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Inertial Newton Algorithms Avoiding Strict Saddle Points

Camille Castera
CNRS - IRIT, Université de Toulouse,

Toulouse, France

Abstract

We study the asymptotic behavior of second-order algorithms mixing Newton’s method
and inertial gradient descent in non-convex landscapes. We show that, despite the New-
tonian behavior of these methods, they almost always escape strict saddle points. We
also evidence the role played by the hyper-parameters of these methods in their quali-
tative behavior near critical points. The theoretical results are supported by numerical
illustrations.

1 Introduction

With the ever-growing size of machine learning problems, the design of algorithms for solving
large-scale optimization problems remains a major challenge. In particular, many of these
problems amount to the unconstrained minimization of a so-called loss functions,

min
θ∈RP
J (θ), (1)

where P ∈ N>0 and J : RP → R. Throughout this paper, we consider a loss functions J
that is twice continuously differentiable and lower bounded on RP . Lots of efforts are put into
building algorithms exploiting second-order derivatives in frameworks where both storage and
computational cost are limited. In this context, Castera et al. (2021) recently proposed an
inertial Newton algorithm (INNA) relying only on the computation of first-order derivatives,
making it practical for large-scale applications such as the training of deep neural networks.
One of the assets of this algorithm is that it is built upon the following ordinary differential
equation (ODE), introduced by Alvarez et al. (2002),

d2θ

dt2
(t) + α

dθ

dt
(t) + β∇2J (θ(t))

dθ

dt
(t) +∇J (θ(t)) = 0, for all t > 0. (2)

In (2), ∇J and ∇2J denote the gradient and the Hessian of J respectively, θ : R+ → RP

is a twice continuously differentiable function called solution of the ODE, or trajectory, and α
and β are non-negative parameters. This ODE, called DIN for dynamical inertial Newton-like
system, echos famous optimization algorithms. Indeed, taking β = 0, (2) models the heavy-ball
with friction (HBF) method (Polyak, 1964) and is linked to the famous Nesterov’s accelerated
gradient (Nesterov, 1983; Su et al., 2014). Similarly, when α = 0 the ODE represents an inertial
Newton method (Attouch and Redont, 2001) so overall (2) models a mix between inertial
gradient descent and Newton’s algorithm. Additionally, (2) is relevant to tackle (1). Indeed,
when the solutions of (2) converge (i.e., when they reach a limit point as t → ∞), Alvarez
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et al. (2002) proved that they converge to critical points of J (points where the gradient of J
vanishes), similarly, the accumulation points (the limit of sub-sequences of iterations) of INNA
with vanishing step-sizes yield critical points of J (Castera et al., 2021).

Yet, in many applications—for example in deep learning—the function J is non-convex,
and may thus posses spurious critical points (critical points that are not local minima). While
it has been proved that gradient descent and HBF are likely to avoid strict saddles (critical
points where ∇2J has a negative eigenvalue, Goudou and Munier 2009; Lee et al. 2016; O’Neill
and Wright 2019), vanilla Newton’s method (with unit step-sizes) is however attracted by any
type of critical points, not only minima (see e.g., Dauphin et al. 2014), which is problematic
when solving minimization problems like (1). Since (2) mixes Newton’s method and HBF, the
following question remains open: are the solutions of DIN—and the INNA algorithm—likely
to avoid strict saddle points? The main contribution of this paper is to answer positively
to this question both for DIN and INNA with fixed step-sizes, regardless the choice of the
hyper-parameters α > 0 and β > 0. Additionally, we shed light on the link between the
choice of α and β and the asymptotic behavior of the solutions of DIN, with in particular the
emergence of spirals when αβ < 1, this gives a better understanding of the role played by these
hyper-parameters. We also provide numerical experiments illustrating our theoretical results.

Main contributions. To summarize, our main contributions are the following:

– Prove that the solutions of DIN avoid strict saddle points for almost any initialization.

– Prove the convergence of INNA with fixed step-sizes to critical points for loss functions
with Lipschitz continuous gradient.

– Provide sufficient conditions such that the limit of INNA is not a strict saddle point, for
almost any initialization.

– Connect the choice of the hyper-parameters α and β and the qualitative behavior of the
solutions of DIN.

– Produce numerical experiments illustrating the theoretical results.

Organization. The rest of the paper is organized as follows. We recall essential notions
and optimality conditions in Section 2. Section 3 states the main results regarding DIN and
introduces key theorems for proving the avoidance of strict saddles (Section 3.1). A study of the
qualitative asymptotic behavior of DIN is carried out in Section 3.2. The reader only interested
in convergence results for the algorithm INNA may skip Section 3 and go directly to Section 4
where we provide convergence guarantees to local minimizers for INNA. Some conclusions are
finally drawn. We first review the literature related to this work.

Related work. The DIN system was first introduced by Alvarez et al. (2002) and was then
studied by many, in particular Attouch et al. (2014, 2016); Shi et al. (2018) considered extensions
of DIN where the hyper-parameters α and β vary over time. As we shall see, a powerful
feature of DIN is that it can be written as a first-order system where the Hessian does not
appear explicitly, this feature was exploited for example by Castera et al. (2021); Chen and
Luo (2019); Attouch et al. (2020), these authors also used discretization techniques to build
discrete optimization algorithms from DIN, among which INNA, IPAHD, or HNAG to name a
few. Regarding the effect of the parameters α and β, Attouch et al. (2020) recently provided
a global understanding of the link between these parameters and quantitative properties such
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as asymptotic rates of convergence, in particular for convex and strongly-convex settings. In
this work we rather study qualitative properties (such as the existence of spiraling solutions)
and consider non-convex landscapes. This analysis is based on the Hartman-Grobman theorem
(Grobman, 1959; Hartman, 1960).

Our analysis mainly relies on results from the theory of dynamical systems, and in particular
on the stable manifold theorem (Pliss, 1964; Kelley, 1966). This theorem can be used to prove
that optimization algorithms are likely to avoid strict saddle points, it has been used for example
by Goudou and Munier (2009); Lee et al. (2016); O’Neill and Wright (2019) for gradient descent
and HBF. Finally, the convergence of INNA with vanishing step-sizes was proved by Castera
et al. (2021) for stochastic optimization, whereas here, we prove the convergence of INNA with
fixed step-sizes for deterministic optimization.

2 Preliminary discussions and definitions

Before analyzing asymptotic behaviors of optimization methods, we recall some fundamen-
tal notions which will be important in what follows. Consider a function g : RP → R twice
continuously differentiable, a point θ? ∈ RP is a called local minimizer of g if there exists a
neighborhood of θ? such that g(θ?) is the smallest value achieved by g on this neighborhood.
It is a global minimizer if g(θ?) is the smallest value achieved by g on RP . Local and global
maximizers are defined similarly considering the largest values of g. We now recall the following
optimality conditions, see for example Nocedal and Wright (2006).

Proposition 1 (Optimality conditions). Let g : RP → R be a twice continuously differentiable
function and let θ? ∈ RP . If θ? is a local minimizer of g, then the following holds:

– First-order condition: θ? is a critical point of g, i.e., ∇g(θ?) = 0.

– Second-order condition: The Hessian matrix ∇2g(θ?) is positive semidefinite. Equiva-
lently, all the eigenvalues of ∇2g(θ?) are non-negative.

Similarly, for any θ? ∈ RP , if ∇g(θ?) = 0 and ∇2g(θ?) is positive definite (or equivalently,
∇2g(θ?) has only positive eigenvalues), then θ? is a local minimizer of g.

Similar results hold for maximizers but with negativity conditions for the Hessian matrix.
The link between the eigenvalues of the Hessian matrix of the loss function J and the nature
of its critical points plays a crucial role in the sequel. We distinguish three types of critical
points:

– Those where the Hessian of J has only positive eigenvalues. From Proposition 1, these
points are local minima.

– The points where the Hessian matrix has at least one negative eigenvalue, which are
referred to as strict saddle points. Such a point cannot be a local minimum, it is either a
maximum or not an extremum.

– The points where the Hessian matrix has only non-negative eigenvalues and at least one
zero eigenvalue, we call them non-strict saddle points. Such points may be maximizers,
minimizers, or neither of them. For example, consider the functions (θ1, θ2) ∈ R2 7→
1
2
θ2

1 + 1
2
θ2

2 + θ1θ2 and (θ1, θ2) ∈ R2 7→ θ3
1 + θ2

2. For both functions, (0, 0) is a critical point
and the eigenvalues of their Hessian matrices at (0, 0) are 0 and 2. Yet, one can easily
check that (0, 0) is a minimizer for the first function and is not an extremum for the
second one. These considerations are illustrated on Figure 1.
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Figure 1: Example of two functions whose Hessian matrices are singular at (0, 0). For the
function (θ1, θ2) ∈ R2 7→ 1

2
θ2

1 + 1
2
θ2

2 + θ1θ2 (on the left), the critical point (0, 0) is a minimum.
For the function (θ1, θ2) ∈ R2 7→ θ3

1 + θ2
2 (on the right), the critical point (0, 0) is neither a

minimum nor a maximum.

Due to the difficulties raised by the existence of non-strict saddle points, some results of this
paper hold only for Morse functions, defined next.

Definition 1. A twice continuously differentiable function g : RP → R is a Morse function if
for any θ? ∈ RP such that ∇g(θ?) = 0, the Hessian ∇2g(θ?) has no zero eigenvalues.

Morse functions are functions for which all saddles are strict and other critical points are
minima. Some of the following results are restricted to Morse functions, others are more general,
yet, in every case we will need the following assumption.

