
HAL Id: hal-03428073
https://ut3-toulouseinp.hal.science/hal-03428073v2

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-Effective Dynamic Optimisation for Multi-Cloud
Queries

Damien T Wojtowicz, Shaoyi Yin, Franck Morvan, Abdelkader Hameurlain

To cite this version:
Damien T Wojtowicz, Shaoyi Yin, Franck Morvan, Abdelkader Hameurlain. Cost-Effective Dy-
namic Optimisation for Multi-Cloud Queries. IEEE 14th International Conference on Cloud Com-
puting (CLOUD 2021), IEEE Computer Society under the auspice of the Technical Commit-
tee on Services Computing (TCSVC), Sep 2021, Chicago (virtual), United States. pp.387-397,
�10.1109/CLOUD53861.2021.00052�. �hal-03428073v2�

https://ut3-toulouseinp.hal.science/hal-03428073v2
https://hal.archives-ouvertes.fr

Cost-Effective Dynamic Optimisation for
Multi-Cloud Queries

Damien T. Wojtowicz, Shaoyi Yin, Franck Morvan and Abdelkader Hameurlain
IRIT Laboratory

Paul Sabatier University, Toulouse, France
{damien.wojtowicz,yin,morvan,hameurlain}@irit.fr

Abstract—The provision of public data through various
Database-as-a-Service (DBaaS) providers has recently emerged
as a significant trend, backed by major organisations. This paper
introduces Nebula, a non-profit middleware providing multi-
cloud querying capabilities by fully outsourcing its users’ queries
to the involved DBaaS providers. First, we propose a quoting
procedure for those queries, whose need stems from the pay-per-
query policy of the providers. Those quotations contain monetary
cost and response time estimations, and are computed using
provider-generated tenders. Then, we present an agent-based
dynamic optimisation engine that orchestrates the outsourced
execution of the queries. Agents within this engine cooperate
in order to meet the quoted values. We evaluated Nebula over
simulated providers by using the Join Order Benchmark (JOB).
Experimental results showed Nebula’s approach is, in most cases,
more competitive in terms of monetary cost and response time
than existing work in the multi-cloud DBMS literature.

Index Terms—Multi-Cloud, Database-as-a-Service, Dynamic
Query Optimisation, Service-Level Agreement, Middleware

I. INTRODUCTION

Public availability of scientific data, may it be raw obser-
vational records or derived products, is central to scientific
research. In areas such as astronomy, biology or Earth science,
they form the bedrock of research endeavours aiming at
processing and crossing those data in order to unveil new
knowledge. Various data sharing methods co-exist. While file
provisioning is still prevalent and historically ingrained, there
is a trending shift to the cloud1 backed by major organisa-
tions such as the European Space Agency [1] or the United
States’ National Oceanic and Atmospheric Administration [2].
Leveraging the Database-as-a-Service (DBaaS) model is also
an option. In this case, access rights to cloud-hosted databases
are granted to the public2 and, for a fee, users – often called
‘tenants’ in this context – are offered the opportunity to
formulate queries using the provider’s services (a multi-tenant
DBMS). Alternatively, users can download the wanted datasets
and run queries on self-administrated databases, implying they
have both sufficient skills and resources.

This growing availability of data in the cloud raises the
issue of their cross-analysis and by extension the problem of
data integration when sources are hosted on various providers’
infrastructure. This is part of the broader topic of multi-cloud

1See examples at Amazon (https://registry.opendata.aws/) or Google (https:
//cloud.google.com/public-datasets).

