
HAL Id: hal-03450084
https://ut3-toulouseinp.hal.science/hal-03450084v1

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Epistemic Logic of Incomplete Argumentation
Frameworks

Andreas Herzig, Antonio Yuste-Ginel

To cite this version:
Andreas Herzig, Antonio Yuste-Ginel. On the Epistemic Logic of Incomplete Argumentation Frame-
works. 18th International Conference on Principles of Knowledge Representation and Reasoning (KR
2021), Nov 2020, virtual, Vietnam. pp.681-685, �10.24963/kr.2021/69�. �hal-03450084�

https://ut3-toulouseinp.hal.science/hal-03450084v1
https://hal.archives-ouvertes.fr


On the Epistemic Logic of Incomplete Argumentation Frameworks

Andreas Herzig1 , Antonio Yuste-Ginel2
1IRIT, CNRS, Toulouse

2Departamento de Filosofı́a, Universidad de Málaga (UMA)
herzig@irit.fr , antonioyusteginel@gmail.com

Abstract

We study the relation between two existing formalisms: in-
complete argumentation frameworks (IAFs) and epistemic
logic of visibility (ELV). We show that the set of completions
of a given IAF naturally corresponds to a specific equivalence
class of possible worlds within the model of visibility. This
connection is further strengthened in two directions. First, we
show how to reduce argument acceptance problems of IAFs
to ELV model-checking problems. Second, we highlight the
epistemic assumptions that underlie IAFs by providing a min-
imal epistemic logic for IAFs.

1 Introduction
Argumentation is a well-established research area within the
field of Artificial Intelligence. It has been proved useful
for a variety of purposes (Bench-Capon and Dunne 2007;
Atkinson et al. 2017), including (but not limited to): provid-
ing an operational semantics for diverse non-monotonic log-
ics, establishing a bridge between human and machine rea-
soning, and improving artificial agents’ interaction. At the
abstract level, that is, without analysing the structure and na-
ture of arguments, Dung’s argumentation frameworks (AFs)
are by far the most studied formal construct (Dung 1995).
Conceptually, AFs respond to one fundamental question of
(general) argumentation theory: given a set of possibly con-
flicting arguments, which subsets of arguments are to be ac-
cepted by a rational agent?

AFs are, however, too abstract for some purposes. Con-
sequently, they have been extended in many different direc-
tions, including the handling of preferences (Amgoud and
Vesic 2011), and more refined forms of interaction between
arguments (Cayrol and Lagasquie-Schiex 2005). One of the
main assumptions that AFs come equipped with is perfect
knowledge about the structure of the modelled discussion
(about the structure of the argumentation framework). The
formal argumentation community has recently made efforts
to relax this assumption. This has been done using quanti-
tative methods, mainly probabilistic (Li, Oren, and Norman
2011), and qualitative ones. Among the second type, in-
complete argumentation frameworks (IAFs) are prominent
(Coste-Marquis et al. 2007; Baumeister, Neugebauer, and
Rothe 2018; Baumeister et al. 2018b; Fazzinga, Flesca, and
Furfaro 2020). An IAF partitions both the set of arguments

A and the set of attacks R of an AF into two sets, dis-
tinguishing arguments (attacks) known with certainty from
those perceived as uncertain by the agent.

In this paper, we pursue a simple research question: what
is the epistemic logic underlying IAFs? Our answer, pre-
sented in Section 3, consists in establishing a strong connec-
tion between IAFs and the logic of visibility (ELV) (Herzig,
Lorini, and Maffre 2018). We further exploit this connec-
tion in two different senses. First, we show how it can be
used to reduce acceptance reasoning tasks of IAFs to ELV
model-checking problems (Section 4). Second, we provide
a minimal epistemic logic for IAFs that makes the epistemic
assumptions underlying them explicit (Section 5). For space
reasons, results are stated without proof; they can be found
in Antonio Yuste-Ginel’s forthcoming PhD dissertation.