Assumption 1. The loss function J in (1) has isolated critical points: for any θ? ∈ RP such
that ∇J (θ?) = 0, there exists a neighborhood Ω ⊂ RP of θ? such that θ? is the only critical
point inside Ω.

This assumption guarantees in particular that J has at most a countable (possibly infinite)
number of critical points. Note additionally that Assumption 1 holds for Morse functions. Let
us now move on to the analysis of DIN.

3 Asymptotic behavior of the solutions of DIN

We recall that J : RP → R is a twice continuously differentiable function and that we denote
by ∇J and ∇2J its gradient and its Hessian respectively. Let α ≥ 0 and β > 0, as mentioned
in the introduction, a powerful property of (2) is that it is equivalent to the following first-order
system (Alvarez et al., 2002),

dθ
dt

(t) = −
(
α− 1

β

)
θ(t)− 1

β
ψ(t)− β∇J (θ(t))

dψ
dt

(t) = −
(
α− 1

β

)
θ(t)− 1

β
ψ(t)

, for all t > 0, (3)
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where (θ, ψ) : R+ × R+ → RP × RP is differentiable for all t > 0. For a given initial condition
(θ0, ψ0) ∈ RP ×RP , we say that a continuously differentiable function (θ, ψ) is a solution of (3)
if (θ(0), ψ(0)) = (θ0, ψ0) and (3) holds for all t > 0. We say that (θ, ψ) converges if there exists
(θ?, ψ?) ∈ RP × RP such that (θ(t), ψ(t)) converges to (θ?, ψ?) as t → ∞. Since J is twice
continuously differentiable, the existence and uniqueness (with respect to initial conditions) of
the solutions of (3) are granted by the Cauchy-Lipschitz theorem, see Alvarez et al. (2002).
In this work, we focus on the asymptotic behavior of the solutions with respect to the initial
conditions.

Necessary condition for being a stationary point. As previously said, one of the main
interests of (2) and hence of (3) in optimization, is that stationary points of the solutions
(where the solutions stabilize) yield critical points of J . Indeed, a solution (θ, ψ) of (3) reaches
a stationary point of (3) if there exists t0 > 0, such that dθ

dt
(t0) = 0 and dψ

dt
(t0) = 0. This is

equivalent to ψ(t0) = (1− αβ)θ(t0) and ∇J (θ(t0)) = 0. Hence, the set of stationary points of
the solutions of (3) is,

S =
{

(θ?, ψ?) ∈ RP × RP
∣∣∇J (θ?) = 0, ψ? = (1− αβ)θ?

}
.

Bounded solutions (θ, ψ) of (3) converge to points of S, hence the first coordinate θ of a bounded
solution converges to a critical point of J , see Alvarez et al. (2002); Castera et al. (2021). We
will thus study the type of stationary points which the solutions of (3) are likely to converge
to, and then study the qualitative asymptotic behavior of these solutions.

3.1 DIN is likely to avoid strict saddle points

We start with our main result regarding the limit (as t→ +∞) of the solutions of DIN.

3.1.1 Main convergence results

For convenience, we denote by S<0 ⊂ S the set of stationary points (θ?, ψ?) such that θ? is a
strict saddle point of J , namely,

S<0 =
{

(θ?, ψ?) ∈ S
∣∣∇2J (θ?) has at least one negative eigenvalue

}
.

Theorem 2. Suppose that Assumption 1 holds for J , then for almost any initialization, the
corresponding solution of (3) does not converge to a point in S<0.

Before proving the theorem, the following corollary is an immediate consequence suited for
practical applications.

Corollary 3. Assume that J is a twice continuously differentiable Morse function. Assume
also that J is coercive (i.e., that lim‖θ‖→∞ J (θ) = +∞). Then for any initialization the
associated solution of (3) converges. Moreover, let (θ0, ψ0) be a non-degenerate random variable
on RP × RP , and let (θ, ψ) be the solution of (3) initialized at (θ0, ψ0) and converging to
(θ?, ψ?) ∈ RP ×RP . Then with probability one with respect to the draw of (θ0, ψ0), θ? is a local
minimizer of J .

This corollary states in particular that for a coercive Morse function, we can pick an ini-
tialization sampled from a non-degenerate distribution on RP ×RP , for example a Gaussian or
uniform distribution, and with probability one, the first coordinate of the limit of the solution
(with respect to the initialization) is a local minimizer of J .
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Proof of Corollary 3. From Castera et al. (2021, Section 3.2), the coercivity of J guarantees
that any solution of (3) remains bounded, and thus from Alvarez et al. (2002), any solution
is converging. Then, the limit of any solution belongs to S. Let (θ0, ψ0) be a random variable
sampled from a non-degenerate distribution on RP × RP , by definition the support of the
distribution has non-zero measure. In addition, according to Theorem 2, the set of initializations
such that the solutions of (3) converge to S<0 has zero measure. So, almost surely with respect
to the random variable (θ0, ψ0), the solution of (3) initialized at (θ0, ψ0) converges toward S\S<0.
Finally, since J is a Morse function, S \ S<0 is exactly the set of local minimizers.

Remark 1. We could state a more general (but more abstruse) result than Corollary 3 which
would not require the coercivity assumption but only that the set of initializations such that the
associated solutions of (3) converge has positive Lebesgue measure.

We now introduce the main tool to prove Theorem 2: the stable manifold theorem.

3.1.2 The stable manifold theorem

To simplify the notations we introduce the following mapping,

G : (θ, ψ) ∈ RP × RP 7→

−(α− 1
β

)
θ − 1

β
ψ − β∇J (θ)

−
(
α− 1

β

)
θ − 1

β
ψ

 ,

so that (3) can be re-written,

d

dt

(
θ(t)
ψ(t)

)
= G(θ(t), ψ(t)), for all t > 0. (4)

For any (θ, ψ) ∈ RP × RP , we also denote by DG(θ, ψ) ∈ R2P×2P the Jacobian matrix of G at
(θ, ψ). Remark that for any (θ, ψ) ∈ RP × RP , (θ, ψ) ∈ S ⇐⇒ G(θ, ψ) = 0, so the stationary
points of (3) are exactly the zeros of G. We now state the stable manifold theorem which is
the keystone to prove Theorem 2.

Theorem 4 (Stable manifold theorem (Haragus and Iooss, 2010; Perko, 2013)). Let F : R2P →
R2P be a C1 mapping and denote by DF the Jacobian of F , consider the autonomous ODE,

dΘ

dt
(t) = F (Θ(t)), for all t > 0. (5)

Let Θ? ∈ R2P such that F (Θ?) = 0. Let Esc(Θ?) be the linear subspace of R2P spanned by the
eigenvalues of DF (Θ?) with non-positive real part. There exists a neighborhood Ω of Θ? and a
C1 manifold Wsc(Θ?) tangent to Esc(Θ?) at Θ?—whose dimension is the number of eigenvalues
of DF (Θ?) with non-positive real part—such that, for any solution Θ of (5),

(i) If Θ(0) ∈ Wsc(Θ?) ∩ Ω and for T ≥ 0, Θ([0, T ]) ⊂ Ω, then Θ([0, T ]) ⊂ Wsc(Θ?). (Invari-
ance)

(ii) If ∀t ≥ 0, Θ(t) ∈ Ω, then Θ(0) ∈ Wsc(Θ?).

We see why this theorem plays an important role in the proof of Theorem 2. It states
in particular that all the solutions of (5) converging to Θ? must enter inside Wsc(Θ?) after
some time, and that Wsc(Θ?) has zero measure as soon as DF (Θ?) has at least one positive
eigenvalue. We will show that this holds true for G and for any point in S<0. Now that we
introduced our main tool, we can prove Theorem 2.
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3.1.3 Proof of Theorem 2

We state an elementary lemma that will be useful.

Lemma 5. Let α ≥ 0, β > 0 and λ ∈ R. The quantity (α + βλ)2 − 4λ is non-positive if and

only if αβ ≤ 1 and λ ∈
[

2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
.

Proof of Lemma 5. Let α ≥ 0, and β > 0, the function λ ∈ R 7→ (α+βλ)2−4λ = β2λ2+2(αβ−
2)λ + α2 is a second-order polynomial in λ whose discriminant is 16(1 − αβ). If αβ > 1 this
discriminant is negative thus the polynomial has no real roots and hence is always positive. If
αβ ≤ 1, then the discriminant is positive and the roots of the polynomial are (2−αβ)

β2 ±2
√

1−αβ
β2 .

We now prove Theorem 2.

Proof of Theorem 2. Let (θ?, ψ?) ∈ RP × RP such that G(θ?, ψ?) = 0. We first compute the
eigenvalues of DG(θ?, ψ?), in order to apply Theorem 4 to (4) around (θ?, ψ?). By differentiating
G we obtain the following Jacobian matrix, displayed in four blocks,

DG(θ?, ψ?) =

−β∇2J (θ?)−
(
α− 1

β

)
IP − 1

β
IP

−
(
α− 1

β

)
IP − 1

β
IP

 ,

where IP denotes the identity matrix of RP×P . We need to compute the eigenvalues of
DG(θ?, ψ?) and study the sign of their real parts. In particular, we want to show that if
∇2J (θ) has a (strictly) negative eigenvalue (i.e., (θ?, ψ?) ∈ S<0), then DG(θ?, ψ?) has at least
one (strictly) positive eigenvalue, and thus according to Theorem 4, the stable manifold asso-
ciated to (θ?, ψ?) has zero measure.

First, ∇2J (θ?) is real and symmetric, so the spectral theorem states that there exists an
orthogonal matrix V such that V T∇2J (θ?)V is a diagonal matrix. Thus the matrix,(

V T 0
0 V T

)
DG(θ?, ψ?)

