	Proof of Property 1 for MINOTAuR_beta
	Proof of Theorem 5 for MINOTAuR_beta

	References

