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INTRODUCTION

In the last few decades, the explosion of genomic projects has produced huge sets of predicted
genes and annotated sequences. The prediction of a gene structure can be defined as the capacity to
determine the start and the stop of the gene as well as the positions of introns, if present. Despite
the number of performant gene prediction programs combining ab initio and homology-based
approaches (Mathe et al., 2002; Hoff and Stanke, 2015), the rate of mis-predicted genes is not
negligible and can be due to several factors (Scalzitti et al., 2020). For example, unusually long
introns, short exons or long genes can generate incomplete or partially predicted gene structure;
short intergenic regions can lead to gene fusion; DNA sequencing errors (nucleotide deletions or
insertions) introducing frameshifts can affect predictions; non-canonical splice sites, overlapping
genes and genes located within introns are also a source of erroneous predictions. Due to high
sequence identity and duplication rate, the risks of mis-prediction are exacerbated in the case
of multigenic families (Figure 1, Fawal et al., 2014). In addition, protein annotation or function
assignment, based on the presence of a hypothetical protein domain or on homology with known
proteins, can also lead to an inappropriate annotation. The risk of mis-annotations is high for
proteins containing multiple domains or small domain(s) common to several classes of proteins.
For example, the PFAM domain PF07992 (Pyridine nucleotide-disulphide oxidoreductase) is
detected in MonoDehydroAscorbate Reductases (MDARs), Glutathione Reductases (GRs), and
in the Thioredoxin family (Trx) but does not discriminate between these three different
families (Table 1). Mis-annotations are also observed for proteins belonging to superfamilies with
conserved domain and large number of protein families and classes. As an example, 198 genes
of the MYB superfamily have been detected in Arabidopsis thaliana (Yanhui et al., 2006), but the
PFAM domain PF00249 (Myb_DNA-binding) does not discriminate between the R2R3-MYB, the
R1R2R3-MYB, the MYB-related, and the atypical MYB families. In addition, the PF00249 entry
also contains the SANT domain, which has a strong structural similarity to the Myb domain but
is functionally divergent. Therefore, using this PFAM entry to extract MYB proteins returns many
false positives (total of 326 sequences from A. thaliana).

ROS GENE NETWORK, CONTRASTED SITUATIONS

Reactive Oxygen Species (ROS) are constitutively produced in plants during photosynthesis,
respiration, and photorespiration but also produced in a control manner as signal or active
molecules. In all cases, ROS homeostasis can be controlled by a large set of proteins described
as ROS gene network (Inupakutika et al., 2016). Most of the proteins of this network are members
of large superfamilies characterized by PFAM domains that are more or less specific. Indeed, one
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FIGURE 1 | Illustration of two usual mis-prediction. For example, automatic prediction can generate one ORF result of two independent ORF fusion (left part) or partial

ORF with a missing/partial exon (right part). Sequence homology, sequence length, domain detection… allow a large reduction of automatic bias.

TABLE 1 | Illustration of PFAM domains diversities and specificities.

PFAM PFAM annotation Targeted protein classes Classes/subclasses abbreviation from

Redoxibase

PF00199 Catalase monofunctional (typical) Catalase Kat

PF06628 Catalase-related Catalase Kat

PF00255 Glutathione peroxidase Glutathione Peroxidase GPx

PF00141 Haem peroxidase Class III peroxidases, Class II, and class I (APx,

CcP, and CP)

Prx, CII, APx, CP, and CcP

PF00578 AhpC/TSA family 1-Cys or 2-Cys Peroxiredoxins Prx Q or BCP 1CysPrx, 2CysPrx, and PrxQ

PF08534 Redoxin 2-Cys Peroxiredoxins Prx II, Prx V PrxIII and PrxV

PF03098 Animal haem peroxidase, An_peroxidase Vertebrate peroxidase, Alpha-Dioxygenase,

and Dual Oxidase

DiOx and DuOx

PF00210 Ferritin-like domain Ferritin Fer

PF13417 Glutathione S-transferase, N-terminal domain Dehydroascorbate reductase DHAR