(
V 0
0 V

)
=

−βV T∇2J (θ?)V −
(
α− 1

β

)
IP − 1

β
IP

−
(
α− 1

β

)
IP − 1

β
IP

 (6)

is a sparse matrix with only 3 non-zero diagonals and whose eigenvalues are the same as those
of DG(θ?, ψ?). Exploiting the tridiagonal structure, there exists a symmetric permutation
U ∈ R2P×2P—specified in (19) in Section A of the appendix—such that we can transform (6)
into a block diagonal matrix,

UT

(
V T 0
0 V T

)
DG(θ?, ψ?)

(
V 0
0 V

)
U =

M1

. . .

MP

 , (7)

where for each p ∈ {1, . . . , P}, Mp is a 2× 2 matrix defined as follows. Denote by (λp)p∈{1,...,P}

the eigenvalues of ∇2J (θ?), for all p ∈ {1, . . . , P}, Mp =

−(α− 1
β

)
− βλp − 1

β

−
(
α− 1

β

)
− 1
β

, up to a

symmetric permutation.
The eigenvalues of DG(θ?, ψ?) are obtained by computing those of the matrices Mp. Let

p ∈ {1, . . . , P}, the eigenvalues of Mp are the roots of its characteristic polynomial: χMp : X ∈
R 7→ X2 − trace(Mp)X + det(Mp), which gives for any X ∈ R,

χMp(X) = X2 + (α + βλp)X + λp.
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This is a second-order polynomial, whose discriminant is,

∆Mp = (α + βλp)
2 − 4λp. (8)

The eigenvalues of Mp depend on the sign of ∆Mp which is given by Lemma 5. We now show
that if λp < 0, then Mp has a positive eigenvalue.

First assume that ∆Mp ≤ 0. Lemma 5 states that in this case, we have αβ ≤ 1 and

λp ∈
[

2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. An elementary study of the function x ∈ [0, 1] 7→

2− x− 2
√

1− x shows however that for 0 ≤ αβ ≤ 1, 2−αβ
β2 − 2

√
1−αβ
β2 ≥ 0, so ∆Mp ≤ 0 implies

λp ≥ 0. Thus, we do not need to further investigate the case ∆Mp ≤ 0 since this case never
occurs when λp < 0.

Suppose now that ∆Mp > 0, then Mp has two real eigenvalues,σp,+ = −(α+βλp)

2
+

√
∆Mp

2
= −(α+βλp)

2
+

√
(α+βλp)2−4λp

2

σp,− = −(α+βλp)

2
−
√

∆Mp

2
= −(α+βλp)

2
−
√

(α+βλp)2−4λp

2

.

In this case, assume that λp < 0. If α + βλp ≤ 0, then σp,+ is a sum of a non-negative and a
positive term, so σp,+ > 0. If α+βλp ≥ 0, then 2σp,+ = −(α+βλp)+

√
(α + βλp)2 + 4(−λp) > 0

since 4(−λp) > 0. Overall, we showed that in every case, λp < 0 =⇒ σp,+ > 0. So whenever
there exists p ∈ {1, . . . , P} such that λp < 0, DG(θ?, ψ?) has at least one positive eigenvalue.

We can now apply the stable manifold theorem. Let (θ?, ψ?) ∈ S<0. Let an initialization
(θ0, ψ0) such that the corresponding solution (θ, ψ) of (4) converges to (θ?, ψ?). Denote Φ :
RP ×RP ×R→ RP ×RP ×R the flow of the solutions of (4), so that we have in particular for
all t ≥ 0, (θ(t), ψ(t)) = Φ((θ0, ψ0), t) and (θ0, ψ0) = Φ((θ(t), ψ(t),−t). Consider the manifold
Wsc(θ?, ψ?) and the neighborhood Ω as defined in Theorem 4. The convergence of (θ, ψ) implies
that there exists t0 ≥ 0 such that for all t ≥ t0, (θ(t), ψ(t)) ∈ Ω, so according to Theorem 4,
∀t ≥ t0, (θ(t), ψ(t)) ∈ Ω∩Wsc(θ?, ψ?). Expressing this in terms of flows, ∀t ≥ t0, Φ((θ0, ψ0), t) ∈
Ω ∩Wsc(θ?, ψ?) and hence ∀t ≥ t0,

Φ((θ0, ψ0), t) ∈
⋃
k∈N

Φ (Ω ∩Wsc(θ?, ψ?),−k) , (9)

where the right-hand side in (9) corresponds to the union over k ∈ N of initial conditions such
that the associated solution has reached Ω ∩Wsc(θ?, ψ?) at time k. Let

W(θ?, ψ?) =

{
(θ0, ψ0) ∈ RP × RP

∣∣∣∣Φ((θ0, ψ0), t) −−−−→
t→+∞

(θ?, ψ?)

}
,

the set of all initial conditions such that the associated solution converges to (θ?, ψ?). According
to (9), we have proved that,

W(θ?, ψ?) ⊂
⋃
k∈N

Φ (Ω ∩Wsc(θ?, ψ?),−k) . (10)

Now, we previously showed that since (θ?, ψ?) ∈ S<0, DG(θ?, ψ?) has one or more positive
eigenvalues, so according to the stable manifold theorem, the dimension of Wsc(θ?, ψ?) is strictly
less than 2P , hence this manifold has zero measure. Due to the uniqueness of the solutions of
(4), for any k ∈ N, Φ(·,−k) is a local diffeomorphism, hence it maps zero-measure sets to zero-
measure sets. Consequently, the right-hand side in (10) is a countable union of zero-measure
sets, so it has zero measure as well, and the same goes for W(θ?, ψ?).

8



To conclude the proof of the theorem, by Assumption 1, the critical points are isolated so
their number is countable. So

⋃
(θ?,ψ?)∈S<0

W(θ?, ψ?) is a countable union of zero-measure sets
so it has zero measure.

Remark 2. Keeping the notations of the proof of Theorem 2, we proved that for p ∈ {1, . . . , P},
if λp < 0 then σp,+ > 0. Looking at the proof, note that we could also show quite easily that
λp > 0 =⇒ σp,+ < 0, so for any local minimizer with non-singular Hessian, the associated
stable manifold does not have zero measure. In particular, the stable manifold associated to any
local minima of a twice differentiable Morse functions does not have zero measure.

3.1.4 On the complex eigenvalues of DG

In the proof of Theorem 2 we showed that for any (θ?, ψ?) ∈ S, if an eigenvalue λp of the
Hessian ∇J (θ?) is negative, then the associated discriminant ∆Mp is positive and thus the
eigenvalues of DG(θ?, ψ?) are real. Note however that when there exists p ∈ {1, . . . , P} such
that λp ≥ 0 (and hence in particular around local minima), we may have ∆Mp ≤ 0. This is the

case whenever αβ ≤ 1, and λp ∈
[

2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. When the aforementioned

conditions hold, DG(θ?, ψ?) has complex eigenvalues,σp,+ = −(α+βλp)

2
+ i

√
−∆Mp

2
= −(α+βλp)

2
+ i

√
4λp−(α+βλp)2

2

σp,− = −(α+βλp)

2
− i
√
−∆Mp

2
= −(α+βλp)

2
− i
√

4λp−(α+βλp)2

2

. (11)

Overall, we proved that DIN is likely to avoid strict saddle points, and we additionally observed
that around local minima, the Jacobian DG may or may not have eigenvalues with non-zero
imaginary part. The existence of complex eigenvalues may change the qualitative behavior of
the solutions around local minima. Next section is devoted to studying this matter.

3.2 Behavior of the solutions of DIN around stationary points

Accordingly to what we just discussed in Section 3.1.4, we wish to characterize the qualitative
asymptotic behavior of the convergent trajectories of DIN.

3.2.1 The Hartman-Grobman theorem

To this aim, we introduce the Hartman-Grobman theorem.

Theorem 6 (Hartman–Grobman (Perko, 2013)). Consider the following dynamical system,

dΘ

dt
(t) = F (Θ(t)), t ∈ R (12)

where Θ : R→ R2P , F : R2P → R2P is C1 and denote by DF the Jacobian matrix of F . Assume
that there exists Θ? ∈ R2P such that F (Θ?) = 0 and DF (Θ?) has only non-zero eigenvalues.
Then, there exists a neighborhood Ω of Θ? and a homeomorphism H (a bijective continuous
function whose inverse is continuous) such that, for any Θ0 ∈ Ω, if Θ is a solution of (12) with
Θ(0) = Θ0, there exists an open interval of time T ⊂ R containing 0 such that the function
Φ = H ◦Θ is the solution of

dΦ

dt
(t) = DF (Θ?)Φ(t), t ∈ T, (13)

with initial condition Φ(0) = H(Θ0). The homeomorphism H preserves the parameterization
by time (it does not reverse time).
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This theorem essentially states that, in a neighborhood of a stationary point Θ? where
the Jacobian matrix DF (Θ?) is non-singular the solutions of (12) have a qualitative behavior
similar to those of the linearized system (13).

3.2.2 Application to DIN

Application of the theorem. Let (θ?, ψ?) ∈ S be a stationary point of (3) such that θ? is a
local minimizer of J and such that ∇2J (θ?) has only non-zero eigenvalues (this is guaranteed
for all local minima if J is a Morse function). Consider the differential equation,

d

dt

(
θ̃(t)

ψ̃(t)

)
= DG(θ?, ψ?)