2Such datasets are available on Google’s BigQuery. (https://cloud.google.
com/bigquery/public-data).

data management, first mentioned about a decade ago [3],
which is now acknowledged as an area of importance to
both academia and the industry3 for the foreseeable future
[4]. Several multi-cloud DBMSs have been developed so far,
typically as components of a broader service (e.g. a collab-
orative document editing tool [5]). Rather than leveraging
DBaaS, they spawn instances of their system over many virtual
machines hosted on a variety of Infrastructure-as-a-Service
(IaaS) providers. They are designed to support various data
models, may they be associative arrays [5]–[7], relational [8]
or heterogeneous [9], [10]. Some are also designed to leverage
several cloud file storage services [11]–[13]. Most of these
works focus on data placement and replication policies so as
to offer security and availability guarantees. Multi-cloud aspect
to querying is reduced to the choice of one provider perceived
as the best fit to execute the query with respect to a given
objective (e.g. monetary cost or performance).

With the aim of fostering the analysis of cloud-hosted
relational public data by using the infrastructure of their
DBaaS providers, akin to Analytics-as-a-Service [14] but
without the pursuit of profit, this paper introduces Nebula, a
system offering multi-cloud querying capabilities. We adapt
the traditionally vertical mediator-wrapper [15] architecture
(which recently evolved towards the polystore systems [16]) in
the following way: while the interactions with the users and
the overall control flow remain centralised, the execution is
fully outsourced to the cloud providers on a pay-per-use basis.
Hence, Nebula responds to two key challenges stemming from
this context: (i) query pricing in order to define a quotation for
a multi-cloud query and (ii) multi-cloud query optimisation.

Quotations are a necessity given the monetary implications
of cloud computing and the variety of billing models. Indeed,
while some providers, such as Google4, charge per query input
relations size, more complex policies defined into Service-
Level Agreements (SLA) may exist [17] (e.g. based on the
complexity of the query or the computational resources used
during its processing). We propose a quoting method that
abstracts the aforementioned pricing policy heterogeneity. It
consists of decomposing the queries into a directed acyclic
graph (DAG) of sub-queries that will be estimated by their

3Integrated solutions facilitating inter-provider data exchange, such as
Google’s Omni, are emerging at this very moment. https://cloud.google.com/
blog/products/data-analytics/introducing-bigquery-omni

4See BigQuery’s fares at https://cloud.google.com/bigquery/pricing.

target providers. These estimates are further aggregated and
corrected in order to present a price and a response time to
the user, with a given error margin. Nebula acts as a broker
between the providers and its users, who will be directly billed.
The error margin is important to build a trustworthy reputation
because it relaxes users’ accuracy expectations while being
reassuring.

Our system also needs to optimise the multi-cloud queries.
Thanks to cloud computing capabilities, host databases are
seen as black-boxes. Thus, Nebula solely needs to solve a
derived version of the join order problem by minimising the
overall monetary cost of the multi-cloud query while keeping
in mind the estimated response time from the quotation. In
distributed systems, dynamic optimisation engines, especially
agent-based ones, are known to perform better than tradi-
tional, optimise-then-execute engines thanks to their ability
to proactively compensate sub-optimalities at execution time
[18]. Their decentralised nature is not only philosophically
consistent with the way data is stored, but is also an asset
in terms of performance since re-optimisation is performed
by agents that solely consider their potential future load.
Therefore, Nebula’s multi-cloud query optimisation engine
uses agents that cooperate in order to progressively orchestrate
sub-queries execution and inter-provider data transfers in order
to meet the quotation.

This paper is organised as follows. In Section II, we
provide a review of the literature about relational multi-cloud
DBMSs as well as the related topics of personalised SLA
generation and dynamic query optimisation. We then proceed
with the description of Nebula’s architecture (Section III)
and its two core components: its query quotation calculation
method (Section IV) and its agent-based dynamic optimisation
engine (Section V). Experiments are explained and their results
discussed in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Work on multi-cloud data management led to the develop-
ment of several DBMSs. In this section, we provide a brief
survey of those designed for relational databases. Moreover,
since personalised SLA generation in the context of database
queries shares similarities with the idea of quotation, we
briefly survey the literature on this topic. We also touch
upon dynamic query optimisation within distributed systems,
which are essentially similar to a multi-cloud environment
notwithstanding monetary matters.

