Andreas Herzig
email: andreas.herzig@irit.fr

Frédéric Maris
email: frederic.maris@irit.fr

Elise Perrotin
email: elise.perrotin@irit.fr

A Dynamic Epistemic Logic with Finite Iteration and Parallel Composition

Existing dynamic epistemic logics combine standard epistemic logic with a restricted version of dynamic logic. Instead, we here combine a restricted epistemic logic with a rich version of dynamic logic. The epistemic logic is based on 'knowing-whether' operators and basically disallows disjunctions and conjunctions in their scope; it moreover captures 'knowing-what'. The dynamic logic has not only all the standard program operators of Propositional Dynamic Logic, but also parallel composition as well as an operator of inclusive nondeterministic composition; its atomic programs are assignments of propositional variables. We show that the resulting dynamic epistemic logic is powerful enough to capture several kinds of sequential and parallel planning, both in the unbounded and in the finite horizon versions.

Introduction

Dynamic epistemic logics (DELs) combine epistemic logic and dynamic logic. Most approaches in the literature combine full-fledged epistemic logic with restricted versions of dynamic logic. The latter typically lack the program operators of propositional dynamic logic (PDL), in particular the operator of finite iteration ('Kleene star'). The reason is that the latter causes undecidability of satisfiability [START_REF] Miller | The undecidability of iterated modal relativization[END_REF] and even of model checking. The latter is directly related to the general undecidability of DEL-based planning [START_REF] Bolander | Epistemic planning for single and multi-agent systems[END_REF][START_REF] Aucher | Undecidability in epistemic planning[END_REF][START_REF] Bolander | DEL-based epistemic planning: Decidability and complexity[END_REF]. In previous work we have proposed a different route whose starting point is a restricted version of standard epistemic logic: boolean combinations of 'knowing-whether' operators followed by a propositional variable [START_REF] Cooper | A simple account of multi-agent epistemic planning[END_REF]Cooper et al. 2020a). In that lightweight epistemic logic, EL-O, the existence of sequential and parallel epistemic plans can be decided in PSPACE (Cooper et al. 2020b). A dynamic extension, DEL-PAO, was proposed in [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation[END_REF], and a modelling of planning tasks with no common knowledge and no parallel plans was given in [START_REF] Cooper | A simple account of multi-agent epistemic planning[END_REF]. We here give a fuller and more succinct dynamic logic, adding in particular an operator of parallel composition as well as an operator of inclusive nondeterministic composition. Both are imported from Dynamic Logic of Parallel Propositional Assignments DL-PPA [START_REF] Herzig | Dynamic logic of parallel propositional assignments and its applications to planning[END_REF], which is conceptually and mathematically simpler than several other proposals for adding parallel composition to dynamic logic such as [START_REF] Benevides | Propositional dynamic logics for communicating concurrent programs with CCS's parallel operator[END_REF][START_REF] Balbiani | Iteration-free PDL with storing, recovering and parallel composition: a complete axiomatization[END_REF][START_REF] Boudou | Resource separation in dynamic logic of propositional assignments[END_REF]. In the resulting DEL the solvability of various planning tasks can be captured: the existence of sequential and parallel plans, both in the unbounded and in the finite horizon versions. The operator of inclusive nondeterministic composition turns out to be instrumental for the succinct modelling of parallel planning.

We generalize the epistemic 'knowing-whether' operator to a 'knowing-what' (or 'knowing the value') operator, introduced and argued for in [START_REF] Plaza | Logics of public communications[END_REF][START_REF] Wang | Knowing that, knowing what, and public communication: Public announcement logic with kv operators[END_REF][START_REF] Wang | Beyond knowing that: A new generation of epistemic logics[END_REF]) as a useful and natural addition to logics of knowledge, particularly in the field of AI: agents may not only need to know whether or not a given proposition is true, but also what another agent's telephone number is or the code to open a door. We show that this notion of 'knowing what' can be added to EL-O without much difficulty, leading to an enlarged field of possibilities regarding the planning tasks that can be modelled and worked with. We illustrate our logic by means of the gossip problem where each agent i ∈ Agt knows a secret s i that none of the other agents knows and where the goal is to find a sequence of phone calls after which every agent knows every secret [START_REF] Landau | The distribution of completion times for random communication in a task-oriented group[END_REF][START_REF] Knödel | New gossips and telephones[END_REF][START_REF] Van Ditmarsch | The logic of gossiping[END_REF]. Several interesting variants of that problem can be designed, in particular where the goal is to obtain higherorder knowledge [START_REF] Cooper | The epistemic gossip problem[END_REF]Cooper et al. 2020a;[START_REF] Van Ditmarsch | Everyone knows that everyone knows: Gossip protocols for super experts[END_REF].