PF07992 Pyridine nucleotide-disulphide oxidoreductase,

Pyr_redox_2

MonoDehydroAscorbate Reductase,

Glutathione Reductase, and Thioredoxin family

MDAR, GR, and Trx

PF02852 Pyridine nucleotide-disulphide oxidoreductase,

dimerisation domain, Pyr_redox_dim

Glutathione Reductase GR

PF01070 FMN-dependent dehydrogenase, FMN_dh Glycolate Oxidase GOx

PF01786 Alternative Oxidase Alternative Oxidase AOX, PTOX

PF02777 Iron/manganese superoxide dismutases,

C-terminal domain, Sod_Fe_C

MnSOD and FeSOD MSD and FSD

PF00080 Copper/zinc superoxide dismutase Cu/ZnSOD and Cu chaperon for SOD CSD and CCS

PF00462 Glutaredoxin (GLR) Glutaredoxin (GLR) 4CxxC, GrxS, GrxC, CPF, ROXY

PF00085 Thioredoxin Thioredoxin family, Thioredoxin M-type and

Thioredoxin H -type

APR, CxxS, Lilium, Other Thioredoxin, TDX,

TrxF, TrxH, TrxM, TrxO, TrxY

PF02298 Plastocyanin-like domain, Cu_bind_like Blue-copper binding protein ENODL, CRX, PNC, PC, STC, UCC

PF08022 FAD_binding_8 Dual Oxidase, Respiratory burst oxidase

homolog and Ferric-chelate reductase

Duox, Rboh, and FRO

PF01794 Ferric reductase like transmembrane

component, Ferric_reduct

Dual Oxidase, Respiratory burst oxidase

homolog, and Ferric-chelate reductase

Duox, Rboh, and FRO

PF08030 Ferric reductase NAD binding domain,

NAD_binding_6

Dual Oxidase, Respiratory burst oxidase

homolog and Ferric-chelate reductase

Duox, Rboh and FRO

PFAM PFAM annotation Targeted protein classes Classes/subclasses abbreviation from

Redoxibase

PF00199 Catalase monofunctional (typical) Catalase Kat

PF06628 Catalase-related Catalase Kat

PF00255 Glutathione peroxidase Glutathione Peroxidase GPx

PF00141 Haem peroxidase Class III peroxidases, Class II, and class I (APx,

CcP, and CP)

Prx, CII, APx, CP, and CcP

PF00578 AhpC/TSA family 1-Cys or 2-Cys Peroxiredoxins Prx Q or BCP 1CysPrx, 2CysPrx, and PrxQ

PF08534 Redoxin 2-Cys Peroxiredoxins Prx II, Prx V PrxIII and PrxV

PF03098 Animal haem peroxidase, An_peroxidase Vertebrate peroxidase, Alpha-Dioxygenase,

and Dual Oxidase

DiOx and DuOx

PF00210 Ferritin-like domain Ferritin Fer

PF13417 Glutathione S-transferase, N-terminal domain Dehydroascorbate reductase DHAR

PF07992 Pyridine nucleotide-disulphide oxidoreductase,

Pyr_redox_2

MonoDehydroAscorbate Reductase,

Glutathione Reductase, and Thioredoxin family

MDAR, GR, and Trx

PF02852 Pyridine nucleotide-disulphide oxidoreductase,

dimerisation domain, Pyr_redox_dim

Glutathione Reductase GR

PF01070 FMN-dependent dehydrogenase, FMN_dh Glycolate Oxidase GOx

PF01786 Alternative Oxidase Alternative Oxidase AOX, PTOX

PF02777 Iron/manganese superoxide dismutases,

C-terminal domain, Sod_Fe_C

MnSOD and FeSOD MSD and FSD

PF00080 Copper/zinc superoxide dismutase Cu/ZnSOD and Cu chaperon for SOD CSD and CCS

PF00462 Glutaredoxin (GLR) Glutaredoxin (GLR) 4CxxC, GrxS, GrxC, CPF, ROXY

PF00085 Thioredoxin Thioredoxin family, Thioredoxin M-type and

Thioredoxin H -type

APR, CxxS, Lilium, Other Thioredoxin, TDX,

TrxF, TrxH, TrxM, TrxO, TrxY

PF02298 Plastocyanin-like domain, Cu_bind_like Blue-copper binding protein ENODL, CRX, PNC, PC, STC, UCC