2 Preliminaries
2.1 Abstract Argumentation Frameworks
An abstract argumentation framework (AF) is a directed
graph, i.e., a pair (A,R) where A is a finite set whose ele-
ments stand for arguments and R ⊆ A×A represents some
kind of conflict-based relation among arguments, typically,
an attack relation. AFs were first studied by (Dung 1995),
where the author proposed to capture the informal notion of
argument acceptability through different argumentation se-
mantics. For the sake of brevity, we limit ourselves to sta-
ble semantics, but our analysis applies to all semantics that
can be captured in propositional logic (see (Besnard, Cayrol,
and Lagasquie-Schiex 2020)). A stable extension of an AF
(A,R) is a set of arguments E ⊆ A s.th.: (i) there are no
x, y ∈ E s.th. (x, y) ∈ R (‘E is conflict-free’); and (ii) for
every x ∈ A \ E, there is a y ∈ E such that (y, x) ∈ R (‘E
attacks every argument outside itself’).

2.2 Incomplete AFs
An IAF is a tuple IAF = (A,A?, R,R?) s.th. A ∩ A? = ∅;
R,R? ⊆ (A ∪A?)× (A ∪A?); and R ∩R? = ∅. (A,R) is
the definite part of IAF while (A?, R?) is the uncertain part
of IAF. We assume that A ∪ A? is finite. A completion of
IAF is any pair (A∗, R∗) s.th.:

• A ⊆ A∗ ⊆ A ∪A?; and

• R|A∗ ⊆ R∗ ⊆ (R ∪R?)|A∗
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where we note R|Y = R ∩ (Y×Y ) the restriction of a rela-
tion R ⊆ X×X to Y ⊆ X .

All the classic reasoning problems regarding AFs were
generalized to IAFs and their complexity was characterised
(Baumeister et al. 2018b; Baumeister et al. 2021). We here
focus on argument acceptance problems. Classic acceptance
problems for standard AFs can be generalized to IAFs as
follows. The set of all stable extensions of (A,R) is noted
st(A,R).

stable-Possible-Sceptical-Acceptance (st-PSA)
Given: An incomplete AF IAF = (A,A?, R,R?)
and an argument a ∈ A.
Question: Does there exist a completion (A∗, R∗)
of IAF s.th. for all E ∈ st(A∗, R∗), a ∈ E?

stable-Necessary-Credulous-Acceptance (st-NCA)
Given: An incomplete AF IAF = (A,A?, R,R?)
and an argument a ∈ A.
Question: Is it true that for all completions (A∗, R∗)
of IAF there is an E ∈ st(A∗, R∗) s.th. a ∈ E?

The other two variants of the problem, stable-Possible-
Credulous-Acceptance (st-PCA) and stable-Necessary-
Sceptical-Acceptance (st-NSA), are obtained by changing
the quantifiers of the definitions above in the obvious way;
see (Baumeister et al. 2021) for details.

2.3 Epistemic Logic of Visibility
Epistemic logic of visibility or observability was born as a
lightweight alternative to standard epistemic logic (van der
Hoek, Troquard, and Wooldridge 2011; Herzig, Lorini, and
Maffre 2018; Cooper et al. 2021). We consider its single-
agent version and adapt it to our purposes. Let Σ be a finite
set of arguments, called the signature. We define the set of
atoms for signature Σ in two steps:

PropΣ = {awx | x ∈ Σ} ∪ {rx,y | (x, y) ∈ Σ×Σ} ∪
{inx | x ∈ Σ};

ATMΣ = PropΣ ∪ {Sp | p ∈ PropΣ}.
Intuitively, awx means that the agent is aware of argument
x; rx,y means that x attacks y; inx means that argument x is
in the extension; and Sp means that the agent sees the value
of p (equivalently, she knows whether p). We use the term
awareness in a rather loose sense here. Among different
possible interpretations, it can be seen as the arguments the
agent’s opponent is aware of. This explains why an agent
can be aware of an argument without knowing whether she is
aware of it. Moreover, note that Σ does not need to coincide
with A ∪ A?: there can be arguments whose awareness the
agent knows not to hold.