We present the static epistemic logic EL-OC in Section 2 and extend it to the dynamic logic DEL-PPAOC in Section 3. In Section 4 we apply DEL-PPAOC to planning. Proofs of the results can be found in (Perrotin forthcoming,Ch. 6).

The Static Logic: EL-OC

We introduce the Epistemic Logic of Observation with Constants, abbreviated to EL-OC.

Atoms, Introspective Atoms, and Atomic Consequence

Let Prop be a countable set of propositional variables, let Cst be a countable set of constants, and let Agt be a finite set of agents. The set of observability operators is

OBS = {S i : i ∈ Agt} ∪ {JS},
where S i stands for individual observability of agent i and JS stands for joint observability of all agents. The set of all sequences of observability operators is noted OBS * and the set of all non-empty sequences is noted OBS + . We use σ, σ , etc. to denote elements of OBS * . Observability atoms, or atoms for short, are finite sequences of observability operators followed by a propositional variable. The set of all atoms is

ATM = {σ p : σ ∈ OBS * , p ∈ Prop} ∪ {σ c : σ ∈ OBS + , c ∈ Cst}.
We use α, α , β,. . . to denote atoms, unless specified as members of ATM ∪ Cst. Here are some examples: S 1 p reads "1 sees the truth value of p", i.e., 1 knows whether p is true or false. S 1 c reads "1 sees the value of c". JS S 2 c reads "all agents jointly see whether agent 2 sees the value of c", i.e., there is joint attention in the group of all agents concerning 2's observation of c: agent 2 may or may not see the value of c, and in both cases this is jointly observed. An atom with an empty sequence of observability operators is nothing but a propositional variable; constants are always preceded by at least one observability operator as they have no truth value. We follow the principles of EL-O and call an atom introspective if it contains two consecutive S i , or a JS that is preceded by a non-empty sequence of observability operators. The set of all introspective atoms is

I-ATM = {σ S i S i α : σ ∈ OBS * and α ∈ ATM ∪ Cst} ∪ {σ JS α : σ ∈ OBS + and α ∈ ATM ∪ Cst}.
We finally define a relation of atomic consequence between observability atoms as follows:

α ⇒ β iff α = β or there are α ∈ ATM ∪ Cst, σ ∈ OBS + such that α = JS α and β = σ α .
When α ⇒ β we say that α is a cause of β and that β is a consequence of α. We denote by α ⇐ the set of causes of α, and by α ⇒ the set of its consequences. We generalize this to sets of atoms V ⊆ ATM: V ⇒ = α∈V α ⇒ .

Language and Semantics

The language of EL-OC is defined by the grammar

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ)
where α ranges over ATM. The boolean operators , ⊥, ∨, → and ↔ are defined in the standard way.

A state is a subset of the set of atoms ATM. We denote states by V, U, W, etc. The set of all states is 2 ATM .

As in EL-O semantics, we interpret formulas such that introspection is simulated. The only non-standard case is: where secrets are assumed to be either true or false.) Then

α = {V : α ∈ V ⇒ ∪ I-ATM}. Hence α is true in state V if and only if α is introspective or β ⇒ α for some β ∈ V. S i S i α (Vis 1) JS α → S i α (Vis 4) JS JS α (Vis 2) JS α → JS S i α (Vis 5) JS S i S i α (Vis 3)
V G 0 ∈ S i s i ∧ j i ¬S i s j for every i ∈ Agt. A formula ϕ is EL-OC valid if V ∈ ϕ for every V ⊆ ATM; it is satisfiable if V ∈ ϕ for some V ⊆ ATM.
Clearly, atom α is valid if and only if it is introspective. It is easily shown that all properties of EL-O given in (Cooper et al. 2020a), in particular NP-completeness of the satisfiability problem, still hold in EL-OC. The EL-OC validities are axiomatised in Table 1; the completeness proof closely follows that of (Cooper et al. 2020a).

Adding Dynamic Logic

We now describe the full dynamic logic DEL-PPAOC.

