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An Implemented System for Cognitive Planning
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Abstract:
We present a system that implements a framework for cognitive planning. The system allows us to
represent and reason about the beliefs, desires and intentions of other agents using an NP-fragment
of a multiagent epistemic logic. The system has three components: the belief revision, the planning
and the translator modules. They work in an integrated way to firstly capture new information
about the world, secondly to plan a sequence of speech acts aimed at achieving a persuasive goal
and, finally, to verify satisfiability of the formulas generated at each step of the process. We
illustrate how our system can be used to implement a persuasive artificial agent interacting with
a human user.

1 INTRODUCTION

Automated planning is at the center of AI re-
search with a variety of applications ranging from
control traffic and robotics to logistics and ser-
vices. Epistemic planning extends automated
planning incorporating notions of knowledge and
beliefs (Bolander and Andersen, 2011; Löwe
et al., 2011; Kominis and Geffner, 2015; Muise
et al., 2015; Cooper et al., 2021). Cognitive plan-
ning is a generalization of epistemic planning,
where the goal to be achieved is not only a belief
state but a cognitive state of a target including
not only beliefs but also intentions. Moreover, we
are particularly interested in persuasive goals of
the planning agent, aimed at influencing another
agent’s beliefs and intentions.

The increasing number of applications in so-
cial robotics, social networks, virtual assistants
together with sentiment analysis techniques allow
us to collect data related to humans’ beliefs and
intentions. In (Akimoto, 2019) a framework for
modeling mental attitudes of an agent, based on
her narratives, is proposed. In addition, cognitive
models can be used to predict agents’ decision-
making by taking psychological factors like mo-
tivation and emotions into account (Prezenski
et al., 2017). Nonetheless, few approaches exist
which leverage this information about humans’
cognitive states for changing their attitudes and
behaviors through persuasion.

Our work aims to fill this gap by introducing

a system1 based on a simple framework detailed
in (Fernandez et al., 2021) in which we can repre-
sent an agent’s cognitive state in a compact way,
reason about it and planning a sequence of speech
acts aimed at changing it. Our approach is based
on an epistemic logic introduced in (Lorini, 2018;
Lorini, 2020), which allows us to represent an
agent’s explicit beliefs, as the information in the
agent’s belief base, and the agent’s implicit be-
liefs, as the information which is deducible from
the agent’s belief base. Given that the satisfia-
bility problem for the full logic is PSPACE-hard,
we focus on an NP-fragment that makes the logic
suitable for implementing real-world applications.

The core components of the system are the
belief revision, the planning and the translator
modules. The formulas representing the rules
and constraints for a specific problem domain are
loaded into the system. We encode these rules
using the NP-fragment presented in (Fernandez
et al., 2021). The system takes this information
as the initial state and some actions — which are
of type speech act — to build a plan that leads
to the goal. An important feature is that ac-
tions have preconditions that impose constraints
on their execution order. We illustrate the im-
plementation of our system in a human-machine
interaction (HMI) scenario in which an artificial
agent has to persuade a human agent to practice
a sport based on her preferences.

1https://github.com/CognitivePlanning/sw

https://github.com/CognitivePlanning/sw


2 A LANGUAGE FOR
EXPLICIT AND IMPLICIT
BELIEF

This section describes the basics of the Logic of
Doxastic Attitudes (LDA) introduced in (Lorini,
2018; Lorini, 2020). It is a multiagent epistemic
logic which supports reasoning about explicit and
implicit beliefs. Assume a countably infinite set
of atomic propositions Atm and a finite set of
agents Agt = {1, . . . , n}. We define the language
in two steps.

We first define the language L0(Atm,Agt)
by the following grammar in Backus-Naur Form
(BNF):

α ::= p | ¬α | α1 ∧ α2 | α1 ∨ α2 | △iα,

where p ranges over Atm and i ranges over
Agt . L0(Atm,Agt) is the language for represent-
ing agents’ explicit beliefs. The formula △iα is
read “i explicitly believes that α”. The language
L(Atm,Agt) extends the language L0(Atm,Agt)
by modal operators of implicit belief and is de-
fined by the following grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □iφ | ♢iφ,
where α ranges over L0(Atm,Agt) and i ranges
over Agt . For notational convenience we write
L0 instead of L0(Atm,Agt) and L instead of
L(Atm,Agt), when the context is unambiguous.
The formula□iφ is read “i implicitly believes that
φ” and ♢iφ is read “φ is compatible (or consis-
tent) with i’s explicit beliefs”. The other Boolean
constructions ⊤, ⊥, → and ↔ are defined in the
standard way.