The epistemic language for signature Σ is generated by
the following BNF:

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kϕ (α ∈ ATMΣ)

where Kϕ reads “the agent knows that ϕ”.1 We also con-
sider the dual K̂ = ¬K¬, read “the agent considers possible

1As shown in (Herzig, Lorini, and Maffre 2018), in ELV the op-
erator K can be recursively eliminated from any visibility formula.
However, we prefer to include it for presentational purposes.

that...”.
The single-agent visibility model for ATMΣ is the pair

Mvis = (2ATM
Σ

,∼), where the accessibility relation ∼ ⊆
2ATM

Σ × 2ATM
Σ

is such that v ∼ v′ iff for every p ∈ PropΣ:
1. if Sp ∈ v then (p ∈ v iff p ∈ v′);
2. Sp ∈ v iff Sp ∈ v′.

Formulas are interpreted at states ofMvis, i.e., at proposi-
tional valuations. We only state the clause for the epistemic
operator:

Mvis, v |= Kϕ iff v ∼ v′ implies Mvis, v
′ |= ϕ.

Note that the second constraint in the definition of the vis-
ibility model guarantees that K is a fully introspective op-
erator (Kϕ → KKϕ and ¬Kϕ → K¬Kϕ are both valid
in the visibility model). Moreover, Kp ↔ (Sp ∧ p) is valid
too.

3 Incomplete AFs and Visibility Models
Relations between IAFs and possible worlds semantics were
spotted in the literature (Baumeister et al. 2018a; Baumeis-
ter, Neugebauer, and Rothe 2018; Baumeister et al. 2021),
and just recently explored in more depth by reducing IAFs
to general epistemic logic (Proietti and Yuste-Ginel 2021).
Nevertheless, a basic research question about the relation be-
tween these two formalisms remains still open: what is the
epistemic logic underlying IAFs? We provide an answer by
connecting IAFs to the single-agent logic of visibility. For-
mally, we show a one-to-one correspondence between com-
pletions of a given IAF and a specific equivalence class of
the visibility model. For the sake of simplicity, we dispense
with acceptance variables in this section, that is, we assume
that PropΣ = {awx | x ∈ Σ} ∪ {rx,y | (x, y) ∈ Σ×Σ}.

Let IAF = (A,A?, R,R?) be an IAF withA∪A? ⊆ Σ. We
associate to IAF its single-agent propositional valuation
vIAF = {Sawx | x ∈ Σ \A?} ∪ {awx | x ∈ A} ∪

{Srx,y | (x, y) ∈ (Σ×Σ) \R?} ∪ {rx,y | (x, y) ∈ R}.
The other way round, for every propositional valuation

v ⊆ ATMΣ we define its induced AF (Av, Rv) by:
Av = {x ∈ Σ | awx ∈ v};
Rv = {(x, y) ∈ Av×Av | rx,y ∈ v}.

3.1 From IAFs to the Visibility Model
Using the notions we have just defined, we can provide the
first clear connection between IAFs and the visibility model.
Proposition 1. Let IAF = (A,A?, R,R?) be an IAF s.th.
A ∪ A? ⊆ Σ, let vIAF be its propositional valuation, and let
Mvis = (2ATM

Σ

,∼) be the single-agent visibility model for
the set of atoms ATMΣ, then:
• For each completion (A∗, R∗) of IAF there is a u ∈
∼ [vIAF] s.th. (A∗, R∗) = (Au, Ru).

• For each u ∈ ∼ [vIAF] there is a completion (A∗, R∗) of
IAF s.th. (A∗, R∗) = (Au, Ru).
Hence completions can be understood as possible worlds

of the visibility model (i.e., as propositional valuations over
ATMΣ) that are indistinguishable for the formalized agent.
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3.2 From the Visibility Model to IAFs
The visibility model for a signature Σ contains all IAFs that
can be built from Σ. Formally, we say that (A,A?, R,R?) is
built over Σ whenever A ∪A? ⊆ Σ.