A. Relational Multi-Cloud DBMSs

Relational multi-cloud DBMSs are federations of instances
of these systems deployed on virtual machines hosted by
various IaaS providers. To our knowledge, there are two
systems capable of managing relational databases.

SCOPE [19] is originally designed as a column store, and
had been extended to support data model heterogeneity [10].
SCOPE serves as the basis for a SaaS application, tied by SLA
to its tenants. It is usually hosted by a single provider, and its
multi-cloud capabilities act as a spillway by outsourcing the

excess workload. Data and task placement choices are multi-
objective: they take into account performance and monetary
cost.

The SHAMC [8] system has been designed as a relational
DBMS that focuses on system availability in the context of
cloud-hosted, encrypted databases. It relies on homomorphic
encryption, which led to the development of algorithms able to
perform relational algebra operations on encrypted data. Data
is fully replicated on all servers in order to (i) dispatch user
queries evenly across all the available databases, and (ii) to
avoid costly inter-provider communications.

None of those systems tackle the multi-cloud query optim-
isation problem: queries are dispatched to be fully executed by
a single instance of the systems. The goal is to optimise the
system as a whole rather than each single query. This stance
stems from the IaaS nature of the cloud resources involved in
both systems.

B. Personalised SLA for DB Queries

The idea behind personalised SLA in the context of DBaaS
is that queries or batches of queries should be priced according
to their complexity as well as user-defined constraints. As
an example, ceteris paribus, tenants would pay less for less
complex queries, and providers would not put their profits at
jeopardy when dealing with more complex ones. Although pre-
vious work considered SLA generation for a specific querying
workload, these differ from our proposal in that (i) they are
designed for a cloud provider or services hosted on a single
cloud (ii) they are not designed to generate SLAs for a single
query and (iii) their scope is broader than Nabula’s quotations.
Since this topic emerged lately, its literature is quite sparse.

The first method [20] has been designed for the deployment
on the cloud of the Myria polystore. It is tailored to facilitate a
choice by the users between several deployment configurations
of Myria called tiers that will ultimately use a single-cloud
IaaS environment. Those tiers have a price and are showcased
with a a workload example and its corresponding predicted
response time.

The second method [17] generates SLA using query tem-
plates according to a user-defined expected query completion
time and a tolerance threshold. The idea is that users are fine
with waiting a bit more for the query to be executed, granted
that they will pay less, hence a price function is defined
according to the users expectations. The base price value of
the function is determined using selectivity intervals.

These two approaches are designed to form the basis of
billing policies. Therefore, they do not seem appropriate in
a multi-cloud environment, since a multi-cloud middleware
would not be able to control its expanses and performances in
the same way a cloud provider does.

C. Dynamic Query Optimisation

Within a DBMS, a query is compiled into an execution
plan in the form of a relational algebra tree. Its performance
are correlated to the amount of input data of each operator.
Hence, an optimiser is involved in the compilation process,

aiming at finding an optimal plan – mostly given estimations of
its operators’ output cardinality (i.e., number of tuples) made
by a cost model. The latter are often inaccurate [21], hence
sub-optimal plans are generated. When executed, they entail
poor performances and – in the context of cloud computing –
avoidable monetary costs.

Dynamic query optimisation consists of progressively ex-
ecuting a query and re-optimising its execution plan using
information gathered at execution [22] so as to mitigate
the effects of estimation errors. Dynamic query optimisation
models fall into two categories. They are either centralised, i.e.
carried out by a single process, or decentralised, i.e. carried
out by a set of cooperating processes that may be executed
on various machines. Re-optimisation can be performed at
different levels of query processing.

Techniques applied at the inter-operator level have been
developed. Their are of interest in a multi-cloud environment
because of the black-box approach to the providers. Two kinds
of approaches can be identified.

First, query scrambling [23] consists of rescheduling or
recomposing pipelines in a query’s execution plan when an
operator fails to deliver on time. This technique was designed
with the aim of reducing waiting times in the execution plan,
which are a lesser issue in a multi-cloud environment, granted
that idling-induced monetary losses – storage fees – are low.