The language is interpreted with respect to a
formal semantics using belief bases whose details
are given in (Lorini, 2018; Lorini, 2020). Check-
ing satisfiability of L formulas relative to this se-
mantics is a PSPACE-hard problem. For that
reason, in (Fernandez et al., 2021), we looked for
an interesting NP-fragment of L that we called
LFrag:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □mα | ♢mα,
where α ranges over L0 and m is a special agent
in Agt called the ‘machine’. In LFrag, all agents
have explicit beliefs but only agent m has im-
plicit beliefs. Therefore, formulas including nest-
ing implicit belief operators are not allowed (e.g.,
□m¬□mp is not a well-formed formula). More-
over the latter are restricted to L0 formulas of
type α.

L+
Frag

red
99K LFrag

nnf
99K LNNF

Frag

tr1
99K LMod

tr2
99K LProp

Figure 1: Summary of reduction process

Agent m is the artificial planning agent. In
order to represent agents’ belief dynamics, lan-
guage LFrag is extended by belief expansion oper-
ators. Such an extension will allow us to represent
the actions of the planning agent in the cognitive
planning problem. Specifically, we introduce the
following language L+

Frag:

φ ::= α | ¬φ | φ1∧φ2 | φ1∨φ2 | □mα | ♢mα | [+iα]φ,

where α ranges over L0 and i ranges over Agt .
The formula [+iα]φ is read “φ holds after agent
i has privately expanded her belief base with α”.
Event of type +iα are generically called informa-
tive actions.

3 COGNITIVE PLANNING

The planning problem in the context of the logic
L+
Frag is to find a sequence of informative actions

for agent m of type +mα which guarantees that
agent m will knowingly achieve its goal. Let
Actm = {+mα : α ∈ L0} be agent m’s set of in-
formative actions and let the elements of Actm be
noted ϵ, ϵ′, . . . Agent m’s informative actions have
executability preconditions that are specified by
the following function: P : Actm −→ LFrag. So,
we can define the following operator of successful
occurrence of an informative action:

⟨⟨ϵ⟩⟩φ def
= P(ϵ) ∧ [ϵ]φ

with ϵ ∈ Actm. The formula ⟨⟨ϵ⟩⟩φ has to be read
“agent m’s informative action ϵ can take place and
φ holds after its occurrence”.

Informative actions of type ‘speech act’ are of
interest here. In particular, we consider speech
acts of type ‘to inform’, where m is assumed to
be the speaker and j ∈ Agt such that j ̸= m is
assumed to be the hearer. We define the speech
act “agent m informs agent j that α” as follows:

inform(m,j,α)
def
= +m △jα.

In (Fernandez et al., 2021) the planning prob-
lem is defined as a tuple ⟨Σ,Op, αG⟩ where:
• Σ ⊂ L0 is a finite set of agent m’s available

information,
• Op ⊂ Actm is a finite set of agent m’s opera-

tors,



• αG ∈ L0 is agent m’s goal.

The planning problem has a solution if the for-
mula ¬

(
(
∧

α∈Σ□mα) → ⟨⟨ϵ1⟩⟩ . . . ⟨⟨ϵk⟩⟩□mαG

)
is

unsatisfiable. Checking plan existence for a L+
Frag-

planning problem is in NPNP = ΣP
2 .

In Algorithm 1, plan[k, i] (line 5) is the i can-
didate plan of size k, generated from the following
elements: the belief base, the i subset in the set
of combinations C and the goal.

Algorithm 1: Cognitive planning
Data: Σbase , Op, αG

Result: Plan
1 Begin
2 Function generatePlans (k)
3 C ← combinations(Op, k);
4 for i← 1 to |C| do
5 plan[k, i] =

¬ (□mΣbase → [+mC[i]]□mαG)
6 if (unSAT plan[k, i]) then
7 Print plan[k, i] is valid ;
8 success← true;
9 return

10 end if
11 end for
12 return
13 Main
14 k = 1 ;
15 success← false;
16 while (k <= |Op| || not(success)) do
17 generateP lans(k);
18 k ++;
19 end while
20 if not(success) then
21 Print Plan not found ;
22 end if
23 exit

