
HAL Id: hal-03477306
https://ut3-toulouseinp.hal.science/hal-03477306v1

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TouIST, a Teacher-and Student-Friendly Language for
Propositional Logic and Discrete Mathematics

Olivier Gasquet, Dominique Longin, Emiliano Lorini, Frédéric Maris, Pierre
Régnier, Sergei Soloviev

To cite this version:
Olivier Gasquet, Dominique Longin, Emiliano Lorini, Frédéric Maris, Pierre Régnier, et al.. TouIST, a
Teacher-and Student-Friendly Language for Propositional Logic and Discrete Mathematics. Computer
Tools in Education journal (“Kompjuternye instrumenty v obrazovanii”), 2021, 2, pp.13-25. �hal-
03477306�

https://ut3-toulouseinp.hal.science/hal-03477306v1
https://hal.archives-ouvertes.fr

Computer assisted mathematics, 2021
№ -: 1–12
http://cte.eltech.ru

TouIST, a Teacher-and Student-Friendly Language for
Propositional Logic and Discrete Mathematics

Gasquet O. 1, Full Professor, Olivier.Gasquet@irit.frLongin D. 2, Research Scientist, Dominique.Longin@irit.frLorini E. 2, Research Director, Emiliano.Lorini@irit.frMaris F. 1, Associate Professor, Frederic.Maris@irit.frRégnier P. 1, Associate Professor, Pierre.Regnier@irit.frSoloviev S. 1, Full Professor, Sergei.Soloviev@irit.fr
1IRIT - University Toulouse 3, 118 route de Narbonne, Toulouse, FR 31062, France2IRIT - CNRS, 118 route de Narbonne, Toulouse, FR 31062, France

Abstract
This work deals with logical formalization and problem solving using automated solvers.
We present the automatic translator TouIST that provides a simple language to generate
logical formulas from a problem description. Our tool allows us to model many static or
dynamic combinatorial problems. All this can be very helpful as a teaching support for
logics and discrete mathematics. Users will benefit from the regular improvements of
SAT, QBF or SMT solvers in order to solve concrete logical and combinatorial problems
efficiently, e.g., different classes of planning tasks in Artificial Intelligence.
Keywords: keywords in English, more keywords in English

Citation: Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S. . TouIST, a
Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics.
Computer assisted mathematics, 2021. № -. P. 1–12. .
Acknowledgements: here we may thank everybody who helped authors with this paper,
and name grants that supported the research and the paper.

1. INTRODUCTION

Every university teacher teaching logic or discrete mathematics to undergraduates would
probably appreciate a good user-friendly programwith simple interface thatmay be used during
the lectures for simple (but not too simple) demos and explanations. For example, tape some semi-
formal text such as “not a or b and c” on the keyboard, then display it using projector or zoom
on the screen together with the formula ¬a∨b∧c and in a few seconds show its truth table. Or,
another example, define and display the graph of the membership relation ∈⊆ X ×2X for some
finite set X .

All this is easily done with TouIST, as well as many others more advanced examples. On the
one hand, the tool can be used by researchers for various tasks involving propositional calculus
ranging from computation of models to computation of logical encodings of problems, for exam-
ple of symbolic AI problems such as planning tasks. On the other hand, TouIST is a pedagogical
tool to show the power of propositional logic to studentswho have been trained a couple of hours
to formalize sentences in logic and who have acquired basic notions of validity and satisfiability:

section not specified or unknown 1

http://cte.eltech.ru
mailto:Olivier.Gasquet@irit.fr
mailto:Dominique.Longin@irit.fr
mailto:Emiliano.Lorini@irit.fr
mailto:Frederic.Maris@irit.fr
mailto:Pierre.Regnier@irit.fr
mailto:Sergei.Soloviev@irit.fr

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

it allows them to automatically solve some combinatorial puzzles. Simplicity of logical encoding
(e.g., indexed propositional variables like pi , j may be used to represent predicates over finite
domain) permits also to use TouIST to illustrate many algebraic and combinatorial notions and
even doing some higher order logic and dependent types in finite case.

2. TouIST: AN OUTLINE

TouIST offers a high-level friendly language for logically modeling various problems in a
very compact way using solvers. It consists of: a graphical interface allowing interactive input
of the target model; a translation module (compiler) from the input language of TouIST into a
language directly understandable by different solvers; a module for viewing models calculated
by the solvers. This flexible design permits to use TouIST with different solvers including those
that admit, for example, extended resolution or Frege proof systems [3].