Second, turning operators of the execution plan into mobile
agents across a distributed DBMSs’ sites [18] can lead to a
cooperative execution of the query. By sharing intelligence
about intermediate results they produced, agents trigger re-
estimations of the remaining operators by their counterparts.
The latter may take new migration decisions, which are also
propagated and may dramatically change the execution plan.

Other techniques, such as tuple routing [24], [25], time sli-
cing [26], query decomposition [27], mobile agent-based joins
[28] or operator inflation [29], are either applied at tuple-level
or at intra-operator level. These strategies are unfortunately not
tailored to multi-cloud query optimisation. Indeed, the levels
at which they operate are the providers’ preserve because of
the black-box approach induced by DBaaS.

We take inspiration from the multi-agent method: by incor-
porating monetary costs and changing the objective function,
agents should be able to meet response time and monetary
cost targets.

III. OVERALL SYSTEM DESIGN

Nebula is a middleware that centralises the users interactions
as well as the orchestration of the operations on the providers.
This centralisation is explained by the DBaaS model assumed
for the providers: we suppose they are solely able to execute
queries and administrative DBMS commands. As a side note,
there is no need for the data nor the provider to be public: a
private cloud can also be incorporated to the sources pool.

Fig. 1 depicts the overall architecture of Nebula, as well
as the information flows it hosts. The multi-cloud schema
aggregates the public schema from the data sources. Namely,

Nebula

Multi-cloud schema

Q

R

Quot. Quotation calculator
1

Q, Quot.
@ Res. Dynamic optimiser
2 Agent 1

Agent 2...
GQ

GQ

Provider 1

Provider 2

...

Intermediate
results

Schema requests Tender requests Queries & commands

Figure 1. Overall design of the Nebula system.

it is the set R of couples <R,P> linking a relation R with
its host provider P .

The quotation calculator generates, for a given multi-cloud
query Q written in SQL, several quotations modelled as a
couple <M, δ> with M a monetary cost and δ an estimated
response time. This quotation is computed by decomposing Q
into a directed acyclic graph GQ whose vertices model sub-
queries affected to a provider that will be asked to produce a
tender for the sub-queries. Those are aggregated to compute
the quotations for Q. If the user agrees to one of those
quotations, then Nebula may proceed with Q’s execution.

The execution engine uses agents that communicate with
each other using the query’s graph GQ generated by the
quotation calculator and send queries and commands to the
providers. Those agents seek to minimise the monetary cost
of the multi-cloud query, while still keeping in mind the quoted
response time. Therefore, the performance constraints usually
applied to optimisers are relaxed: the system does not need to
seek the cheapest nor the fastest execution plan, but rather the
one that yields a monetary cost and a response time closer to
the quotation.

IV. QUOTING PROCEDURE AND BILLING POLICY

Nebula’s quoting procedure consists of three steps: (i) query
decomposition into sub-queries, (ii) sub-queries costing using
provider-generated tenders and (iii) identifying several pos-
sible quotes. The general idea of this procedure had been
briefly outlined in previous paper [30]. It is presented more
thoroughly hereafter and extended by introducing the calcula-
tion of several quotes for a query as well as their correction.

A. Query Decomposition

Inspired by historical query decomposition techniques [27]
and recent work on multi-objective query optimisation applied
to IaaS cloud environments [31], our quoting procedure starts
by decomposing a multi-cloud query Q into a directed acyclic
graph (DAG) GQ = <V,E>: each vertex v ∈ V models a
sub-query involving a maximal amount of clauses for a given
combination of providers; each directed edge e ∈ E represents
dependencies between sub-queries.