4 IMPLEMENTATION

In order to probe the potential of our imple-
mented system for cognitive planning we applied
it to a HMI scenario detailed in (Fernandez et al.,
2021). In this scenario agent m is the artificial
assistant of the human agent h. Agent h has to
choose a sport to practice since her doctor rec-
ommended her to do a regular physical activity
to be in good health. Agent m’s aim is to help
agent h to make the right choice, given her ac-
tual beliefs and desires. Figure 2 shows the pro-

posed system architecture. Its two core modules
are belief revision and cognitive planning which
work in an integrated way. Firstly, the belief re-
vision reads the input coming from the human
and verifies that this input does not contradict
the core beliefs stored in the belief base. Core
beliefs are fundamental beliefs that never change
and are distinguished from volatile beliefs that
can change due to revision. If the input is in con-
tradiction with the core beliefs, then the input is
rejected and the belief base is not updated. On
the contrary, if the input is not in contradiction
with the core beliefs, then the belief base is re-
vised using a maximal consistent subset (MCS)
approach whereby the input has priority over the
old volatile beliefs.

Secondly, the planning module reads the ini-
tial state, the set of actions, and the goal and
starts to generate candidate plans of different size,
starting with size equal to one. During this phase,
the planning module calls the translator module
which converts the L+

Frag-formula into its equiva-
lent formula in propositional logic following the
sequence of reductions detailed in Figure 1. Af-
ter the transformation process performed by the
translator, the planning module executes the SAT
encoding tool TouIST (Fernandez et al., 2020) to
verify the validity of the propositional formula.
TouIST will encode the formula in CNF format
and send it to MiniSAT (this solver is set by de-
fault in the application) for checking satisfiability.
Touist can work with external solvers that accept
standardized DIMACS as input language.

Figure 2: System architecture

In order to initialize the system, agent m has
to be provided with information about the pos-
sible options that the user can choose (Opt) and



Opt
Var

env loc soc cost dan intens

sw water mixed single med low high

ru land outdoor single low med high

hr land outdoor single high high low

te land mixed mixed high med med

so land mixed team med med med

yo land mixed single med low low

di water mixed single high high low

sq land indoor mixed high med med

Table 1: Variable assignments. For every option o ∈
Opt and variable x ∈ Var , we denote by vo,x the
corresponding entry in the table. For instance, we
have vsw,env = water .

their properties (Var). For each pair (Opt ,Var)
we have a valuation Val . In this example, we
suppose that Opt includes the following eight ele-
ments: swimming (sw), running (ru), horse riding
(hr), tennis (te), soccer (so), yoga (yo), diving (di)
and squash (sq). Moreover, there are exactly six
variables in Var which are used to classify the
available options: environment (env), location
(loc), sociality (soc), cost (cost), dangerousness
(dan) and intensity (intens). The variable as-
signments are shown in Table 1.

Formulas representing the rules and con-
straints are loaded as part of agent m’s belief base.
For example, the implementation of the formula
representing the fact that agent h explicitly be-
lieves that a sport cannot have two different val-
ues for a given property is formalized as follows:∧

o∈Opt
x∈Var

v1,v2∈Valx:v1 ̸=v2

(
△hval(o, x 7→ v1)→

△h¬val(o, x 7→ v2)

)

bigand
$o,$x,$v1,$v2

in $Opt,$Var,$Val($x),$Val($x)
when $v1 != $v2:

{h}val($o,ass($x,$v1))=>
{h}not val($o,ass($x,$v2))

end

The syntax for writing the formulas is based
on the TouIST language, with the extension of
the modal operators for explicit and implicit be-
lief. For example, we use {h} for representing
△h. Similarly we use [m] for □m. Thus, this syn-
tax allows us to represent functions like the one
included in the next formula, which states that
an option o is ideal for agent h if and only if the
option satisfies all agent h’s desires:∧
o∈Opt

(
ideal(h, o) ↔

∨
Γ∈2Des∗

(
des(h,Γ)∧∧
γ∈Γ fcomp(o, γ)

) )

The function fcomp specifies, for every option
o ∈ Opt and possible desire γ ∈ Des, the con-
dition guaranteeing that o satisfies (or, complies
with) γ:

fcomp(o, a) = val(o, a),

fcomp(o,∼a) = ¬val(o, a),
fcomp

(
o, [d1, . . . , dk]⇝ d

)
= ¬fcomp(o, d1) ∨ . . .∨

¬fcomp(o, dk) ∨ fcomp(o, d).