Language of DEL-PPAOC

The language of DEL-PPAOC extends that of EL-OC with the dynamic operator π , where π is a program. Programs π and formulas ϕ are defined by the grammar

ϕ α | ¬ϕ | ϕ ∧ ϕ | π ϕ, π α←ϕ | ϕ? | π; π | π ∪ π | π π | π π | π * ,
where α ranges over the set of atomic formulas ATM. The formula π ϕ reads "there is a possible execution of π such that ϕ is true afterwards". The program α←ϕ assigns the truth value of ϕ to α. ϕ? tests whether ϕ is true (and fails when ϕ is false). π 1 ; π 2 executes π 1 and π 2 in sequence. π 1 ∪ π 2 nondeterministically chooses between executing either π 1 or π 2 ; and π 1 π 2 nondeterministically chooses between executing either π 1 , or π 2 , or both. π 1 π 2 is the parallel composition of π 1 or π 2 . The set of all formulas is Fml DEL-PPAOC .

The formula [π]ϕ abbreviates ¬ π ¬ϕ and therefore has to be read "ϕ is true after every possible execution of π". We define n-times iteration of π by induction on n: π 0 = ? and π n+1 = π; π n . Finally, we define π ≤n as 0≤i≤n π i . π * is the unbounded iteration of π.

Semantics of DEL-PPAOC

The interpretation of a formula ϕ is a set of valuations ϕ ⊆ 2 ATM , just as in EL-OC. The interpretation of a program π is a ternary relation on the set of valuations: π ⊆ 2 ATM × 2 ATM × 2 ATM . When V, U, W ∈ π then there is an execution of π from state V to state U assigning the variables at W. The interpretation function is defined by mutual recursion. The main clauses are given in Table 2; the others are standard.

The interpretation of the assignment α←ϕ is that, either (1) ϕ is true, α gets the value true and the set of assigned

α = {V : α ∈ V ⇒ ∪ I-ATM}, π ϕ = {V : there are U, W such that V, U, W ∈ π and U ∈ ϕ }, α←ϕ = { V, V∪{α}, {α} : V ∈ ϕ } ∪ { V, V\α ⇐ , α ⇐ : V ϕ }, ϕ? = { V, V, ∅ : V ∈ ϕ }, π 1 ; π 2 = { V, U, W : there are U 1 , W 1 , W 2 such that V, U 1 , W 1 ∈ π 1 , U 1 , U, W 2 ∈ π 2 , and W = W 1 ∪ W 2 }, π 1 ∪ π 2 = π 1 ∪ π 2 , π 1 π 2 = π 1 ∪ π 2 ∪ π 1 π 2 , π 1 π 2 = V, U, W : there are U 1 , W 1 , U 2 , W 2 such that V, U 1 , W 1 ∈ π 1 , V, U 2 , W 2 ∈ π 2 , W 1 ∩ W 2 ∩ U 1 = W 1 ∩ W 2 ∩ U 2 , U = (V\W) ∪ (U 1 ∩W 1) ∪ (U 2 ∩W 2), and W = W 1 ∪ W 2 , π * = k∈N 0 π k .
Table 2: Interpretation of DEL-PPAOC dynamic operator and programs variables is the singleton {α}, or (2) ϕ is false, all causes of α get the value false and the set of assigned variables is the set α ⇐ of all causes of α.

The interpretation of parallel composition π 1 π 2 is that each subprogram π k is executed locally; then it is checked that the modifications (in terms of assigned variables) are compatible, in the sense that variables that are assigned by both subprograms (i.e., those at W 1 ∩ W 2) get the same truth value. If this is not the case then the parallel composition fails; otherwise the resulting valuation U is computed by putting together (1) the unchanged part of V (i.e., V \ W), (2) the updates of π 1 (i.e., U 1 ∩ W 1), (3) the updates of π 2 (i.e., U 2 ∩ W 2). Moreover, the set of variables W assigned by a parallel composition is the union of the sets of variables assigned by the subprograms.

The interpretation of inclusive nondeterministic composition π 1 π 2 is the exclusive nondeterministic composition of the three programs π 1 , π 2 and π 1 π 2 .

Epistemic Planning

In this section we show how DEL-PPAO captures simple epistemic planning tasks where actions change not only the world, but also the agents' knowledge. We assume deterministic actions with conditional effects described by add-and delete-lists. Such conditional effects are crucial: when an agent performs an action then the effects on another agent's epistemic state typically depend on whether that agent sees the variables that are modified by the action [START_REF] Andersen | Conditional epistemic planning[END_REF]Cooper et al. 2020a).