(
θ̃(t)

ψ̃(t)

)
, t ∈ R. (14)

According to Remark 2 and the proof of Theorem 2, all the eigenvalues of DG(θ?, ψ?) have
strictly negative real parts. So there exists a homeomorphism H and a neighborhood Ω of
(θ?, ψ?) on which Theorem 6 holds. In particular, for any initial condition (θ0, ψ0) ∈ Ω, the
associated solution of (4) converges to (θ?, ψ?) (because the corresponding solution of (14)
converges to (θ?, ψ?) and H preserves the parameterization by time).

So for any initialization in (θ0, ψ0) ∈ Ω, the corresponding solution (θ, ψ) of (4) remains in
Ω, i.e., ∀t ≥ 0, (θ(t), ψ(t)) ∈ Ω. Thus we can use the Hartman-Grobman around (θ(t), ψ(t)) for
any t ≥ 0. As a result, for any initialization in (θ0, ψ0) ∈ Ω, and for all t ≥ 0, the associated

solution (θ, ψ) of (4) reads, (θ(t), ψ(t)) = H−1(θ̃(t), ψ̃(t)) where (θ̃, ψ̃) is the solution of (14)

with initial condition (θ̃(t0), ψ̃(t0)) = H(θ(0), ψ(0)).
We give a more precise expression for this solution. As done in the proof of Theorem 2 we can

diagonalize DG(θ?, ψ?): there exists a matrix Q ∈ R2P×2P such that DG(θ?, ψ?) = QDQ−1,
where D = diag(σ1, . . . , σ2P ), and (σp){1,...,2P} are the eigenvalues of DG(θ?, ψ?). Using the

diagonalization, the solution of (14) is given for all t ∈ R by

(
θ̃(t)

ψ̃(t)

)
= QetDQ−1

(
θ̃(0)

ψ̃(0)

)
. So

going back to (θ, ψ), we have,(
θ(t), ψ(t)

)
= H−1

(
QetDQ−1H(θ(0), ψ(0))

)
, for all t ≥ 0. (15)

Finally, let any initialization (θ0, ψ0) ∈ RP ×RP (not necessarily belonging to Ω), such that
the corresponding solution (θ, ψ) of (4), converges to (θ?, ψ?). Then there exists t0 ≥ 0 such
that for all t ≥ t0, (θ(t), ψ(t)) ∈ Ω, and the arguments above apply after t0.

Form of the solutions. We proved that after some time, a solution (θ, ψ) of (4) that con-
verges to (θ?, ψ?) ∈ S can be expressed with formula (15) (up to a time shift). If αβ ≤ 1 and

all the eigenvalues of ∇2J (θ?) are not in
(

2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

)
, or if αβ > 1, then

all the eigenvalues of DG(θ?, ψ?) are real so the coordinates of Q−1etDQ in (15) are sums of
exponential functions decreasing in time.

However, if αβ ≤ 1 and there exists eigenvalues of ∇2J (θ?) belonging to the interval
mentioned above, then there exists eigenvalues of DG(θ?, ψ?) with non-zero imaginary part.
Let p ∈ {1, . . . , P} such that λp is an eigenvalue of ∇2J (θ?) belonging to the aforementioned

interval. From (11), there exists two complex eigenvalues: −(α+βλp)

2
± i
√

4λp−(α+βλp)2

2
, and thus

the coordinates of the matrix etD in (15) contain terms of the form,

e
−(α+βλp)

2
t (cos(ωpt)± i sin(ωpt)) ,
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where ωp =

√
4λp−(α+βλp)2

2
. So in this setting, and in this setting only, the imaginary parts

of the eigenvalues of DG(θ?, ψ?) generate oscillating terms and the solution of the linearized
model t 7→ QetDQ−1 (plus initial condition) spirals around (θ?, ψ?) as it converges toward it.
This is illustrated on Figure 2 where such a behavior is indeed observed for a (numerically ap-
proximated) solution of (3). Note finally that ωp is a decreasing function of β, hence increasing
the parameter β reduces the oscillations.

3.2.3 Numerical illustration of the spiraling phenomenon

Setting. To illustrate the spiraling phenomenon, we consider a simple quadratic function
J : (θ1, θ2) ∈ R2 7→ θ2

1 + 2θ2
2. This loss function is C2(R2), and for all (θ1, θ2) ∈ R2, it has a

constant diagonal Hessian: ∇2J (θ1, θ2) =

(
2 0
0 4

)
. This is a convex function whose unique

global minimizer is (θ?, ψ?) = (0, 0). Instead of solving exactly (3), we find an approximate
solution via the discrete algorithm INNA derived from (3) and presented in next section. To
do so, we ran the algorithm with very small step-sizes. The algorithm is initialized at (1, 1).
We consider two choices of parameters: (α, β) = (2, 0.1) and (α, β) = (2, 1). The former
illustrates the case αβ < 1 while the second corresponds to the case where αβ > 1. According
to Section 3.1.4, with the configuration (α, β) = (2, 0.1), the range of eigenvalues for which we
should observe spirals is approximately [1, 359] so both eigenvalues of the Hessian of J lie in
this interval.

Results. The expected behavior (discussed on Section 3.2.2) can be observed on the left of
Figure 2. When αβ < 1 (red curve), the trajectory spirals around the critical point (0, 0).
On the contrary, the phenomenon does not occur when αβ > 1 (orange curve). Remark also
that when zooming very close to (0, 0), the oscillating behavior is still present. Note however
that this qualitative results says nothing about the speed of convergence, as evidenced on
the right of Figure 2. Despite the presence of spirals, the setting where αβ < 1 yields a faster
algorithm both in terms of loss function values and distance to the minimizer. From a theoretical
point of view, the Hartman-Grobman theorem connects the solutions of (3) and those of its
linearized approximation through a mapping which is homeomorphic (hence continuous) but
not necessarily differentiable. As a consequence, the theorem does not guarantee that the speed
of convergence is preserved. Regarding the speed of convergence, we refer to Attouch et al.
(2020, 2021) in the convex setting and to Castera et al. (2021) for the non-convex case.

Vanishing viscous damping. To finish this section, we empirically investigate the oscillat-
ing phenomenon when using an asymptotically vanishing damping. More precisely, we consider
a viscous damping α(t) that may vary over time, and in particular that progressively decreases
to zero as t → ∞. Such damping has been given a lot of attention after the work of Su et al.
(2014) who made a connection between Nesterov’s accelerated gradient (Nesterov, 1983) and
a differential equation with a damping proportional to 1/t. As for DIN, if such a damping
is used while keeping β fixed, we eventually have α(t)β ≤ 1 after some time. Our approach
is however purely empirical since the Hartman-Grobman theorem holds only for autonomous
ODEs1 (hence with α not decreasing with t). In this setting we do observe spirals (see Figure 2),
actually, we see on the blue curve that for (α(t), β) = (2/t, 0.1), the spirals are so large that
the algorithm is much slower than it was for fixed values of (α, β). However when taking a

1The theorem can be extended to some non-autonomous ODEs (Palmer, 1973), which we do not consider
for the sake of simplicity.
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Figure 2: Illustration of the spiral phenomenon discussed in Section 3.2 on the quadratic
function J : (θ1, θ2) ∈ R2 7→ θ2

1 + 2θ2
2. Top-left figure displays the evolution of the iterates on

the landscape of the loss function with two zooms on bottom-left figures. Right figures show
the value of the loss function and the distance to the global minimizer (0, 0) as a function of
the iterations.

larger β (green curve), these oscillations are damped (although still noticeable), yielding better
performances in terms of speed.

4 Asymptotic behavior of INNA

We now turn our attention to the asymptotic behavior of the algorithm INNA introduced by
Castera et al. (2021). Throughout this section we fix α ≥ 0 and β > 0 the hyper-parameters of
INNA. The INNA algorithm is originally designed for non-smooth and stochastic applications,
however, in order to study its asymptotic behavior, we consider a simpler framework. We
analyze the algorithm for a loss function J that is twice continuously differentiable and consider
a deterministic version of the algorithm. In this framework, we may use fixed step-sizes: let
γ > 0 be a step-size, in this setting, the INNA algorithm reads,θk+1 = θk + γ

[
−(α− 1

β
)θk − 1

β
ψk − β∇J (θk)

]
ψk+1 = ψk + γ

[
−(α− 1

β
)θk − 1

β
ψk

] . (16)

This algorithm is obtained via an explicit Euler discretization of (3), thus, we may hope the
asymptotic behavior of INNA to be similar to that of the solutions of DIN. Actually, the set of
stationary points of INNA is the same as that of DIN (see Section B.1 of the appendix):

S =
{

(θ, ψ) ∈ RP × RP
∣∣∇J (θ) = 0, ψ = (1− αβ)θ

}
.
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In this section, we prove that for almost any initialization, INNA does not converge to strict
saddle points. To this aim we recall the definition of the set S<0,

S<0 =
{

(θ, ψ) ∈ S
∣∣∇2J (θ) has at least one negative eigenvalue

}
.

4.1 INNA generically avoids strict saddles

In order to derive results for INNA similar to those for DIN, we will have to carefully choose
the step-size γ > 0. To this aim, we need the following assumption.

Assumption 2. There exists L∇J > 0 such that the gradient ∇J of the loss function J is
L∇J -Lipschitz continuous on RP (with respect to a given norm ‖ · ‖ on RP ). In other words,
for any θ1 ∈ RP and θ2 ∈ RP ,

‖∇J (θ1)−∇J (θ2)‖ ≤ L∇J ‖θ1 − θ2‖

This assumption implies that at any point of RP , the eigenvalues of ∇2J are bounded by
the constant L∇J . Under this assumption our main result regarding INNA follows.