All queries, may they be multi-cloud queries or sub-queries
within a DAG, are assumed to be of Selection-Projection-
Join type. They are seen as a set of clauses C, and each
clause c ∈ C is a tuple <ϕ, t, A, P> where ϕ is a predicate
involving the set of attributes A from relations hosted by
providers from the set P . The clauses are of type t ∈ {Π, σ},
Π standing for projection (i.e. SQL’s SELECT predicates) and
σ for selection (i.e. SQL’s WHERE predicates). The relational
algebra is voluntarily limited to those operators since they
are sufficient to generate the SQL code of the sub-queries by
deducing the involved relations from A. Moreover, there is no
need to formally encode the joins within Nebula because the
providers will ultimately make their own plans and choices of
algorithms for the execution of the sub-queries.

Algorithm 1 is the procedure that takes the clauses from
a multi-cloud query Q and generates its DAG GQ, with
v ∈ V = <P,P, C(v)> a vertex, and Perm(k,X) all the
k-permutations of a set X . P is a vertex’s assigned provider,
P lists all the providers whose data is used in the attributes of
the clauses set C(v). It consists of progressively building the
DAG layer after layer by (i) grouping clauses by the set of
providers storing their input data, (ii) adding projections for the
attributes that will be needed to run subsequent sub-queries,
(iii) transforming these groups into vertices in the DAG and
(iv) linking them together. In order to limit its size, the query
graph is generated so that the oriented spanning anti-trees
rooted in the DAG’s leaves are left or right linear. An example
of the input C and output GQ for a query is provided in Fig. 2.
Two types of sub-queries can be identified: single-provider
queries (i.e. involving a set of clauses using data from a single
provider) and inter-provider queries (involving clauses using
data originally hosted on at least two providers).

B. Costing the DAG’s Components

Next step in quoting computation is sub-queries costing.
The latter starts by, for each sub-query SQv whose SQL code
is generated from C(v) : v ∈ V , asking its affected provider P
for a tender. It is typically defined as a triple <M, δ, S> with
M a monetary cost, δ a response time and S an estimated
output size, but some of those components may be missing
because of the nature of the various pricing policies used by
the providers. After being computed, values from this triple
are added to v’s tuple. As a consequence, Nebula estimates
the missing ones.

If the price component is missing from the P provider’s
estimation, it may be because it follows a transparent, à la
BigQuery, pricing policy where M is derived directly from
the sum of the input relations size. The system fills this gap
by multiplying the sum of the size of the sub-query’s input
relation by the provider’s querying price factor ε(P) in euro
per gigabyte. There is also the possibility to use slots in a pre-
paid bundle, where n queries have already been paid for a fee
m. In this case, the sub-query’s price is trivially Mv = m

n .
Another missing component could be the response time

δ. Nebula predicts this value by leveraging a 5-neighbours
regressor from the literature [32] that takes as a feature the

Algorithm 1: Query graph generation
Input: C the set of clauses from query Q.
Result: The directed acyclic graph GQ = <V,E>

1 V,E ← ∅ ;
2 Let M map a set of providers K = {c.P | c ∈ C} to a

set of clauses as M : k → {c | c ∈ C, c.P = k} ;
3 foreach k ∈ K by ascending order of |k| do

/* Adding projections required by further

sub-queries */

4 C(k) ←M(k) ∪{
<‘a’,Π, {a}, P rov(a)>| a ∈ c.A, ∀c ∈M(x) ∀x ∈
K : k ⊂ x ∧ Prov(a) ∈ k

}
;

/* Iteration over all permutations of k to

add new vertices and edges */

5 foreach k′ ∈ Perm(|k|, k) do
6 v ← <k′0, k

′, C(k)> ;
7 if |k| > 1 then

/* Linkage with v’s predecessors */

8 B ←
⋃
w∈{k′0,k′|k|}

<w,w′> with

w′ ∈ V ∧ w′.P = k − w ;
9 foreach <a, b> ∈ B do

10 v′ ← v ;
11 Add v′ to V ;
12 Add <a, v′> and <b, v′> to E;

13 else
14 Add v to V ;

15 GQ ← <V,E> ;

DBMS’s optimiser cost. We adapt this model in Nebula in
an online-learning fashion using the river library [33]. The
main interest of online learning is its adjusting capability that
strengthens extrapolations of the model thanks to the ingestion
of new data points, allowing a cold-start.