PF08022 FAD_binding_8 Dual Oxidase, Respiratory burst oxidase

homolog and Ferric-chelate reductase

Duox, Rboh, and FRO

PF01794 Ferric reductase like transmembrane

component, Ferric_reduct

Dual Oxidase, Respiratory burst oxidase

homolog, and Ferric-chelate reductase

Duox, Rboh, and FRO

PF08030 Ferric reductase NAD binding domain,

NAD_binding_6

Dual Oxidase, Respiratory burst oxidase

homolog and Ferric-chelate reductase

Duox, Rboh and FRO

The specificity of one PFAM domain can be low when it encompasses several protein families/classes/subclasses (gray cells). All PFAM descriptions are available from https://pfam.

xfam.org/ (Mistry et al., 2021).

PFAM entry may encompass several classes or subclasses of
proteins (Table 1, gray cells) and lead to mis-annotations.

Peroxidases, which belong to this network, participate in
oxidation-reduction reactions using hydrogen peroxide (H2O2)

as an electron acceptor and various substrates as electron
donors. They may or may not contain a prosthetic group
also called haem, justifying further subdivision into two major
protein families, namely “haem peroxidases” and “non-haem
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peroxidases.” The haem peroxidases, such as the non-animal
peroxidase family, are found in all kingdoms (Passardi et al.,
2007). This family was first described thanks to structural
homology (Welinder et al., 1992). It includes three classes
of peroxidases: Class I (CI Prxs), Class II (CII Prxs), and
Class III (CIII Prxs). This family is grouped under a unique
PFAM entry (PF00141) (Table 1), which describes the conserved
peroxidase domain (mainly the heam binding sites). This
PFAM domain can extract most of the non-animal encoded
sequences from any annotated genome, but unfortunately, it
does not discriminate between the three classes (Figure 2B)

and may produce erroneous annotations that require correction
by experts. Over the past 5 years, 12 global phylogenetic and
expression analysis of CIII Prxs from different plant species
have been published, including four in 2020 (Ren et al., 2014;
Wang et al., 2015; Cao et al., 2016; Moural et al., 2017;
Duan et al., 2019; Wu et al., 2019; Yan et al., 2019; Zhu
et al., 2019; Li et al., 2020; Xiao et al., 2020; Yang et al.,
2020; Cai et al., 2021). These studies, based on available plant
genomes, mostly contain incorrect predictions and annotations
thatmay lead to erroneous or incomplete conclusions. Partial and
longer sequences or pseudogenes were considered as complete

FIGURE 2 | Two CIII Prxs (AtPrx41 and AtPrx42) and 4 APxs (AtAPx03, AtAPx06, AtAPx07, and AtAPx-R) sequences from A. thaliana have been compared using

various available tools. (A) Structure intron/exon. Exons (blue boxes) and introns (gray lines) are drawn in scale. (B) Location of the unique PFAM domain PF00141

(green boxes), di-sulfide bridges (gray links) and conserved amino acid residues (pink diamonds, purple, and other disks) (Blázquez et al., 2003). (C) Conserved motifs

in CIII Prxs and APxs. The MEME program was used to identify conserved motifs. The maximum number of motifs was set to 10, the optimum width of motifs to

15–50 amino acid residues (Brown et al., 2013). Each colored box represents a different motif found in CIII Prxs and/or APxs. CIII: motifs only found in CIII Prx protein

sequences; CI: motifs only found in CI Prx protein sequences; *: motifs in common between CIII and CI Prx protein sequences. All the sequences are available from

the Redoxibase (Savelli et al., 2019).
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sequences and APx sequences, which are CI Prxs, were annotated
as CIII Prxs.

Plant NADPH oxidases, also known as Respiratory Burst
Oxidase Homologs (RBOHs) catalyze the production of
superoxide, O−

2 . They belong to a large gene family containing
NADPH Oxidases (NOXs), found in animals and fungi, and
the bifunctional proteins Dual Oxidases (DUOXs), present in
animals. Due to the multi-domain organization, the family
encompasses three PFAM accessions (PF08022, PF01794,
PF08030) (Table 1). In addition, as the RBOH family is
composed of a reduced number of copies (about 10), the
risk of mis-annotation is reduced compared to CIII Prxs.
Otherwise, the high number of introns, together with the
short length of some introns and exons, are a source of mis-
prediction. Since 2019, more than 10 articles dealing with
the global phylogenetic and expression analysis of RBOHs
from different plant species have been published (Cheng
et al., 2013, 2019; Kaur et al., 2018; Chang et al., 2020; Wang
et al., 2020; Yu et al., 2020). Despite their multi-domain
composition and long length, few mis-predictions were detected.
This may be due to the low duplication rate and to the low
sequence conservation.