Theorem 7. Under Assumption 1 and 2, if α > 0 and the step-size γ is such that,

0 < γ < min

(
β

2
+

α

2L∇J
−
√

(α + βL∇J )2 − 4L∇J
2L∇J

, β

)
, (17)

—where the right-hand side in (17) is always positive—then for almost any initialization, INNA
does not converge to a point in S<0.

The proof relies on arguments similar to those of Theorem 2 and it thus postponed to
Section B of the appendix for the sake of readability. Theorem 7 is particularly relevant if
INNA converges (otherwise the statement is trivial). Next result provides sufficient conditions
so that convergence holds.

Theorem 8. Assume that α > 0. Let (θ0, ψ0) ∈ RP × RP and let (θk, ψk)k∈N be the sequence
generated by INNA initialized at (θ0, ψ0). Under Assumption 2, if the step-size γ is such that,

0 < γ < min

(
2α

(1 + αβ)L∇J + α2
,

1

α
+ β, 2β

)
, (18)

then the sequence of values (J (θk))k∈N converges and lim
k→+∞

‖∇J (θk)‖2 = 0.

If in addition the sequence (θk)k∈N is bounded and Assumption 1 holds, then (θk)k∈N converges
to a critical point of J .

Remark 3 (Comments on Theorem 8).

– Note that in (18), only the condition γ < 2α/ ((1 + αβ)L∇J + α2) depends on the function J
(through the Lipschitz constant L∇J ), the other two being only related to the hyper-parameters
of INNA. This is similar to the well-known condition γ < 2/L∇J used for gradient descent, see
e.g., Bertsekas et al. (1998, Proposition 2.3.2).

– The first part of the theorem states in particular that any accumulation point (the limit of
any sub-sequence) is a critical point of J . The additional boundedness assumption is necessary
only to guarantee the convergence of (θk)k∈N to such critical points. Due to the convergence
of (J (θk))k∈N, this assumption is valid, for example, when J is coercive, which holds in many
problems met in practice.
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Figure 3: Evolution of the iterates of INNA on the landscape of the toy function J : (θ1, θ2) ∈
R2 7→ θ4

1 − 4θ2
1 + θ2

2. This function has two minimizers (−
√

2, 0) and (
√

2, 0) and one strict
saddle point (0, 0). The red and blue surfaces represent the parts where J is locally concave
and convex respectively. The stable manifold of J around (0, 0) is represented by the grey
curve. Left figure shows the behavior of INNA for two choices of hyper-parameters and for
two initializations belonging to the stable manifold of (0, 0). In this setting the algorithm does
converge to the strict saddle (0, 0). When initialized near but outside the manifold (right figure),
the algorithm avoids the strict saddle and converges to a local minimizer for both choices of
hyper-parameters.

The proof relies on a Lyapunov argument and is also postponed to the appendix (see Sec-
tion C). Combining Theorem 7 and 8, we can formulate a corollary suited for practical appli-
cations.

Corollary 9. Assume that J is a twice continuously differentiable coercive Morse function
and that Assumption 2 holds. Assume that α > 0, and that the step-size γ > 0 is such that
both (17) and (18) hold. Let (θ0, ψ0) be a non-degenerate random variable on RP ×RP , and let
(θk, ψk)k∈N be the iterations of INNA initialized at (θ0, ψ0). Then (θk)k∈N converges, and with
probability one, the limit θ? ∈ RP is a local minimizer of J .

The proof follows similar lines as those of Corollary 3 and the practical consequences of
Corollary 9 are the same as those discussed for DIN. We conclude the study with numerical
illustrations.

4.2 Numerical Illustration

We finish the study of INNA with a short empirical illustration of Theorem 7 on a toy example.
To this aim we consider the function J : (θ1, θ2) ∈ R2 7→ θ4

1 − 4θ2
1 + θ2

2. This function is twice
continuously differentiable on R2, non-convex, has a diagonal Hessian and three critical points:
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Table 1: Empirical validation of the results of Theorem 7

Percentage of convergence
to each critical point

Average number of
iterations to escape

a saddle point
(−
√

2, 0) (
√

2, 0) (0, 0)

Initialization outside
the stable manifold,
very close to (0, 0)

INNA αβ < 1 48,8% 51,2% 0% 36
INNA αβ > 1 50,7% 49,3% 0% 35
Gradient Descent 50,2% 49,8% 0% 37

Initialization on
the stable manifold

INNA αβ < 1 0% 0% 100% -
INNA αβ > 1 0% 0% 100% -
Gradient Descent 0% 0% 100% -

two local minimizers (−
√

2, 0) and (
√

2, 0) and one strict saddle point (0, 0). The landscape of
J is displayed on Figure 3. The set of initializations such that INNA converges to the strict
saddle point (0, 0) is the manifold θ2 ∈ R 7→ (0, θ2) which has indeed zero measure on R2.
Figure 3 shows that when initialized on this manifold, the algorithm does converge to (0, 0) but
when initialized anywhere else, it avoids the strict saddle.

In addition to this illustration, we ran INNA and gradient descent —which is also known
for almost surely escaping strict saddle points (Lee et al., 2016)—for 1000 random Gaussian
initializations sampled from N2(0, 10−24), hence extremely close to the saddle point (0, 0). We
also perform the same experiment but with a random initialization on the stable manifold. The
results reported on Table 1 demonstrate that the algorithm always escapes the saddle point
and converges to one of the two local minimizers. This empirically illustrates Theorem 7 and
Corollary 9.

5 Conclusion

In this work, we provided a better understanding of the role played by the hyper-parameters
α and β. This could help users of INNA to choose these parameters in practical applications.
More importantly, we proved that the asymptotic behaviors of INNA and DIN make them
relevant to tackle non-convex minimization problems. In particular, we provided conditions
so that INNA converges and so that it is likely to avoid strict saddle points for almost all
initializations.
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A Permutation matrices

In this section, we specify the permutations matrices necessary to obtain the block diagonal-
ization in (7) and (21). Denote by mod the modulo operator and let P ∈ N>0. We can choose
the permutation matrix U ∈ R2P×2P as the matrix whose coefficients are all zero except the
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following, for all p ∈ {1, . . . , P},

if P is odd:


UP−p+1,p = 1−mod(p, 2)

UP+p,2P−p+1 = mod(p, 2)

Up,2P−p = mod(p, 2)

,

if P is even:


Up,p = mod(p, 2)

UP+p,P+p = 1−mod(p, 2)

UP+p,p = mod(p, 2)

Up,P+p = mod(p, 2)

.

(19)

For example, for P = 3 and P = 4 this yields the following matrices (where the zero coefficients
are omitted for the sake of readability),


· · · · 1 ·
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·

 and



1 · · · · · · ·
· · · · 1 · · ·
· · 1 · · · · ·
· · · · · · 1 ·
· 1 · · · · · ·
· · · · · 1 · ·
· · · 1 · · · ·
· · · · · · · 1


.

B Proof of Theorem 7

In order to prove Theorem 7, we will use a version of the stable manifold theorem suited to the
analysis of discrete processes.

B.1 Stable manifold theorem for discrete processes

We introduce a different version of the stable manifold theorem. This version was used by Lee
et al. (2016) and O’Neill and Wright (2019) to analyze gradient descent and the HBF methods
respectively. For a function F : RP → RP and for all k ∈ N>0, we introduce the following
notation: F k = F ◦ . . . ◦ F︸ ︷︷ ︸

k compisitions

. The result is the following.

Theorem 10 (III.7 (Shub, 2013)). Let Θ? ∈ R2P be a fixed point for the C1 local diffeomorphism
F : U → R2P where U ⊂ R2P is a neighborhood of Θ?. Let Esc(Θ?) be the linear subspace
spanned by the (complex) eigenvalues of DF (Θ?) with magnitude less than one. There exists a
neighborhood Ω of Θ? and a C1 manifold Wsc(Θ?) tangent to Esc(Θ?) at Θ?—whose dimension
is the number of eigenvalues of DF (Θ?) with magnitude less than one—such that, for Θ0 ∈ R2P ,

(i) If Θ0 ∈ Wsc(Θ?) and F (Θ0) ∈ Ω then F (Θ0) ∈ Wsc(Θ?) (Invariance).

(ii) If ∀k ∈ N>0, F
k(Θ0) ∈ Ω, then Θ0 ∈ Wsc(Θ?).

Although we study an iterative algorithm and not the solutions of an ODE, the results
stated in Theorem 10 are very similar to those of Theorem 4, thus, the proof of Theorem 7 is
close to the proof of Theorem 2.
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Formulating INNA to use Theorem 10. Proceeding similarly to Section 3.1, for any
(θ, ψ) ∈ RP × RP , we redefine the mapping G as,

G

(
θ
ψ

)
=

θ + γ
[
−(α− 1

β
)θ − 1

β
ψ − β∇J (θ)

]
ψ + γ

[
−(α− 1

β
)θ − 1

β
ψ
]  , (20)

so that an iteration k ∈ N of INNA reads (θk+1, ψk+1) = G(θk, ψk). Remark that unlike for
(3), we now study the fixed points of G and not its zeros. Indeed, the iterative process INNA
consists in successive compositions of the operator G and the set of fixed points of G is exactly
S. To prove this statement, let (θ, ψ) ∈ RP × RP ,

G(θ, ψ) = (θ, ψ) ⇐⇒

{
−(α− 1

β
)θ − 1

β
ψ − β∇J (θ) = 0

−(α− 1
β
)θ − 1

β
ψ = 0

⇐⇒

{
∇J (θ) = 0

ψ = (1− αβ)θ
.

So (θ, ψ) is a fixed point of G if and only if ∇J (θ) = 0 and ψ = (1− αβ)θ.