The last costing step consists of evaluating inter-provider
transfers as well as intermediate results storage costs. Each
edge e = <I,O> ∈ E of the query graph GQ – with
I its input vertex, I.S the estimated size of its intermediate
results and O its output – is modelled as a couple <Me, δe>.
The latter is computed as depicted in (1) and (2), with ε

(E)
Pv

the export cost of a provider Pv (associated to a vertex v)
expressed in euro per gigabyte, ε(S)Pv

the storage cost and bP
the network bandwidth of a provider.

Me =

{
I.S × ε(S)PI

if PI = PO

I.S ×
(
ε
(E)
PI

+ ε
(S)
PO

)
otherwise

(1)

δe =

{
0, if PI = PO

I.S ×min(bPI
, bPO

) otherwise
(2)

C. Quotations’ Components Computation

When looking at GQ through the lenses of flow networks,
vertices modeling maximal single-provider sub-queries are
sources and the set W ⊂ V of vertices without successors

R =

{
<R(rid, x, #sfk), P1>,
<S(sid, y), P2>

}

Q =


SELECT x, y
FROM R, S
WHERE sfk = sid
AND x < 3
AND y > 4;



C =


c1 = <‘x < 3’, σ, {x}, {P1}>,
c2 = <‘y > 4’, σ, {y}, {P2}>,
c3 = <‘sfk = sid’, σ, {sfk, sid}, {P1, P2}>,
c4 = <‘x, y’,Π, {x, y}, {P1, P2}>



GQ =





v1 = <P1, (P1), C(1)>

C(1) =

 c1,
<‘x’, Π, {x}, {P1}>,
<‘sfk’, Π, {sfk}{P1}>



v2 = <P2, (P2), C(2)>

C(2) =

 c2,
<‘y’, Π, {y}, {P2}>,
<‘sid’, Π, {sid}{P2}>



v3 = <P1, (P1, P2), C(3)>

C(3) = {c3, c4}

v4 = <P2, (P2, P1), C(4)>

C(4) = {c3, c4}

Compilation

D
AG

co
nstr

uction

Figure 2. Example of query decomposition for a query Q – formulated over a multi-cloud schema R – and its set of clauses C into a DAG GQ. Within
GQ, vertices v1 and v2 represent single-provider queries; v3 and v4 represent join queries.

(i.e. the last sub-queries to be executed in order to produce
Q’s results) are sinks. Let TQ be the set of oriented spanning
anti-trees over GQ where each Tw = <VTw

, ETw
> ∈ TQ is

rooted in a sink vertex w ∈W . The monetary cost MTw
of a

given Tw is defined as the sum of the costs induced by its sub-
queries, data storage and inter-provider transfers. Its response
time δTw

is trivially the δ-maximal source-to-sink path into
the tree.

As to let its users make their own compromise between
response time and monetary cost, a set of quotations QQ
is computed by Nebula. The latter only contains competitive
quotes: for a given one, other quotations that are both more
expansive and yield a longer response time are not considered.
We formally define QQ in (3), with λ ≥ 1 a coefficient that
helps eliminate less competitive execution plans with a similar
δ. Units are assumed to be cents and milliseconds: when values
are small, differences between candidate quotations may be
outside a λ range and yet remain insignificantly different with
regard to the units, hence the roundings to the nearest integer.

QQ =

 <Mt, δt> | t ∈ TQ,
@ t′ ∈ TQ : t 6= t′

∧ bMt′e ≤ bMte ∧ bδt′e < bλδte

 (3)

D. Quotation Post-Processing

Ultimately, our quotation is the outcome of calculations
based on estimates from the providers’ query optimisers.
Those are possibly dramatically wrong [21]; they might there-
fore lead to calculation errors in the aforementioned steps.

The Nebula execution engine (presented in Section V) is
inspired by dynamic optimisation techniques, which are known
for their ability to reduce the difference between estimations
and the reality of an execution plan. Thus, we postulate that
there will be a quasi-linear relationship between the quotation
and the actual values.