Action Descriptions

An action description is a pair a = pre(a), eff (a) where pre(a) ∈ Fml DEL-PPAOC (the precondition of a) and

eff (a) ⊆ Fml DEL-PPAOC × 2 ATM × 2 ATM are the conditional effects of a. For a triple ce = cnd(ce), ceff + (ce), ceff -(ce)
in eff (a), cnd(ce) is the condition of ce, ceff + (ce) are the added atoms, and ceff -(ce) are the deleted atoms. We require consistency of effects: if ce 1 , ce 2 ∈ eff (a) and pre(a)∧ cnd(ce 1) ∧ cnd(ce 2)

∅ then ceff + (ce 1) ∩ (ceff -(ce 2)) ⇐ = ∅.
Example 2. In the gossip problem a call has two conditional effects per secret: if i knows s k then s k becomes known to j, and vice versa. Hence pre(call i j) = and

eff (call i j) = S i s k , {S j s k }, ∅ : 1 ≤ k ≤ n ∪ S j s k , {S i s 1 }, ∅ : 1 ≤ k ≤ n .
To every action a we associate a partial function τ a on states as follows: τ a (V) is defined if V ∈ pre(a) ; and when τ a (V) is defined then for every conditional effect ce ∈ eff (a), if its triggering condition cnd(ce) is satisfied ('ce fires') then the negative effects of ce are removed, as well as their causes, and the positive effects of ce are added:

τ a (V) = V \ ce∈eff (a), V∈ cnd(ce) ceff -(ce) ⇐ ∪ ce∈eff (a), V∈ cnd(ce) ceff + (ce) .
We capture τ a by a program testing the precondition and processing in parallel the conditional effects:

exeAct(a) = pre(a)?; ce∈eff (a)              ¬cnd(ce)? ∪          cnd(ce)? α∈ceff + (ce) α← α∈ceff -(ce) α←⊥                       .
Note that thanks to the constraint of consistency of action effects the big parallel composition is always executable.

Consistency of a Set of Actions at a State

We give two consistency constraints for parallel execution.

First, a 1 and a 2 have no contradictory effects at V if for every ce 1 ∈ eff (a 1) and

ce 2 ∈ eff (a 2), if V ∈ cnd(ce 1) ∧ cnd(ce 2) then ceff + (ce 1) ∩ ceff -(ce 2) ⇐ = ∅.
Hence no effect of one action is destroyed by the effect of another action executed in parallel.1 For example, two actions of moving the same object to two different spots have contradictory effects.

Second, two different actions a 1 and a 2 have no crossinteraction at V if 1. V and τ a 1 (V) agree on pre(a 2) and on the condition cnd(ce 2) of every conditional effect ce 2 ∈ eff (a 2), 2. V and τ a 2 (V) agree on pre(a 1) and on the condition cnd(ce 1) of every conditional effect ce 1 ∈ eff (a 1),

where "V and V agree on ϕ" means that either both V ∈ ϕ and V ∈ ϕ , or both V ϕ and V ϕ . Hence neither action preconditions nor effect conditions are modified by the effect of another action executed in parallel, guaranteeing that they can be interleaved. For example, the actions of two different agents picking up the same object crossinteract.

A set of actions A is consistent at V if for every a, a ∈ A such that a a , (1) a and a have no contradictory effects at V; (2) a and a have no cross interaction at V. Example 3. A gossipping conference call {call i j , call i k } is consistent. A way to exclude this is to replace call i j by Tcall i j , with pre(Tcall i j) = and

eff (Tcall i j) = eff (call i j) ∪ { tg i , ∅, {tg i } } ∪ { ¬tg i , {tg i }, ∅ } ∪ { tg j , ∅, {tg j } } ∪ { ¬tg j , {tg j }, ∅ }.
Then two different calls involving i each toggle the value of tg i , ensuring that they cross-interact in any state.

Semantics of a Set of Actions

A set of actions A determines a partial function τ A on valuations. It is defined at V if V ∈ a∈A pre(a) and A is consistent at V. When it is defined at V then:

τ A (V) = V \ a∈A,ce∈eff (a), V∈ cnd(ce) ceff -(ce) ⇐ ∪ a∈A,ce∈eff (a), V∈ cnd(ce) ceff + (ce) .
Thanks to consistency of A the order in which negative and positive effects are processed does not matter.

Let us capture this in DEL-PPAO. Proposition 1. For every finite set of actions A:

1. τ A is defined at V if and only if V, U, W ∈ exeAct(A) for some U, W. 2. If τ A is defined at V then τ A (V) = U iff V, U, W ∈ exeAct(A) for some W.

Simple Epistemic Planning Tasks

A simple epistemic planning task is a triple Act, V 0 , Goal where Act is a finite set of actions, V 0 ∈ 2 ATM is a finite state (the initial state), and Goal ∈ Fml DEL-PPAOC is a DEL-PPAOC formula.