SOLUTIONS TO IMPROVE PREDICTION
AND ANNOTATION ERRORS

If this situation is extrapolated to all multigenic families (2,024
gene families in A. thaliana involving 17,481 genes) and to all
available and annotated plant genomes (up to date, 134 publicly
available from Phytozome, https://phytozome-next.jgi.doe.gov/),
we are afraid that a hundred published studies already led to
partial or incorrect conclusions.

The guarantee of an exhaustive and qualitative set of
sequences is necessary to perform reliable studies, especially
phylogeny, comparative genomic, and integrative analysis. Thus,
efforts to provide high quality gene prediction and protein
annotation are required, especially as mis-prediction and mis-
annotation are rapidly amplified with subsequent articles that
refer to incorrect results.

Is there a solution to reduce the rate of mis-prediction and
mis-annotation in global analysis studies of large multigenic
families? In the case of haem peroxidases, there are several
cues to discriminate between CI APxs and CIII Prxs and to
determine whether the gene predictions and protein annotations
are accurate. (i) The number of gene copies is high and variable
between species in CIII Prxs due to recent duplications, while
it is low and conserved within the green lineage in APxs.
(ii) The intron/exon structure (positions, number, and lengths
of introns) is conserved in CIII Prxs (between none to three
introns as illustrated Figure 2A with the two first lines) and
distinct from that of APxs (between 8 to 10 introns as illustrated
with the four last lines). Identification of conserved intron
position and sequence alignment are powerful in discriminating
between the two classes. (iii) The CIII Prxs contain conserved
cysteines involved in 4 disulfide bonds whereas CI Prxs do not
(Figure 2B). (iv) The protein size is characteristic as well as the

highly conserved amino acids (pink diamonds, purple, and oher
disks, Figure 2B) and the motifs of 15–50 amino acids defined
with the MEME program (Bailey et al., 2015) (Figure 2C). (v)
The CIII Prxs mostly contain a signal peptide, which targets
them to the secretion pathway, whereas APxs are found in
the various chloroplastic compartments or in the cytoplasm.
Therefore, the combination of automatic prediction/annotation
with a minimal expert control of sequence alignment should
allow to verify the points (iii), (iv), and (v) and reduce the
amount of erroneous predictions and annotations. Recently, new
programs were developed to specifically address annotation of
gene family taking into account intron conservation (Keilwagen
et al., 2019) or preliminary search for a target domain (Kim et al.,
2020). The generalization of these uses should be very helpful and
significantly improve the sensibility and specificity of predictions.

CONCLUSION

Expert annotations for large protein families and dedicated
databases with manually verified proteins used as reference for
prediction and annotation of additional genes are the solution.
Currently, experts are already available for 166 families from
The Arabidopsis Information Resource (TAIR) (https://www.
arabidopsis.org/browse/genefamily/) and a few databases are
dedicated to protein families. On the one hand, publications
based on automatic annotations of genomes can still be done
but, may lead to partial and error-prone conclusions. On the
otherhand, expert annotation is a background work, time-
consuming and not considered as an attractive task. This
method has been experimented for some vertebrate genomes
with the HAVANA group (https://www.sanger.ac.uk/group/
vertebrate-annotation/) but it is hardly imaginable to extend it to
the thousands of available genomes. However, expert annotation
would reveal many incorrect predictions and annotations with a
gain in terms of biological data, avoiding mis-interpretation in
downstream analysis. An intermediary solution can be adopted,
as in GENCODE (Frankish et al., 2021) which combines
HAVANA manual expertise with automated annotation. In
all cases, it remains the responsibility of the researchers to
check the quality of annotation before drawing conclusions
and formulating hypothesis. Despite the real progress made in
annotating genomes as a whole, precautions are still crucial
before interpretation, especially when gene families are involved.
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