B.2 Proof of Theorem 7

Block-diagonal transformation. Throughout the proof we use a block-diagonal transfor-
mation. Let (θ, ψ) ∈ RP ×RP . Since J is C2 on RP then G is C1 on RP ×RP and the Jacobian
matrix of G at (θ, ψ) (displayed by block) reads,

DG(θ, ψ) =

(
(1− γ(α− 1

β
))IP − γβ∇2J (θ) − γ

β
IP

−γ(α− 1
β
)IP (1− γ

β
)IP

)
.

Proceeding like in Section 3.1, their exists an orthogonal matrix V ∈ RP×P and a permutation
U ∈ R2P×2P (defined in Section A) such that,

UT

(
V T 0
0 V T

)
DG(θ, ψ)

(
V 0
0 V

)
U =

M1

. . .

MP

 , (21)

where for each p ∈ {1, . . . , P}, Mp =

(
1− γ(α− 1

β
)− γβλp − γ

β

−γ(α− 1
β
) 1− γ

β

)
—up to a symmetric

permutation—and (λp)p∈{1,...,P} are the eigenvalues of ∇2J (θ). To apply the stable manifold
theorem and prove Theorem 7 we need G to be a local diffeomorphism. This result is non-
straightforward to obtain, so we state it as a theorem before proving Theorem 7.

Theorem 11. Under Assumption 2, for any α > 0, β > 0 and

0 < γ < min

(
β

2
+

α

2L∇J
−
√

(α + βL∇J )2 − 4L∇J
2L∇J

, β

)
,

the mapping G defined in (20) is a local diffeomorphism from RP × RP to RP × RP .

We finish the proof of Theorem 7 first, and then prove this theorem in Section B.3.
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Application of Theorem 10 to prove Theorem 7. We can now prove Theorem 7.

Proof of Theorem 7. Let α > 0, β > 0 and 0 < γ < min

(
β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

, β

)
.

Consider the mapping G defined in (20) with these parameters. By direct application of The-
orem 11, G is a local diffeomorphism. Let (θ?, ψ?) ∈ RP × RP be a fixed point of G. Our goal
is to apply the stable manifold theorem in a neighborhood of this point.

To this aim, we study under which conditions on the eigenvalues of ∇2J (θ?) the eigenvalues
of DG(θ?, ψ?) have magnitude less than one. Throughout the proof we consider the same
block-diagonal transformation of DG(θ?, ψ?) as in (21), and we keep the same notations. Let
p ∈ {1, . . . , P}, the eigenvalues of Mp are the roots of the following polynomial,

χMp(X) = X2 − trace(Mp)X + det(Mp) = X2 − (2− γ(α + βλp))X + 1− γ(α + βλp) + γ2λp.

The discriminant of χMp is,

∆Mp = (2− γ(α + βλp))
2 − 4(1− γ(α + βλp) + γ2λp)

= 4 + γ2(α + βλp)
2 − 4γ(α + βλp)− 4 + 4γ(α + βλp)− 4γ2λp

= γ2
(
(α + βλp)

2 − 4λp
)
.

Remark that up to a factor γ2 > 0, this is the same discriminant as in (8) from Section 3.1.
Therefore, we can once again use Lemma 5 to deduce that ∆Mp is non-positive if and only if

αβ ≤ 1 and λp ∈
[

2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2

]
. We split the study with respect to the sign

of ∆Mp .

• If ∆Mp > 0, then Mp has two real eigenvalues,{
σp,+ = 1− 1

2
γ(α + βλp) + 1

2
γ
√

(α + βλp)2 − 4λp

σp,− = 1− 1
2
γ(α + βλp)− 1

2
γ
√

(α + βλp)2 − 4λp
.

We then study whether the magnitudes of the eigenvalues are smaller or larger than 1,
the computations are very similar to those of Section 3.1. If λp < 0, then |(α + βλp)| <√

(α + βλp)2 − 4λp, so σp,+ > 1 and σp,− < 1, so we have at least one eigenvalue with
magnitude larger than one. If λp = 0, then σp,+ = 1 and |σp,−| = |1− γα| ≤ 1.2

In order to be exhaustive, remark that if λp > 0, then (α + βλp) >
√

(α + βλp)2 − 4λp,
so 0 ≤ σp,+ < 1 and −∞ < σp,− < 1, so the bounds enforced on γ ensure that both
eigenvalues have magnitude less than 1. This is indeed the case whenever −σp,− <

1, which is equivalent to γ
[
α + βλp +

√
(α + βλp)2 − 4λp

]
< 4 and the latter always

holds true. Indeed, when αβ > 1, one can show that the function x > 0 7→ α + βx +√
(α + βx)2 − 4x is increasing (by differentiating it). Then, using Assumption 2 and the

upper bound enforced on γ it holds,

γ

[
α + βλp +

√
(α + βλp)2 − 4λp

]
<

(α + βL∇J )−
√

(α + βL∇J )2 − 4L∇J
2L∇J

[
(α + βL∇J ) +

√
(α + βL∇J )2 − 4L∇J

]
<

4L∇J
2L∇J

= 2 < 4. (22)

2This is ensured by the boundaries enforced on γ as shown in the proof of Theorem 11 in Section B.3.
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On the other hand, when αβ ≤ 1, by studying again the function x > 0 7→ α + βx +√
(α + βx)2 − 4x, one can show3 that,

α + βλp +
√

(α + βλp)2 − 4λp ≤ max
(

2α, α + βL∇J +
√

(α + βL∇J )2 − 4L∇J

)
. (23)

Then if the maximum in the right-hand side of (23) is 2α, it holds,

γ

[
α + βλp +

√
(α + βλp)2 − 4λp

]
≤ 2αγ ≤ 2αβ ≤ 2 < 4,

and if the maximum is the other value, we use (22) again. To summarize, when ∆Mp > 0,
λp ≥ 0 ⇐⇒ |σp,+| ≤ 1 and |σp,−| ≤ 1.

• If ∆Mp ≤ 0 then this implies that λp ≥ 0 so (θ?, ψ?) 6∈ S<0 and we do not need additional
arguments. However, for the sake of completeness, we check whether the manifold in
Theorem 10 may have positive measure around any local minimizer with non-singular
Hessian (in particular around any minimizer of a Morse function). The eigenvalues of Mp

are, {
σp,+ = 1− 1

2
γ(α + βλp) + i

2
γ
√

4λp − (α + βλp)2

σp,− = 1− 1
2
γ(α + βλp)− i

2
γ
√

4λp − (α + βλp)2
.

Both eigenvalues have the same magnitude,

|σp,+|2 = |σp,−|2 =

(
1− 1

2
γ(α + βλp)

)2

+
1

4
γ2(4λp− (α+βλp)

2) = 1−γ(α+βλp)+γ2λp,

so,

|σp,+|2 < 1 ⇐⇒ −γ(α + βλp) + γ2λp < 0 ⇐⇒ (γ − β)λp < α ⇐⇒ γ < β +
α

λp
.

This is always true since,

γ <
1

2
(β +

α

L∇J
)−

√
(α + βL∇J )2 − 4L∇J

2L∇J
≤ 1

2
(β +

α

L∇J
) ≤ β +

α

λp
.

We just proved that the eigenvalues of DG(θ?, ψ?) have magnitude less than one if and only if
(θ?, ψ?) ∈ S \ S<0.

We can now use the stable manifold theorem. Let (θ?, ψ?) ∈ S<0. Let an initialization
(θ0, ψ0) such that the associated realization (θk, ψk)k∈N of INNA converges to (θ?, ψ?). Consider
the manifold Wsc(θ?, ψ?) and the neighborhood Ω as defined in Theorem 10. Since (θk, ψk)k∈N
converges, there exists k0 ∈ N such that for all k ≥ k0, (θk, ψk) ∈ Ω, so according to Theorem 10,
∀k ≥ k0, (θk, ψk) ∈ Ω ∩Wsc(θ?, ψ?). Rewriting this with the operator G, ∀k ≥ k0, Gk(θ0, ψ0) ∈
Ω ∩Wsc(θ?, ψ?), and hence ∀k ≥ k0,

Gk(θ0, ψ0) ∈
⋃
j∈N

G−j (Ω ∩Wsc(θ?, ψ?)) , (24)

where G−j (Ω ∩Wsc(θ?, ψ?)) corresponds to all the initial conditions such that INNA has
reached Ω ∩Wsc(θ?, ψ?) after j iterations. Let

W(θ?, ψ?) =

{
(θ0, ψ0) ∈ RP × RP

∣∣∣∣Gk(θ0, ψ0) −−−−→
k→+∞

(θ?, ψ?)

}
,

3The proof is similar to the one of Lemma 14 proved in Section B.3.
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the set of all initial conditions such that INNA converges to (θ?, ψ?). From (24), it holds that,

W(θ?, ψ?) ⊂
⋃
j∈N

G−j (Ω ∩Wsc(θ?, ψ?)) . (25)

Then, we showed that since (θ?, ψ?) ∈ S<0, then DG(θ?, ψ?) has at least one eigenvalue with
magnitude strictly larger than one, so according to the stable manifold theorem, the dimension
of Wsc(θ?, ψ?) is strictly less than 2P , hence this manifold has zero measure. By assumption
the step-size γ is chosen such that G is a local diffeomorphism (from Theorem 11), so ∀j ∈ N,
G−j is also a local diffeomorphism, hence it maps zero-measure sets to zero-measure sets. As
a result, the right-hand side in (25) is a countable union of zero-measure sets, so it has zero
measure, as well as W(θ?, ψ?).