Currently, TouIST can call on three different types of solvers: SAT solvers (propositional logic
or logic of predicates on finite domain), QBF (authorizing quantification on propositional formu-
las), SMT (SAT Modulo Theories, for the treatment of problems involving numeric calculus on
integer or rational numbers). The goal of the platform is to allow the user to concentrate on the
modeling of a given problem without worrying about the technical details related to the use of
solvers: linear space translation of formulas into prenex and conjunctive normal form using ex-
tension rules [12], then translation into language DIMACS, QDIMACS or SMT-LIB depending on
the selected solver (languages used as standard as input to solvers but not very easy to handle
directly). Beyond the Boolean connectives of propositional logic, the input language of TouIST
has sets, conjunctions and disjunctions parametrized by sets, abbreviations. . .We can directly
express complex propositional formulas such as:∧

i∈{1..N }

∨
X∈S(i)

∧
n∈X

∧
m∈Y|m,n

(pi ,X ,n ⇒¬pi ,X ,m)

where we can define the variable N as a particular integer, the S(i) as sets of sets of symbols for
each i ∈ {1, . . . , N }, andY as a set of symbols. For example, if N = 2, S(1) = {{blue,red}, {red}}, S(2) =
{{red}, {blue}, {white,blue,red}}, and Y = {white,red}, we write in the TouIST input language:

$N = 2
$S(1) = [[blue, red], [red]]
$S(2) = [[red], [blue], [white, blue, red]]
$Y = [white, red]
bigand $i in [1..$N]:
bigor $X in $S($i):
bigand $n in $X:
bigand $m in $Y when $m!=$n:
p($i,$X,$n) => not p($i,$X,$m)

end
end

end
end

We can also use multiple binding of indexes as in
∧

i∈A, j∈B and rich computations on indexes as
well as on domain sets as in

∧
i∈(A∪(B∩C)), expressed in the TouIST input language as:

bigand $i,$j in $A,$B:
...

end
bigand $i in $A union ($B inter $C):
...

end

2 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

TouIST, a Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics

Onemay remember that
∧

and
∨

represent also universal quantifier∀ and existential quan-
tifier ∃ over finite sets of indexes.

Running the solver only consists in clicking a button and the tool displays the models suc-
cessively computed by the solvers in the syntax of the input formula. Literals of interest can be
filtered by regular expressions. Moreover, TouIST can also be used entirely from the command
line and/or batchmodus for interfacingwith intelligent agent architectures capable of reasoning
and planning actions: typically for example, checking the validity of an argument, determining
the executable actions, checking that a plan is valid or even calculate a complete plan of actions
to satisfy a goal, etc.

TouIST is publicly available for download from the following site: https://www.irit.fr/TouIST/
In the sequel, we introduce features of TouIST for propositional and higher-order logics, and

then several examples of static and dynamic reasoning that will serve to demonstrate our tool.

3. PROPOSITIONAL AND HIGHER-ORDER LOGICS IN TouIST

3.1. Basic features for propositional logic

First, we present how to use TouIST to easily verify essential properties of logical formulas,
such as satisfiability, validity or logical consequence. Checking the satisfiability of a set of formu-
las is reduced to determining the existence of a model satisfying each formula from the set. In
TouIST, a set of formulas is materialized by newlines. So, to verify that the set {coffee∨ tea,¬tea}
is satisfiable, we simply write:

coffee or tea
not tea

If we wanted to check the validity of the previous formula, we would have to iterate through
the models one by one and verify that the set of models is equal to the set of possible valuations
for that formula. For this formula, there are only three propositional variables, that is 23 = 8 valu-
ations, so the task is still possible. But as soon as the formula containsmore variables, we proceed
indirectly by refutation. Thus, the formula is valid if and only if its negation is unsatisfiable.

Concretely, the validity test makes it possible for example to verify that a reasoning is for-
mally valid (but this does not exclude the possibility of false premises or conclusions). For exam-
ple :

r ai n ∧ (r ai n ⇒ wetRoad)∧ (wetRoad ⇒ d ang er) ⇒ d ang er

In TouIST, proving the validity of such a formula by testing the unsatisfiability of its negation
gives:

not (rain and (rain => wetRoad)
and (wetRoad => danger) => danger)

Suppose now that H = {H1, . . . , Hn} is a set of n assumptions (logical formulas) and C a
formula. Again, it would be tedious to verify that C is true for all models of H . Here again we
proceed indirectly by using the property: H |=C if and only if H ∪ {¬C } is unsatisfiable. in other
words, to check if H |= C , we will test if the formulas H1, H2, . . . , Hn , ¬C taken all together are
satisfiable. If this is not the case we can conclude that H |=C . If this is the case, we will have at
least one counter-model which will tell us in which situation we have the true assumptions and
the false conclusion.