Proposition 2. Let Σ be a signature, letMvis = (2ATM
Σ

,∼)

be the single-agent visibility model for ATMΣ. For every
IAF = (A,A?, R,R?) built over Σ there is a u ∈ 2ATM

Σ

s.th. u = vIAF.
In the other direction things get more subtle. Given a val-

uation v ⊆ ATMΣ, we define the IAF represented by v as
IAF(v) = (A(v), A?(v), R(v), R?(v)), where:

A(v) = {x ∈ Σ | v |= Kawx};
A?(v) = {x ∈ Σ | v |= ¬Sawx};
R(v) = {(x, y) ∈ Σ×Σ | v |= Krx,y ∧ K̂awx ∧ K̂awy};
R?(v) = {(x, y) ∈ Σ×Σ | v |= ¬Srx,y ∧ K̂awx ∧ K̂awy}.
Informally, IAF(v) is the IAF where certain arguments
are those that the agent knows that she is aware of; uncer-
tain arguments are those whose awareness the agent is not
sure about; and analogously for attacks (conditionally on the
awareness of the involved arguments). It is easy to check
that, for each valuation v, (i) IAF(v) is indeed an IAF; and
(ii) the set of all completions of IAF(v) equals the set of
AFs (Au, Ru) such that u ∈ ∼ [v].

Moreover, given IAF, it holds that

IAF(vIAF) = IAF.

In words, we can go from IAFs to states of the visibility
model and back without loosing any information. How-
ever, this is not true if we start from the set of all val-
uations: it does not hold that for any u, vIAF(u) = u.
The reason is that there are some valuations containing “de-
fective information”: there can be attacks that are true in
all indistinguishable valuations, and hence known, even if
the agent knows that she is not aware of one of the in-
volved arguments. These pieces of defective information are
cleaned out by applying the function IAF . Alternatively
we could impose that valuations should satisfy the property
K̂rx,y → (K̂awx ∧ K̂awy).

4 Checking Acceptance via Model-Checking
As an application of the correspondence between IAFs and
the logic of visibility, we can reduce acceptance problems
regarding the former to model-checking problems of the lat-
ter. This can be done modulo some propositional logic en-
coding of standard argumentation semantics. We illustrate
this idea for the case of stable semantics. Let us first recall
how stable extensions of (awareness-relativised) AFs can be
captured in propositional logic. We make use of the short-
hand rawx,y = rx,y ∧ awx ∧ awy and define the formula

Stable =
∧
x∈Σ

(
(inx → awx) ∧

(
awx → (inx ↔ ¬

∨
y∈Σ

(iny ∧ rawy,x)
))
.

As shown in (Doutre, Maffre, and McBurney 2017, Proposi-
tion 1), we have that v |= Stable iffEv = {x ∈ Σ | inx ∈ v}
is a stable extension of (Av, Rv). Using this encoding
and the correspondence between completions and accessi-
ble states in the visibility model of Proposition 1 we obtain:
Proposition 3. Let IAF = (A,A?, R,R?) be an IAF built
over Σ, let vIAF be its propositional valuation, let a ∈ A and
let Mvis = (2ATM

Σ

,∼) be the single-agent visibility model
for the set of atoms ATMΣ, then:
• The answer to the st-NSA (stable-Necessary-Sceptical-

Acceptance) problem with input IAF and a ∈ A is yes iff
Mvis, vIAF |= K(Stable→ ina).
• The answer to the st-PCA (stable-Possible-Credulous-

Acceptance) problem with input IAF and a ∈ A is yes
iff Mvis, vIAF |= K̂(Stable ∧ ina).
Curiously enough, capturing st-PSA and st-NCA in the

logic of visibility requires augmenting the language, jump-
ing from the single-agent version to the two-agent version.
The underlying reason for this is that while the definitions of
st-PCA and st-NSA use a ∃∃ (resp. ∀∀) pattern for quanti-
fying over completions and extensions, the definitions of the
other two reasoning tasks alternate quantifiers. Our solution
is to modularize the formalized agent: the agent consists of
a part for reasoning about completions (named 1 or the epis-
temic part) and another one for reasoning about extensions
(named 2 or the argumentative part).