The implementation of the formula with the
function included is shown next:
bigand

$o in $Opt :
ideal(h,$o) <=>

((bigand
$d0,$i,$e

in $Delta0, [1..$n1],
$Delta0_1($i)

when $d0 in $Delta0_1($i):
val($o,$e)

end) and
(bigand

$d0,$i,$e
in $Delta0, [1..$n2],

$Delta0_2($i,1)
when $d0 in $Delta0_2($i):

not val($o,$e)
end) and

(bigand
$d0, $i, $p, $c

in $Delta0, [1..$n3],
$Delta0_3($i,1),
$Delta0_3($i,2)

when $d0 in $Delta0_3($i):
not val($o,$p) or val($o,$c)

end))
end

Similarly, the goal to be achieved by the plan-
ning agent, is captured by the following formula:

αG
def
=

∨
o∈Opt

potIntend(h, o).

Moreover, we suppose that, for agent h to have
a potential intention to choose option o, denoted
by potIntend(h, o), she must have a justified belief
that o is an ideal option for her:

potIntend(h, o)
def
= △hideal(h, o) ∧ justif(h, o).

The latter is defined using the same syntax and
in our case is expressed by the next formula:

bigor
$o in $Opt :

{h}ideal(h,$o) and justif(h,$o)
end

The set of actions are generated from Table 1.
For instance, inform(m,h,val_so_ass_env_land) is



an informative action. It is interpreted as the
speech act used by agent m to inform agent h
that the valuation of the property:environment
for the option:soccer is land. In order to help
agent h to select an activity, agent m also needs
information about h’s desires. This information
is gathered by agent m during its interaction with
agent h. The interaction interface between h and
m is shown in Figure 3. The belief revision mod-
ule is called after each agent h’s feedback and it
restores consistency of the agent m’s belief base,
in case the incoming information is inconsistent
with agent m’s pre-existent beliefs. In the exam-

Figure 3: Collecting agent h’s preferences

ple, agent h would like to practice a land activity,
with medium intensity, which is not exclusively
indoor, and which can be practiced both in single
and team mode, if its cost is high. The next rule
for precondition states that agent h must be in-
formed by agent m about the dangerousness level
of a sport, before presenting other properties for
an option. For a ̸∈ Assigndan:

P
(
inform

(
m,h,val(o, a)

))
= □m

(
val(o, a)∧∧

v∈Valdan

(
val(o,dan 7→ v) → △hval(o,dan 7→ v)

))
In the next lines we illustrate how the precondi-
tion is assigned by the planning module together
with its +mα operator in order to specify the suc-
cessful occurrence of an informative action:

[m]((val_te_ass_intens_med) and
(val_te_ass_danger_med =>

{h}val_te_ass_danger_med))
and plus({h}val_te_ass_intens_med...

The planning module reads the Initial State,
the Actions and the Goal files. The planning
module generates plans with the elements con-
tained in the Action file. It starts with plans of
length 1, and enters in a loop. At each interaction
the planning module asks the SAT solver to ver-
ify whether the plan allows to achieve the Goal.
If no plan of length k is found, the program will
increase the counter in one and look for a plan
of length k + 1. An example of an abstract plan
generated by the planning module is:

plus({h}(val_te_ass_danger_med)
plus({h}(val_te_ass_intens_med)
plus({h}(val_te_ass_soc_mixed)
plus({h}(val_te_ass_loc_mixed)
plus({h}(val_te_ass_env_land)
plus({h}(ideal_h_te)

The order of speech acts is determined by the
preconditions. Specifically, the planning module
informs firstly about the dangerousness level of
the sport. Secondly, it provides explanation of
why the user’s desires are satisfied. Finally, it
indicates the ideal sport for the user, in this case
tennis.

Figure 4: Plan shown by the chatbot to the human

The chatbot writes both the sequence of speech
acts and its translation into natural language ex-
pressions. We decided to display the abstract
plan in the GUI, as shown in Figure 4, for il-
lustrative purposes oriented to demonstrate how
the GUI transforms it into natural language using
a simple function. The abstract plan will not be
displayed by the GUI in the end-user version of
the system.

5 EXPERIMENTS

In this section, we present the experiments con-
ducted in order to test the cognitive planning sys-
tem in the scenario described in the previous sec-
tion. The experiment was devoted to evaluate
the performance of the planning module in inte-
gration with the belief revision module. The GUI
was not used during the test, therefore the pro-
cedure was carried out on command line mode.