For example, suppose we have the following set H of rules and facts:

section not specified or unknown 3

https://www.irit.fr/TouIST/

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

H1. If the patient has measles, he or she has fever.
H2. If the patient has hepatitis, but not measles, he or she has a yellow complexion.
H3. If the patient has fever or a yellow complexion, he or she has hepatitis or measles.
H4. The patient does not have a yellow complexion.
H5. The patient has fever.

We want to verify that H |= measles. For that, we can verify that in all models of H , the
variable measles (corresponding to "the patient has measles") is true. But it is much more easier
with TouIST to verify that the following set of formulas is unsatisfiable:

measles => fever
hepatitis and (not measles) => yellowcomplexion
fever or yellowcomplexion => hepatitis or measles
not yellowcomplexion
fever
not measles

3.2. Higher-Order Logics and Dependent Quantifiers over Finite Sets

Predicates over a finite set X may be encoded using indexation by subsets of X . For example,
for unary predicates on the set {1, ...,3} one may define:

$N = 3
$Y = powerset([1..$N])
bigand $j in $Y:
(p($j)<=> (bigand $i in $j: q($i) end) and
(bigand $i in $j when (not ($i in $j)): not q($i) end))

end

That will produce the formula ∧
j∈Y

(p j ⇐⇒ ∧
i∈ j

qi ∧
∧
i∉ j

¬qi).

It says that p j is true exactly on elements of j ⊂ [1..N]. Using such definition of variables for
predicates one may express the formulas of second order logic, e.g. the constant F al se can be
represented by

∧
j∈Y p j (that corresponds to ∀P.P).

Iterating the powerset construction we may represent formulas of higher order logics over
finite sets.

E.g., using already defined variables one may consider the formula

bigand $i in [1...$N]:
bigor $j in $Y when $i in $j:
p($j)
end
end

Notice that j depends on i , dropping the condition that i belongs to j another (non-
equivalent) formula will be obtained.

Also, to the previous definition one may add one more "level":

$Z = powerset($Y)
bigand $k in $Z when $k!=[]:
(s($k)<=> (bigor $j in $k: p($j) end)

end

4 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

TouIST, a Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics

That is, the indexes k are the families of subsets of X (empty family is excluded) and s are defined
as disjunctions of p over subsets j ∈ k .

These examples and the examples of section 2 show how to obtain dependent types S(i).
Respectively,

∧
and

∨
with appropriate dependencies between indexeswill represent dependent

∀ and ∃ over finite sets.
Applications may be quite unexpected. As one of less evident let us mention modern linguis-

tics. In [7] some applications of dependent types to linguistic analysis are considered. In particu-
lar, dependencies between linguistic quantifiers (such as “all”, “some”, “no one”) may influence
the order of words in phrases of natural language or their meaning interpretation. Finite mod-
els (supported by TouIST) are usually sufficient there and TouIST may be used for illustrative
purposes or as a tool of analysis.

4. STATIC REASONING WITH TouIST

4.1. Solving Puzzles with SAT

TouIST allows us to encode and solve static generalized games such as the well known Su-
doku for a N ×N grid (composed by N regions, i.e. grids of size R×R with N = R2). For example,
to express that each cell must have at least one value we write the formula:∧

i∈[1..N]

∧
j∈[1..N]