Example 4. The gossip problem can be viewed as the plan-

ning task G = Act G , V G 0 , Goal G with Act G = {Tcall i j : i, j ∈ Agt and i j} (cf. Example 3), V G 0 = {S i s i : i ∈ Agt} (cf. Example 1), Goal G = i∈Agt j∈Agt S j s i .
State V is reachable by a parallel plan from V 0 ∈ 2 ATM via a set of actions Act if there is an m ≥ 0 and sequences V 0 , . . . , V m and A 1 , . . . , A m such that V m = V and for 1

≤ k ≤ m, V k ∈ 2 ATM , A k ⊆ Act, and τ A k (V k-1) = V k .
A simple epistemic planning task Act, V 0 , Goal is solvable by a parallel plan if there is a state V that is reachable by a parallel plan from V 0 via Act such that V ∈ Goal ; otherwise it is unsolvable by a parallel plan. Theorem 1. A planning task Act, V 0 , Goal is solvable by a parallel plan with no more than k steps if and only if:

V 0 ∈ a∈Act x a ←⊥; a∈Act x a ← ; π x ≤k Goal ,
where the x a are fresh variables and where

π x = a,a ∈Act,a a (x a ∧ x a) → Insensitive(a, a) ? ;
a∈Act ¬x a ? ∪ (x a ?; exeAct(a)) .

Example 5. Task G can be solved in log 2 n steps of parallel calls if the number of agents n is even, and in log 2 n + 1 steps if n is odd [START_REF] Bavelas | Communication patterns in task-oriented groups[END_REF][START_REF] Landau | The distribution of completion times for random communication in a task-oriented group[END_REF][START_REF] Knödel | New gossips and telephones[END_REF][START_REF] Cooper | The epistemic gossip problem[END_REF]. For instance, for n = 4 the parallel plan {Tcall 1 2 , Tcall 3 4 }, {Tcall 1 3 , Tcall 2 4 } solves G in 2 steps. Solvability by a sequential plan is the special case where the parallel plan is a sequence of singletons. Theorem 2. A planning task Act, V 0 , Goal is solvable by a sequential plan with no more than k actions if and only if: V 0 ∈ a∈Act exeAct(a) ≤k Goal .

Conclusion

Our logic DEL-PPAOC extends the lightweight epistemic logic EL-O in two directions. First, we generalise the 'knowing-whether' operator to a 'knowing-what' (or 'knowing the value') operator. Second, we add dynamic operators: all standard program operators of PDL, plus operators of parallel composition and of inclusive nondeterministic composition. We show how to model solvability of simple epistemic planning tasks by bounded parallel or sequential plans.

We conjecture that DEL-PPAOC satisfiability and model checking are both PSPACE-complete. One way of proving this is to combine the reduction of DL-PPA to DL-PA of [START_REF] Herzig | Dynamic logic of parallel propositional assignments and its applications to planning[END_REF] and that of DEL-PAO to DL-PA of [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation[END_REF]. From that, PSPACE membership of the problem of solvability of planning tasks can be obtained by polynomially eliminating finite iteration π ≤k by means of counters as done in [START_REF] Herzig | Dynamic logic of parallel propositional assignments and its applications to planning[END_REF]. We believe that thanks to its decidability and relatively low complexity, DEL-PPAOC provides an interesting alternative to DEL-based epistemic planning.

 First, the formula Insensitive(a, a) = exeAct(a) pre(a) ∧ ce∈eff (a) cnd(ce) ↔ exeAct(a) cnd(ce) expresses that neither executability nor effects of a are sensitive to the execution of a . Then to every A we associate the DEL-PPAOC program exeAct

Table 1 :

 1 Axioms for introspection, where α ∈ ATM ∪ Cst Example 1. In the initial state V G 0 of the gossip problem every agent only knows her own secret. Therefore V G 0 = {S i s i : i ∈ Agt} where all s i are constants. (This differs from modellings of the gossip problem without 'knowing-what'

Proceedings of the 18th International Conference on Principles of Knowledge Representation and ReasoningMain Track

The case a 1 = a

is already excluded by our requirement on action descriptions in Section 4.1.Proceedings of the 18th International Conference on Principles of Knowledge Representation and ReasoningMain Track

Acknowledgements

We would like to thank the KR 2021 reviewers for their comments. Our work is partially supported by the EU ICT-48 2020 project TAILOR (No. 952215) and the ANR project CoPains (No. ANR-18-CE33-0012).