First of all, we generalize the set of logical atoms so as to
include a finite, non-empty set of agents Agt:

ATMΣ
Agt = PropΣ ∪ {Sip | i ∈ Agt, p ∈ PropΣ},

where PropΣ is the set of propositional variables as defined
in Section 2.3.

Note that we do not need to parametrize awareness vari-
ables for each agent. As mentioned, we are going to mod-
ularize the agent regarding his epistemic and argumentative
reasoning, but not her awareness. In the remaining of this
section, we shall restrict our attention to Agt = {1, 2}. The
multi-agent epistemic language extends the epistemic lan-
guage used before by including a different epistemic oper-
ator Ki for each agent in Agt. Nevertheless, since agent 2
represents the “argumentative part” of the formalize agent,
we use �2 instead of K2, for conceptual clarity. We also use
♦2 as a shorthand for ¬�2¬.

The multi-agent visibility model is the pair Mvis =

(2ATM
Σ
Agt , {∼i}i∈Agt) where each ∼i ⊆ 2ATM

Σ
Agt × 2ATM

Σ
Agt

is such that v ∼i v
′ iff for every p ∈ PropΣ,

1. if Sip ∈ v then (p ∈ v iff p ∈ v′);
2. Sjp ∈ v iff Sjp ∈ v′ for every j ∈ Agt.

We adapt the notion of propositional valuation associ-
ated to an IAF to the two-agent language as follows. Let
IAF = (A,A?, R,R?) be an IAF s.th. A ∪A? ⊆ Σ. Define

vIAF = {S1awx | x ∈ Σ \A?} ∪
{S1rx,y | (x, y) ∈ (Σ×Σ) \R?} ∪
{S2awx | x ∈ Σ} ∪ {S2rx,y | (x, y) ∈ Σ×Σ} ∪
{awx | x ∈ A} ∪ {rx,y | (x, y) ∈ R}.
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This extends the associated valuation of the single-agent vis-
ibility language so as to include visibility atoms indexed
with agent 2 for all awareness and attack variables. Con-
ceptually, 2 is a part of the agent that always reasons under
the assumption that the underlying AF is completed.

Proposition 4. Let IAF = (A,A?, R,R?) be an IAF built
over Σ, let vIAF be its propositional valuation, let Mvis be
the visibility model for ATMΣ

{1,2}, and let a ∈ A, then:

• The answer to the st-NCA (stable-Necessary-Credulous-
Acceptance) problem with input IAF and a ∈ A is yes iff
Mvis, vIAF |= K1♦2(Stable ∧ ina).

• The answer to the st-PCA (stable-Possible-Sceptical-
Acceptance) problem with input IAF and a ∈ A is yes
iff Mvis, vIAF |= K̂1�2(Stable→ ina).

5 A Minimal Epistemic Logic for IAFs
As it is well-known, modal operators interpreted over equiv-
alence relations (as the one we have just used in the logic of
visibility) validate S5 axioms, which informally correspond
to a factive, fully introspective kind of knowledge; see e.g.
(Fagin et al. 2004, Chapter 2). However, one may want to
use epistemic logic to reason about AFs without embracing
such strong principles. Interestingly, the connection we have
established in Section 3 can be used to unravel a minimal
epistemic logic for IAFs. By doing so, we clarify the main
epistemic assumptions underlying IAFs.