∨
k∈[1..N]

p(i , j ,k)

where p(i , j ,k) means that cell (i , j) has value k .
This formula is expressed in the TouIST input language as:

bigand $i,$j in [1..$N],[1..$N]:
bigor $k in [1..$N]:
p($i,$j,$k)

end
end

Then we can express the fact that a cell has exactly one value by adding that each cell must
have at most one value:

bigand $i in [1..$N]:
bigand $j in [1..$N]:
bigand $k1 in $L:

bigand $k2 in L when $k1!=$k2:
not p($i,$j,$k1) or not p($i,$j,$k2)

end end end end

Two very similar rules can be added to impose that each value is present at most once in
each row or column. Finally, a last rule constraints that each value is present at most once in
each region of the grid:

bigand $ir in [0..$R-1]:
bigand $jr in [0..$R-1]:
bigand $ic1 in [1..$R]:

bigand $jc1 in [1..$R]:
bigand $ic2 in [1..$R]:
bigand $jc2 in [1..$R] when $ic1!=$ic2 or $jc1!=$jc2:
bigand $k in $L:
not p($R*$ir+$ic1,$R*$jr+$jc1,$k) or not p($R*$ir+$ic2,$R*$jr+$jc2,$k)

end end end end end end end

section not specified or unknown 5

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

It also allows us to solve well-known puzzles and games involving epistemic deductive rea-
soning, given existing polynomial embeddings of fragments of epistemic logic into propositional
logic. This includes “Guess Who?” and the muddy children puzzle [1].

4.2. Solving Puzzles with SMT

In a similar way to Sudoku, the Binario (binary game) consists in filling a grid by deduction
with only 0s and 1s. It is possible to model it in propositional logic, but to obtain a more compact
encoding one can use SMT (SAT Modulo Theories) with atoms of QF-LIA (linear arithmetic on
integers).1

In particular we can encode the rule "each row and column must contain as many 0s as 1s"
by

NR∧
i=1

(
NC∑
j=1

xi , j = NC

2

)
∧

NC∧
j=1

(
NR∑
i=1

xi , j = NR

2

)
where NR is the number of rows of the grid and NC is the number of columns.

Another rule is that "there is nomore than two of either number adjacent to each other", and
is expressed by

NR∧
i=1

NC−2∧
j=1

((
2∨

k=0
(xi , j+k , 0)

)
∧

(
2∨

k=0
(xi , j+k , 1)

))
NC∧
j=1

NR−2∧
i=1

((
2∨

k=0
(xi+k, j , 0)

)
∧

(
2∨

k=0
(xi+k, j , 1)

))

bigand $i,$j in [1..$NR-2],[1..$NC]:
x($i,$j)!=x($i+1,$j) or x($i+1,$j)!=x($i+2,$j)

end
bigand $i,$j in [1..$NR],[1..$NC-2]:
x($j,$i)!=x($j,$i+1) or x($j,$i+1)!=x($j,$i+2)

end

And finally, there can be no identical rows or columns: NR∧
i1=1

NR∧
i2=1
i1,i2

NC∨
j=1

(xi1, j , xi2, j)

∧

 NC∧
j1=1

NC∧
j2=1
j1, j2

NR∨
i=1

(xi , j1 , xi , j2)

bigand $i,$j in $N,$N when $i!=$j:

bigor $k in $N:
(x($i,$k)!=x($j,$k))

end
and
bigor $k in $N:
(x($k,$i)!=x($k,$j))

end
end

1The theories QF-IDL, QF-RDL (difference logic on integers/rationals) and QF-RDL (linear arithmetic on rationals)
are also available in TouIST.

6 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

TouIST, a Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics

4.3. Applications to Algebra

Since indexed propositional variables in TouIST may be routinely used to represent pred-
icates over finite sets, it is convenient to use predicates to represent algebraic operations and
express their properties via

∧
and

∨
. For exemple, xi , j ,k may represent i × j = k for some binary

operation × : X ×X → X on a finite set X . Then the formula∧
i∈X

∧
j∈X

∧
k∈X

xi , j ,k ⇒ x j ,i ,k

will represent commutativity of ×. Associativity of × will be expressed by∧
i∈X

∧
j∈X

∧
k∈X

∧
l∈X

∧
m∈X

∧
n∈X

(xi , j ,k ∧x j ,l ,m ∧xk,l ,n ⇒ xi ,m,n).

The formulas ∧
i∈X

∧
j∈X

∨
k∈X

xi , j ,k

and ∧
i∈X

∧
j∈X

∧
k∈X

∧
l∈X l,k

(xi , j ,k ⇒¬xi , j ,l)

express the fact that × is defined for all i , j and has unique value k . They may be easily written
using TouIST.

TouIST is sufficiently powerful to produce all such operations × for the sets X that are large
enough for teaching purposes. Each operation will be displayed as a line in the truth table. More-
over, TouIST may be used to verify quickly simple equalities modulo theory, associativity and
commutativity in this example.