This proves the theorem since Assumption 1 guarantees that there is at most a countable
number of critical points. So

⋃
(θ?,ψ?)∈S<0

W(θ?, ψ?) is a countable union of zero-measure sets
so it has zero measure.

B.3 Proof of Theorem 11

To prove Theorem 11, we introduce three technical lemmas.

Lemma 12. For any α > 0 and β > 0 such that αβ > 1, the function

x ∈ R>0 7→
β

2
+

α

2x
−
√

(α + βx)2 − 4x

2x

is continuous and decreasing both on R>0 and R<0.

Proof of Lemma 12. Let α > 0 and β > 0 such that αβ > 1. The function x ∈ R>0 7→
β
2

+ α
2x
−
√

(α+βx)2−4x

2x
is clearly C∞(R>0), and its first-order derivative is the function x ∈

R>0 7→ −α
√

(βx+α)2−4x+(2−αβ)x−α2

2x2
√

(βx+α)2−4x
. Since the denominator is always positive, we study the

numerator of this derivative: define h : x ∈ R>0 7→ −α
√

(βx+ α)2 − 4x− (2− αβ)x+ α2. We
will prove that h is negative by differentiating it: for all x ∈ R>0,

∂h

∂x
(x) = −α(2β(βx+ α)− 4)

2
√

(βx+ α)2 − 4x
+ αβ − 2. (26)

∂2h

∂x2
(x) = − 4α(αβ − 1)

((βx+ α)2 − 4x)
3
2

. (27)

Since αβ > 1, for all x ∈ R>0, ∂2h
∂x2

(x) < 0 and hence for all x ∈ R>0, ∂h
∂x

(x) < limt→0
∂h
∂x

(t) = 0.
So h is also decreasing on R>0, and limx→0 h(x) = 0, so for all x ∈ R>0, h(x) ≤ 0 and the claim
is thus proved on R>0. The proof is very similar on R<0 except that h is increasing on R<0 but
limx→0 h(x) = 0, hence the result.

Lemma 13. For α > 0, β > 0 such that αβ ≤ 1, the function

x ∈ R<0 7→
β

2
+

α

2x
−
√

(α + βx)2 − 4x

2x

is continuous and increasing on R<0.
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Proof of Lemma 13. The proof follows the exact same steps as those of the proof of Lemma 12,
except that in (27), ∂2h

∂x2
is always positive on R<0, and we use that to deduce that ∂h

∂x
defined

in (26) is negative on R<0. So h is decreasing on R<0 and since h(0) = 0 we eventually obtain
the result.

Lemma 14. Let α > 0, β > 0 such that αβ ≤ 1, the function

x ∈ R>0 \ [
2− αβ
β2

− 2
√

1− αβ
β2

,
2− αβ
β2

+
2
√

1− αβ
β2

] 7→ β

2
+

α

2x
−
√

(α + βx)2 − 4x

2x

is continuous and increasing for x ∈
(

0, 2−αβ
β2 − 2

√
1−αβ
β2

)
and continuous and decreasing for

x ∈
(

2−αβ
β2 + 2

√
1−αβ
β2 ,+∞

)
.

Proof of Lemma 14. Let α > 0, β > 0 such that αβ ≤ 1. Denote by x− = 2−αβ
β2 − 2

√
1−αβ
β2 and

x+ = 2−αβ
β2 + 2

√
1−αβ
β2 The function x ∈ R>0 \ (x−, x+) 7→ β

2
+ α

2x
−
√

(α+βx)2−4x

2x
is C∞ on (0, x−)

and on (x+,+∞). Its first-order derivative is x ∈ R>0 \ (x−, x+) 7→ −α
√

(βx+α)2−4x+(2−αβ)x−α2

2x2
√

(βx+α)2−4x
.

The denominator is positive, so we focus on the numerator, define h : x ∈ R>0 \ (x−, x+) 7→
−α
√

(βx+ α)2 − 4x − (2 − αβ)x + α2. For all x ∈ R>0 \ (x−, x+), the first and second-order
derivatives of h are given by (26) and (27) respectively.

Since αβ < 1, ∂2h
∂x2

is always positive, so ∂h
∂x

is increasing on both intervals. First, when
x → 0 with 0 < x < x−, ∂h

∂x
(x) → 0, so ∂h

∂x
is positive on (0, x−) and h is increasing on

(0, x−). Since h(0) = 0 and h is increasing, we proved the first part of the lemma. Then, when
x → +∞, ∂h

∂x
→ −2, so ∂h

∂x
is negative on (x+,+∞) and h is decreasing on (x+,+∞). Finally,

h(x+) = −4(1−αβ)
β2 − 2(2−αβ)

√
1−αβ

β2 ≤ 0.

We finally use these lemmas to prove the theorem.

Proof of Theorem 11. Let (θ, ψ) ∈ RP × RP . Since J is C2(RP ) then G is C1(R2P ) and the
Jacobian matrix DG(θ, ψ) can be transformed into a block diagonal matrix as in (21) where
for any p ∈ {1, . . . , P}, Mp is a 2× 2 block of the diagonal and λp is the associated eigenvalue
of J (θ). To prove that G is a local diffeomorphism we prove that DG(θ, ψ) is invertible (i.e.,
that it has non-zero determinant) and then use the local inversion theorem. It holds that
det(DG(θ, ψ)) =

∏P
p=1 det(Mp), and for each p ∈ {1, . . . , P},

det(Mp) = (1− γ(α− 1

β
)− γβλp)(1−

γ

β
)− γ

β
γ(α− 1

β
) = 1− γ(α + βλp) + γ2λp. (28)

Let p ∈ {1, . . . , P}, we want to choose γ such that det(Mp) 6= 0 for any (θ, ψ) ∈ RP ×RP , hence
for any λp ∈ [−L∇J , L∇J ] (since the eigenvalues are bounded by L∇J from Assumption 2).

First, if λp = 0, from (28), we must take γ 6= 1/α. From now on, we assume λp 6= 0, so (28)
is a second-order polynomial in γ and its discriminant is ∆γ = (α + βλp)

2 − 4λp. Notice that
∆γ is a polynomial in λp and is exactly the discriminant that we studied in Section 3.1; its sign
is given by Lemma 5. When this discriminant is non-negative, there exists two real roots to
(28), γ+ = (α+βλp)

2λp
+

√
(α+βλp)2−4λp

2λp
= β

2
+ α

2λp
+

√
(α+βλp)2−4λp

2λp

γ− = (α+βλp)

2λp
−
√

(α+βλp)2−4λp

2λp
= β

2
+ α

2λp
−
√

(α+βλp)2−4λp

2λp

. (29)

As before, we split the study with respect to the value of αβ.
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• If αβ > 1, then ∆γ ≥ 0 and the roots of det(Mp) are given by (29).

– First, when λp < 0,
√

(α + βλp)2 − 4λp > |α + βλp|, so γ+ < 0 and any positive
choice of γ will never be equal to γ+ in this case. Then by Lemma 12, γ− is a
decreasing function of λp for λp < 0 and when λp → 0, γ− → 1/α (using L’Hôpital’s
rule), this yields a first condition γ < 1/α.

– When λp > 0, observe that γ+ ≥ γ− > 0 so we focus the study on γ−. Lemma 12
exactly states that γ− is a decreasing function of λp > 0. Since J has L∇J -Lipschitz

gradient, λp ≤ L∇J , so, for all λp ∈ (0, L∇J ], γ− ≥ β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

.

Note in addition that when λp → 0, γ− → 1/α, this is a simple way to prove that

1/α > β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

when αβ > 1.

To summarize, we had three conditions, γ 6= 1/α, γ < 1/α and γ < β
2

+ α
2L∇J

−√
(α+βL∇J )2−4L∇J

2L∇J
and we proved that the latter implies the first-two conditions. Re-

mark that the condition γ < β holds but is not necessary in the case αβ > 1, it is present
in the statement of the theorem to keep it as simple as possible.

• We now assume that αβ ≤ 1.

– If λp < 0, then ∆γ > 0 and the roots are given by (29). As above, , it holds that√
(α + βλp)2 − 4λp > |α + βλp|, so γ+ < 0. Then Lemma 13 states that γ− is an

increasing function of λp < 0, and when λp → −∞, γ− → β. So we need γ < β.

– If λp > 0, then whenever λp ∈ [2−αβ
β2 − 2

√
1−αβ
β2 , 2−αβ

β2 + 2
√

1−αβ
β2 ], there are no real roots

so det(Mp) 6= 0 regardless the choice of γ > 0. If λp does not belong to interval
previously mentioned, the roots are given by (29). Remark that γ+ > γ− > 0 so

we focus on γ−. Using Lemma 14, γ− is increasing on (0, 2−αβ
β2 − 2

√
1−αβ
β2 ) and tends

to 1/α when λp → 0 (using L’Hôpital’s rule). The same lemma also state that γ−

is decreasing on (2−αβ
β2 + 2

√
1−αβ
β2 ,+∞), so using the L∇J -Lipschitz gradient of J ,

γ− ≤ β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

on this interval. Note however that we do not

necessarily have 1/α > β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

.

Overall, for αβ ≤ 1 we must have 0 < γ < min

(
β
2

+ α
2L∇J

−
√

(α+βL∇J )2−4L∇J
2L∇J

, 1
α
, β

)
and

αβ ≤ 1 =⇒ β ≤ 1/α hence the result.

In every case we proved that the conditions mentioned in the theorem are sufficient to ensure
that for all (θ, ψ) ∈ RP × RP , det(DG(θ, ψ)) 6= 0. So by the local inversion theorem, G is a
local diffeomorphism from RP × RP to RP × RP .