In order to perform the test we generate firstly
a set of desires of the human in different input
files. These input files will be sent to the belief
revision module sequentially in order to generate
the volatile side of the belief base. Secondly, the
translator module is called to generate the initial
state and the goal of the user. Finally, the initial



state, the set of actions (repertoire of speech acts)
and the goal are used to call the planning module,
which will trigger the planning process.

The set of options and variables described in
Table 1 were used to test the performance of the
system, expanding the table in the number of
sports available. Similarly, we vary the number
of the human’s desires.

The results of the computa-
tion are shown in the next graph:
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The data plotted in the previous graph are
shown in Table 2.

Number of Options (Opt)Plan
size 3 4 5 6 7 8
3 59 67 63 66 68 70
4 438 482 494 506 539 567
5 1355 1433 1505 1608 1668 1731
6 3274 3217 3353 3696 3747 4045

Table 2: Processing time (ms) to achieve a plan based
of the number of Options

These experiments were conducted using an
Ubuntu 64 bits linux virtual machine running on a
core i7 processor with 8 gigabytes RAM. The be-
lief revision and cognitive planning module were
implemented in Ocaml version 4.10.0 and the
chatbot interface was programmed in Java open-
jdk version 1.8.0 with swing components. The
data files containing the belief base, actions, goal
and plan were stored as plain text files.

6 DISCUSSION

The dialogue for the moment is one direction.
The human agent communicates her desires to
the machine, and the latter computes the most
suitable plan. There is no feedback by the human
after the sequence of speech acts by the machine.

The effectiveness of the computation is poly-

nomial with respect to the set of actions. Al-
though the algorithm for choosing the correct
plan uses a brute force technique, the experiments
demonstrate that in order to verify the validity
of a single candidate plan, the planning mod-
ule takes around 66 ms on average. The reason
for choosing a brute force approach was to allow
the algorithm to be the most general as possi-
ble. However, it would be possible to include a
heuristic to improve the performance of the gen-
eral process. For example, the planning module
could consider the size of the input (based on the
human’s set of desires) as the initial size of the
plan. Thus, the planner will generate plans of
that size at least. This prevents from spending
time to generate candidate plans of smaller size
than the number of human’s desires. In addition,
an optimization can be included in the algorithm
if we add a mechanism for giving priorities to cer-
tain types of actions. For example, the actions
which are stated as preconditions should be pri-
oritized to be included between the first sets of
combinations to be tested by the planning mod-
ule.

Despite the fact that the SAT encoding is ef-
ficient for solving the planning problem, we still
need to generate one formula per candidate plan,
which is time-consuming, especially for the trans-
lation process and the interface with the external
SAT encoder. We want to explore the possibility
of using a QBF (quantified boolean formulas) en-
coding of the planning problem which will allow
us to generate one single formula for evaluating
all possible candidate plans. In this case, the pre-
conditions are assigned if and only if there exists
a plan that satisfies the goal. This alternative
approach will allow us compare the efficiency of
QBF solvers against the SAT-based method in
solving our planning problem.

7 CONCLUSION

Our implementation demonstrates that the NP-
complete epistemic logic presented in (Fernandez
et al., 2021) and the cognitive planning problem
formulated in this logic are suitable for real-world
applications in the domain of human-machine in-
teraction. In future work, we plan to extend the
implemented system by speech acts of type ques-
tion to capture both sides of interaction, from
agent m to agent h (handled by the actual im-
plementation) and from agent h to agent m. We
expect to apply the same framework to a joint



activity scenario of type cooperative boardgame
(Bard et al., 2019; Longin et al., 2020) involving
the human and the machine in which they have
to exchange information and collaborate in order
to achieve a common goal.

We also plan to combine our implementation
of cognitive planning with machine learning and
data mining techniques, as presented in (Krzy-
wicki et al., 2016), in order to extract information
about the human user from real data. In addition,
we intend to include a setting parameter in the
artificial agent in order to let the system select
the most convenient approach (SAT or QBF) de-
pending on the scenario. We think that the SAT
approach could be better when the set of actions
is not so big, while the QBF approach will turn
out to be well-suited for handling a large reper-
toire of speech acts.

Last but not least, we intend to compare our
SAT-based approach to cognitive planning with
existing epistemic planning approaches and tools
(Muise et al., 2015; Kominis and Geffner, 2015)
which exploit a standard STRIPS-style encoding
of the planning problem. We think that our ap-
proach is more flexible and minimal due to the
fact that it simply relies on propositional logic
and does not need external components for rep-
resenting and computing plans such as STRIPS
or PDDL.
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