5. DYNAMIC REASONING WITH TouIST

5.1. Simulating a 2-players game

The principle of the Nim’s game is as follows: we have at the start a non-zero number NM
of matches and a number NP of players can take 1 or more match(es). The player who loses is
the one who, first, can no longer take a match. 2 The number of possible turns of play is at most
equal to that of matches (at least, each player takes only one match at each turn). Thus, the set of
indices of the possible turns is T = {0, . . . ,NM} where 0 is the index of the initial state. Likewise,
the set of possible numbers of matches still available is M = {0,1, . . . ,NM}.

5.1.1. Logical description of Nim’s game

In order to simplify the language used as much as possible, we are modeling here a variant
where NM = 4 and NP = 2. The players are denoted by 0 and 1 and it is 0’s turn to play on turn
t if turn_of _0(t) is true (considering that if it is not the turn of 0 then it is that of 1). Moreover,
left(t ,n) is true iff on turn t there are n matches remaining.

2There are different variations of this game, in particular by varying the numbers of matches and players, but
also by varying the possible actions or by introducing constraints (for example, one cannot take the same number of
matches as the previous player).

section not specified or unknown 7

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

Thus, the initial state of the game is as follows:

left(0,NM)∧ turn_of _0(0) (5.1)

meaning that in turn 0 there is still NM matches available and that it is 0’s turn to play.

In the version presented here of the Nim’s game, we also limit the number of possible actions
to two: a player can take either 1 match, or 2 matches. Thus, takes_2(t) is true iff a player takes
2 matches on turn t (considering that takes_2(t) is false iff she takes only one).

So:

∧
t∈T

n∈M
n≥2

((
left(t ,n)∧ takes_2(t) ⇒ left(t +1,n −2)

)
∧

(
left(t ,n)∧¬takes_2(t) ⇒ left(t +1,n −1)

))

(5.2)

captures the fact that if on turn t there are at least 2 matches left and a player takes 2 then in
the next turn 2 less remains, and if she takes only one then on the next round there is 1 less.

On the other hand, if in turn t there is exactly 1 match left, then necessarily the player will
take 1 and there will be 0 left in the following turn:∧

t∈T

(
left(t ,1) ⇒¬takes_2(t)∧ left(t +1,0)

)
(5.3)

Our model then specifies that:∧
t∈T

∨
n∈M

left(t ,n) (5.4)∧
t∈T

n1,n2∈M
n1,n2

(
left(t ,n1) ⇒¬left(t ,n2)

)
(5.5)

The first formula states that on each turn t there is at least one number n of matches
remaining, and the second that this number is unique.

We must now define when a player has lost:

0_lost ⇔ ∨
t∈T
t>0

(
turn_of _0(t)∧ left(t ,0)

)
(5.6)

means that player 0 has lost iff there is a turn t where there are 0 matches remaining when on
the previous turn there was at least one.

Finally, at each turn t , it is not for the player 0 to play iff it is for her to play the following
turn: ∧

t∈T \{NM}

(
¬turn_of _0(t) ⇔ turn_of _0(t +1)

)
(5.7)

8 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

TouIST, a Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics

5.1.2. Finding a Winning Strategy

The language of QBF allows us to express naturally and concisely the existence of winning
strategies as described in [6]. The moves of player 0 (for whom we are searching for a winning
strategy) will be existentially quantified while those of his opponent will be universally quanti-
fied: we look for the moves of player 0 which will lead him to victory regardless of the moves
made by player 1. TouIST natively integrates the QBF solver Quantor 3.2 [2] and can be inter-
faced with other solvers supporting the QDIMACS format. Selecting this prover in TouIST allows
us to use quantifiers ∀ and ∃ on propositional variables.

4

2 3

0 1 1 2

0 0 0 1

0

Figure 1. Solutions for Nim’s game with 4 matches and 2 players. The winning strategy for player 0 is in
red.

Figure 1 shows the exhaustive set of solutions in a Nim’s game with four matches. The root
of the tree represents the initial number of matches and each arrow represents the action of
removing 1 () or 2 () matches. We see that there is a winning strategy for player 0
if she starts. We are leveraging QBF to write this strategy in TouIST. The variable takes_2(i) is
true if the current player takes 2 matches at step i and is false if she takes only one. If we denote
by Φ the conjunction of formulas representing the rules of Nim’s game then the existence of a
winning strategy for player 0 is simply written:

∃takes_2(0)∀takes_2(1)

∃takes_2(2)∀takes_2(3)

∃takes_2(4) . (¬0_lost ∧Φ)

In words, we seek to satisfy the fact that there is an action of player 0 on turn 0 such that
whatever the action of player 1 on turn 1, there exists an action of player 0 in turn 2, such that
for any action of player 1 on the turn 3 there is an action of player 0 (who will therefore be the
last to play) such that player 0 does not lose and that the constraints inherent in the Nim’s game
be satisfied.