We start defining the logic semantically. Let Σ be an argu-
ment signature, PropΣ its associated set of propositions, and
Agt a finite, non-empty set of agents. A Kripke model is a
tuple (W,R, V ) where W 6= ∅ is a set of possible worlds,
R : Agt → ℘(W×W ) assigns to each agent an epistemic
accessibility relation Ri, and V : PropΣ → ℘(W ) is a val-
uation function. Since the current discussion is orthogonal
to acceptance problems, we dispense again with acceptance
variables and assume PropΣ = {awx | x ∈ Σ} ∪ {rx,y |
(x, y) ∈ Σ×Σ}. Given a Kripke model (W,R, V ) and a
world u ∈ W , we define the AF associated to u as the tu-
ple (Au, Ru), where Au = {x ∈ Σ | u ∈ V (awx)} and
Ru = {(x, y) ∈ Σ×Σ | u ∈ V (rx,y)} ∩ (Au×Au). Given
the epistemic multi-agent language, the concepts of truth
(M,w |= ϕ), validity in a model (M |= ϕ), and validity
(|= ϕ) are the usual ones in epistemic modal logic, see e.g.
(Fagin et al. 2004, Chapter 2). Moreover, an IAF-friendly
Kripke model is a Kripke model where for every w ∈ W ,
every x, y ∈ Σ, and every i ∈ Agt:

(AWAR) ifRi[w]∩V (rx,y) 6= ∅, thenRi[w]∩V (awx) 6= ∅
andRi[w] ∩ V (awy) 6= ∅; and

(COMP) there is an incomplete AF, IAF, built over Σ s.th.:
the set of completions of IAF is equal to {(Av, Rv) | v ∈
Ri[w]}.

Informally, an IAF-friendly Kripke model is just a Kripke
model where (i) if an agent considers possible that x attacks
y then she considers possible being aware of both x and y;
and (ii) the set of i-successors of each world represents the
set of completions of an incomplete AF.

Now, consider the following two schemas:

(awar) K̂irx,y → (K̂iawx ∧ K̂iawy);

(comp) (K̂il1 ∧ · · · ∧ K̂iln)→ K̂i(l1 ∧ · · · ∧ ln),

where {l1, ..., ln} is a consistent set of PropΣ-literals: ele-
ments of PropΣ or their negations (hence the set cannot con-
tain both p and ¬p). Note that (comp) is true in every world
of the single-agent visibility model and, moreover, it is the
contra-positive of one of the axioms of the logic of visibility
of (Herzig, Lorini, and Maffre 2018).

A sound and complete axiomatization with respect to
IAF-friendly Kripke models can be obtained by simply
adding all instances of (awar) and (comp) as well as axiom
D: Kiϕ→ K̂iϕ to the minimal modal proof system K.2 A
key for obtaining this result is the following claim:

Proposition 5. A Kripke model M = (W,R, V ) for PropΣ

is an IAF-friendly model iff Ri is serial for every i ∈ Agt
and all instances of (awar) and (comp) are valid in M .

Discussion. The fact that the logic of IAF-friendly Kripke
models is KD + (comp) + (awar) reveals some interest-
ing things. First, the minimal epistemic attitude underly-
ing IAFs is a form of belief for which consistency is re-
quired (axiom D). Second, IAFs assume that all combi-
nations of uncertain elements are considered as doxasti-
cally/epistemically possible by the agent (axiom (comp)).
Equivalently, the belief/knowledge operator distributes over
disjunctions of consistent literals.

6 Conclusion
To the best of our knowledge, this is the first paper studying
the relations between IAFs and ELV, and it can be under-
stood as an improvement of the reduction of IAFs to general
epistemic logic provided in (Proietti and Yuste-Ginel 2021).
We have briefly sketched two applications of this connection
that seem conceptually valuable, as they dig into an epis-
temic interpretation of IAFs. As to future work, our find-
ings can be used to provide a multi-agent generalization of
IAFs. More precisely, we are now able to systematically in-
vestigate different multi-agent generalizations of IAFs, cor-
responding to different epistemic attitudes. A further per-
spective is to investigate the dynamics of IAFs in dynamic
extensions of epistemic logic and ELV (cf. (Herzig and
Yuste Ginel 2021)), taking inspiration from what has been
done for Dung AFs in (Doutre, Maffre, and McBurney 2017;
Doutre, Herzig, and Perrussel 2018).
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