C Proof of convergence of INNA

The proof of Theorem 8 relies on a Lyapunov argument stated in the following lemma.

Lemma 15. Assume that Assumption 2 holds and α > 0. Let (θ0, ψ0) ∈ RP × RP , and let
γ > 0 such that (18) holds. Let (θk, ψk)k∈N be a sequence generated by INNA with this step-size
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and initialized at (θ0, ψ0). Then the sequence (Ek)k∈N defined for all k ∈ N by

Ek = (1 + αβ − γα)J (θk) +
1

2
‖(α− 1

β
)θk +

1

β
ψk‖2 (30)

is decreasing, converges, and there exists C1 > 0 and C2 > 0 such that for all K ∈ N,

C1

K∑
k=0

‖θk+1 − θk‖2 + C2

K∑
k=0

‖∇J (θk)‖2 ≤ E0 − EK+1 < +∞. (31)

Proof of Lemma 15. Consider INNA with the choice of step-size stated in the lemma, and let
(θk, ψk)k∈N be the iterates of INNA introduced in the lemma. We first introduce some notations:
define a = α− 1

β
and b = 1

β
. For all k ∈ N, denote also ∆θk = θk+1 − θk and ∆ψk = ψk+1 − ψk.

With these notations, for all k ∈ N INNA can be rewritten as follows,{
∆ψk = −γaθk − γbψk
∆θk = ∆ψk − γβ∇J (θk)

. (32)

To simplify the notations denote also µ = 1 + αβ − γα, which is positive since γ < 1/α + β.
Now, let k ∈ N, we aim to bound the difference Ek+1 − Ek by some non-positive quantity.

First, using the L∇J -Lipschitz continuity of ∇J , we have a so-called descent lemma (see e.g.,
Bertsekas et al. 1998, Proposition A.24):

µJ (θk+1)− µJ (θk) ≤ µ〈∇J (θk),∆θk〉+
µL∇J

2
‖∆θk‖2,

which according to (32), can equivalently be rewritten as,

µJ (θk+1)− µJ (θk) ≤ −µ〈
∆θk −∆ψk

γβ
,∆θk〉+

µL∇J
2
‖∆θk‖2. (33)

We save this for later and now turn our attention to the other term in Ek+1 − Ek,

1

2
‖aθk+1 + bψk+1‖2 − 1

2
‖aθk + bψk‖2 =

1

2
‖aθk + a∆θk + bψk + b∆ψk‖2 − 1

2
‖aθk + bψk‖2.

We expand this and use the fact that aθk + bψk = −∆ψk/γ,

1

2
‖aθk + a∆θk + bψk + b∆ψk‖2 − 1

2
‖aθk + bψk‖2

=
1

2
‖aθk + bψk‖2 +

1

2
‖a∆θk + b∆ψk‖2 + 〈aθk + bψk, a∆θk + b∆ψk〉 −

1

2
‖aθk + bψk‖2

=
1

2
‖a∆θk + b∆ψk‖2 − 1

γ
〈∆ψk, a∆θk + b∆ψk〉

=
a2

2
‖∆θk‖2 +

b2

2
‖∆ψk‖2 + ab〈∆θk,∆ψk〉 −

a

γ
〈∆θk,∆ψk〉 −

b

γ
‖∆ψk‖2.

(34)

Then, we rewrite (34) only as functions of ∆θk and ∆θk −∆ψk as we did in (33). To do so, we
use

‖∆ψk‖2 = ‖∆θk −∆ψk‖2 + ‖∆θk‖2 − 2〈∆θk,∆θk −∆ψk〉,

and
〈∆θk,∆ψk〉 = ‖∆θk‖2 − 〈∆θk,∆θk −∆ψk〉.
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Using these in (34) we obtain,

1

2
‖aθk+1 + bψk+1‖2 − 1

2
‖aθk + bψk‖2 =

(
a2

2
+
b2

2
+ ab− a

γ
− b

γ

)
‖∆θk‖2

+

(
b2

2
− b

γ

)
‖∆θk −∆ψk‖2 +

(
−b2 − ab+

a

γ
+

2b

γ

)
〈∆θk,∆θk −∆ψk〉.

We then simplify the factors using the identity a+b = α, as well as a2

2
+ b2

2
+ab = 1

2
(a+b)2 = α2

2
,

and −b2 − ab = −α/β which yields,

1

2
‖aθk+1 + bψk+1‖2 − 1

2
‖aθk + bψk‖2

=

(
α2

2
− α

γ

)
‖∆θk‖2 +

(
1

2β2
− 1

γβ

)
‖∆θk −∆ψk‖2 +

(
−α
β

+
α

γ
+

1

γβ

)
〈∆θk,∆θk −∆ψk〉.

(35)

We can finally combine (33) and (35),

Ek+1 − Ek ≤
(
µL∇J

2
+
α2

2
− α

γ

)
‖∆θk‖2 +

(
1

2β2
− 1

γβ

)
‖∆θk −∆ψk‖2

+

(
− µ

γβ
+

1 + αβ − γα
γβ

)
〈∆θk,∆θk −∆ψk〉.

(36)

Then, µ = 1 + αβ − γα is specifically chosen so that the last term in (36) vanishes, so,

Ek+1 − Ek ≤
(
µL∇J

2
+
α2

2
− α

γ

)
‖∆θk‖2 +

(
1

2β2
− 1

γβ

)
‖∆θk −∆ψk‖2. (37)

To prove the decrease of (Ek)k∈N, it remains to justify that both factors in (37) are negative.
First, the condition γ < 2β in (18) is equivalent to 1

2β2 − 1
γβ
< 0. Then,

µL∇J
2

+
α2

2
− α

γ
< 0 ⇐⇒ µL∇J γ + α2γ − 2α < 0

⇐⇒ − αL∇J γ2 +
(
α2 + (1 + αβ)L∇J

)
γ − 2α < 0.

A simpler sufficient condition for this to hold is (α2 + (1 + αβ)L∇J ) γ − 2α < 0 which is
equivalent to γ < 2α/ (α2 + (1 + αβ)L∇J ), and the latter holds true according to (18). So
the sequence (Ek)k∈N is a decreasing. It is also lower-bounded since J is lower-bounded, so it
converges.

It remains to prove the second part of the lemma. Let K ∈ N, we sum (37) from 0 to K.

K∑
k=0

Ek+1 − Ek ≤
(
µL∇J

2
+
α2

2
− α

γ

) K∑
k=0

‖∆θk‖2 +

(
1

2β2
− 1

γβ

) K∑
k=0

‖∆θk −∆ψk‖2.

The left-hand side is a telescopic series. As for the right-hand side, from (32) it holds that for
all k ∈ N, ∆θk −∆ψk = −γβ∇J (θk). So,

EK+1 − E0 ≤
(
µL∇J

2
+
α2

2
− α

γ

) K∑
k=0

‖∆θk‖2 +

(
γ2

2
− γβ

) K∑
k=0

‖∇J (θk)‖2.
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Denote finally, C1 = −
(
µL∇J

2
+ α2

2
− α

γ

)
> 0 and C2 = −

(
γ2

2
− γβ

)
> 0, it follows that,

C1

K∑
k=0

‖θk+1 − θk‖2 + C2

K∑
k=0

‖∇J (θk)‖2 ≤ E0 − EK+1.

And the right-hand side is finite since (Ek)k∈N converges.

We also need the following lemma.

Lemma 16 (Lange (2013, Proposition 12.4.1)). If a bounded sequence (uk)k∈N in RP satisfies,

lim
k→+∞

‖uk+1 − uk‖ = 0,

then the set of accumulation points of (uk)k∈N is connected. If this set is finite then it reduces
to a singleton and (uk)k∈N converges.

We can now prove Theorem 8.

Proof of Theorem 8. Assume that α > 0. Let (θ0, ψ0) ∈ RP×RP , and consider INNA with step-
size γ > 0 such that (18) holds. Denote (θk, ψk)k∈N the iterations of INNA initialized at (θ0, ψ0).
By direct application of Lemma 15, and in particular due to (31),

∑K
k=0 ‖∇J (θk)‖2 < +∞ so

limk→+∞ ‖∇J (θk)‖2 = 0 and similarly, limk→+∞ ‖θk+1 − θk‖2 = 0. From (16), we also have,

‖(α− 1

β
)θk +

1

β
ψk‖2 =

1

γ2
‖ψk+1 − ψk‖2 ≤ 2

γ2
‖θk+1 − θk‖2 + 2β2‖∇J (θk)‖2 −−−→

k→∞
0. (38)

From Lemma 15, the sequence (Ek)k∈N defined in (30) converges. Let k ∈ N, since Ek =
(1 +αβ − γα)J (θk) + 1

2
‖(α− 1

β
)θk + 1

β
ψk‖2 and we just proved in (38) that the second term in

Ek converges, this implies that (J (θk))k∈N converges as well.
So far we proved the first part of the theorem. In particular since limk→+∞ ‖∇J (θk)‖2 = 0

and ∇J is continuous, any accumulation point (i.e., the limit of any sub-sequence of iterates)
is critical. We now assume that the critical points are isolated (Assumption 1) and that the
sequence (θk)k∈N is uniformly bounded on RP .

According to Lemma 16, since (θk)k∈N is bounded and limk→+∞ ‖θk+1 − θk‖ = 0, the set of
accumulation points of (θk)k∈N is connected. Yet, accumulation points are critical points, which
are assumed to be isolated. So the set of accumulation points of (θk)k∈N reduces to a singleton
and using again Lemma 16, (θk)k∈N converges to a critical point.
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