The implementation of this formula in TouIST indicates that it is true, which means the exis-
tence of a winning strategy for the player 0. The solver returns the value of existential variables
(here only one) corresponding to the next move of player 0. At this stage, the opposing player
must provide his move which fixes the value of the universal variables corresponding to her
possible next moves. The modified program is then executed again as follows (so as to take into

section not specified or unknown 9

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

account the calculation of the valuation of takes_2(0)):

∃takes_2(0)∃takes_2(1)

∃takes_2(2)∀takes_2(3)

∃takes_2(4) . ¬0_lost ∧ c0 ∧ c1 ∧Φ

where c0 is either takes_2(0) or¬takes_2(0) depending on the move of player 0, and similarly for
c1 depending on the move chosen by the opponent. The situation after these two moves is the
new initial situation for the solver and the search for the player’s next move 0 . . .until she wins!
This process is repeated until all the variables have received a value.

5.2. TouIST for planning as satisfiability

5.2.1. Solving Classical Planning Tasks

A planning task can be transformed into a propositional formula whose models correspond
to solution plans (i.e., sequences or steps of actions starting from an initial state and leading to
a goal). These models can be found using a SAT solver [5]. Numerous improvements of this ap-
proach have been proposed via the development of more compact and efficient encodings. We
here illustrate the expressive power of the TouIST language by encoding of explanatory frame-
axioms. If a fact is false at step i−1 of a solution plan and becomes true at step i then the dis-
junction of actions that can establish the fact (i.e. it is a positive effect of such an action) at step i
of the plan is true. Indeed, at least one of the actions that can establish the fact must have been
applied.

∧
i∈{1..Pl anLeng th}

∧
f ∈Facts

(
(¬ f (i−1)∧ f (i)) ⇒ ∨

a∈Actions| f ∈Effects+(a)

a(i)

)

bigand $i in [1..$PlanLength]:
bigand $f in $Facts:
not $f($i-1) and $f($i) =>
bigor $a in $Actions when $f in $Effects_pos($a):
$a($i)

end
end

end

Much more compact QBF encodings have also been developed.

5.2.2. Solving Conformant/Temporal Planning Tasks

Beyond classic planning, TouIST allows us to encode and solve conformant planning tasks
with QBF [9]. It can also be used to solve temporal planning tasks involving durative actions,
exogenous events and temporally extended goals with SMT encodings [10, 11]. We here focus on
the SMT encoding rules proposed in [8]. Belowwe give an encoding of temporalmutual exclusion
of actions. If two actions a1 and a2, respectively producing a fact f (i.e. f is a positive effect of
a1) and its negation ¬ f (i.e. f is a negative effect of a2), are active in the plan, then the time
interval [τ+start(a1, f),τ+end(a1, f)] corresponding to the activation of f by a1 and the time interval
[τ−start(a2, f),τ−end(a2, f)] corresponding to the activation of ¬ f by a2 are disjoint.∧

a1∈Acti ons

∧
a2∈Acti ons

∧
f ∈F act s| f ∈Effects+(a1)∩Effects−(a2)

10 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

TouIST, a Teacher- and Student-Friendly Language for Propositional Logic and Discrete Mathematics
(
(a1 ∧a2) ⇒

((
τ−end(a2, f) < τ+start(a1, f)

)
∨(

τ+end(a1, f) < τ−start(a2, f)
)))

bigand $a1,$a2,$f in $Actions,$Actions,$Facts
when $f in $Effects_pos($a1)and $f in $Effects_neg($a2):

$a1 and $a2 =>
(t_end_del($a2,$f) < t_start_add($a1,$f))
or (t_end_add($a1,$f) < t_start_del($a2,$f))

end

5.2.3. TouISTPlanModule

In order to tune and compare different logical encodings of planning tasks we have imple-
mented the TouISTPlan module which automatically solves planning tasks with TouIST. For
example, thanks to this module we compared the performance of different QBF encodings for
reference planning problems from different International Planning Competitions (IPC) [4]. We
were able to show that our new encodings are two times more efficient in terms of resolution
time.

6. CONCLUSION

We have developed TouIST to offer a friendly language together with a modular tool that
makes it easier to use SAT, SMT and QBF solvers. Indeed, TouIST can be seen as a compiler from
extended and high-level logical languages to efficient independent solvers. These two sides give
it great ease of use, a wide application spectrum and good computational performance. As such,
it constitutes a completely original and unique tool of its kind.

We use it as part of the introductory course to logic of bachelor ofmathematics and computer
science, but also for themaster’s degree, as part of practical work and projects. Students are thus
called upon to go through the entire process, from formalization to problem solving that goes far
beyond toy problems that can be solved by hand.

But even more, TouIST is already used by researchers in the context of work carried out
in our laboratory and involving logical modeling (planning, epistemic reasoning via translation
into QBF, . . .), it fills a lack existing in formal calculation software such asMaple, SageMath,Math-
ematica or Maxima which only anecdotally integrate logical tools.

In fact, TouISTmay be useful in all research domains where finite modeling is relevant.
Its flexible and open structure will permit to use it in frontline research projects concerning,

for example, extended resolution and its applications [3].

References

1. Barwise J. Scenes and other situations. Journal of Philosophy, vol. 78(7), pp. 369–397, 1981.
2. Biere A. Resolve and Expand. In Proceedings of the 7th International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT’04), pp. 59–70, Vancouver, BC, Canada, 2005.
3. Buss B., Nordström J. Proof Complexity and SAT Solving. Handbook of Satisfiability, second edition,

Biere A., Heule M., van Maaren H. and Walsh T. Eds, 2021.
4. Gasquet O., Longin D., Maris F., Régnier P., Valais M. Compact Tree Encodings for Planning as QBF. In-

teligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, vol. 21(62), pp. 103–114, 2018.
5. Kautz H.A., Selman B. Planning as Satisfiability. In Proceedings of the 10th European Conference on

Artificial Intelligence, ECAI 92, pp. 359–363, Vienna, Austria, August 3-7, 1992.

section not specified or unknown 11

Gasquet O. , Longin D. , Lorini E. , Maris F. , Régnier P. , Soloviev S.

6. Kroening D., Strichman O. Decision Procedures - An Algorithmic Point of View, Second Edition. Texts in
Theoretical Computer Science. An EATCS Series, Springer, 2016.

7. Luo Z., Soloviev S. Dependent Event Types.WoLLIC20, LNCS 10388, 2017.
8. Maris F., Régnier P. TLP-GP: New Results on Temporally-Expressive Planning Benchmarks. In Proceed-

ings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2008), vol. 1,
pp. 507–514, November 3-5, 2008, Dayton, Ohio, USA, 2008.

9. Rintanen J. Asymptotically Optimal Encodings of Conformant Planning in QBF. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1045–1050, July 22-26, Vancouver,
British Columbia, Canada, 2007.

10. Rintanen J. Discretization of Temporal Models with Application to Planning with SMT. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3349–3355, January 25-30, 2015,
Austin, Texas, USA., 2015.

11. Shin J., Davis E. Processes and continuous change in a SAT-based planner. Artificial Intelligence, vol.
166(2), pp. 194–253, 2005.

12. Tseitin G.S. On the Complexity of Derivation in Propositional Calculus. Automation of Reasoning: 2:
Classical Papers on Computational Logic 1967–1970, pp. 466–483, 1983.

additional info, some grant information, if needed
Received June 30, 2021, The final version: XXXXX XX, 2021

12 © COMPUTER ASSISTED MATHEMATICS. №-, 2021

	INTRODUCTION
	TouIST: AN OUTLINE
	PROPOSITIONAL AND HIGHER-ORDER LOGICS IN TouIST
	Basic features for propositional logic
	Higher-Order Logics and Dependent Quantifiers over Finite Sets

	STATIC REASONING WITH TouIST
	Solving Puzzles with SAT
	Solving Puzzles with SMT
	Applications to Algebra

	DYNAMIC REASONING WITH TouIST
	Simulating a 2-players game
	Logical description of Nim's game
	Finding a Winning Strategy

	TouIST for planning as satisfiability
	Solving Classical Planning Tasks
	Solving Conformant/Temporal Planning Tasks
	TouISTPlan Module

	CONCLUSION