As a consequence, all the prices within QQ are corrected
using a linear regression f . The latter takes as an input the
quoted monetary cost, the total size of the query’s input rela-
tions St and its estimated response time δt. This regression is
implemented in the manner of online learning. This approach
of machine learning eliminates the need for a large set of

training data: linear regressions will be perpetually refined
with new queries. Likewise, a 5-neighbours regressor using
the same arguments as f is used to post-process the estimated
response time of the quotation.

E. Reputation and Billing Policy

Offering strong guarantees over the actual monetary cost
and response time of a query would be unrealistic. Indeed,
early estimation errors in the quotation computation are
snowballed in the later sub-queries’. Moreover, Nebula has
virtually no control over the optimisation of the sub-queries
since providers act according to their global profit targets or
commercial objectives. Hence, all quotations <M, δ> ∈ QQ
are in fact used to define the upper bounds of intervals
[0, (1 + Λ)M] and [0, (1 + Λ)δ], with Λ a fixed tolerance
error ratio. Those represent the range in which the response
time and the monetary cost are expected to be.

Since Nebula is designed as a non-profit broker that con-
nects its users to the cloud providers, not a penny actually
passes through our system: providers bill directly our users.
As a consequence, compensations cannot be offered when
quotations are not met at execution time. Rather than offering
strong guarantees that would require an SLA, we rely on
reputation by transparently providing the users the past queries
history. The administrator-defined Λ ratio helps building the
reputation: by choosing a fair value – say 0.1 – users accuracy
expectations towards the quotations are toned down yet trust
towards Nebula is enabled. When the actual monetary cost or
response time or both for a query exceeds the upper bound
of the interval, the reputation of the Nebula system will be
degraded.

V. MULTI-CLOUD DYNAMIC OPTIMISATION

The distributed database literature shows that agent-based,
decentralised dynamic execution proved its ability to pro-
gressively produce a more efficient execution plan than a
traditional optimiser’s [18], [28]. The key behind their better
performances is their proactivity in avoiding bad operator
order within the execution plans by triggering re-estimations
using newly gathered knowledge about the intermediate res-
ults. Nebula’s optimisation engine is inspired by those works.

It relies on an agent-based model (ABM) in which control
agents are entrusted with the orchestration of the multi-cloud
query execution. Their environment as well as their behaviour
is described hereafter.

A. Agent-Based Model Setup

An ABM within Nebula consists of a set of cooperative
agents A deployed to orchestrate the outsourced execution
of a multi-cloud query Q given a quotation <MQ, δQ>. A
is formally defined as A = {Av | v ∈ V,N+

v = ∅} with
N+
v the set of immediate predecessors of a vertex v ∈ V in

GQ. Namely, an agent is spawned for each vertex associated
to a maximal single-provider sub-query. Upon creation, they
immediately command the execution of their vertex’s sub-
query and thus start their cyclic behaviour. As a consequence
of this initialisation, an agent is actually affected to a provider.

The environment in which agents operate is the DAG GQ
recycled from the quotation computation process of Q. It is
already weighted by estimated monetary costs and response
time of (i) each sub-query associated to the vertices and
(ii) storage and inter-provider transfers modelled by edges.
Each vertex modeling an inter-provider query is also equipped
with a two-slots synchronisation barrier that makes its attached
execution agent wait for the completion of all the prerequisite
to the sub-query execution (e.g. an inter-provider data trans-
fer). Single-provider queries’ vertex have an already risen
barrier.

B. Agents’ Behaviour

Agents within our ABM communicate by altering their
environment: estimatedMv and δv are overwritten either with
real values or re-estimations when new knowledge is gathered.
When an agent Av ∈ A associated to a vertex v chooses a new
vertex v′ ∈ N−v (N−v being the set of immediate successors of
a vertex v) to attach to, it communicates its decision removing
from GQ all the vertices now unreachable by the agents.

1) Agents’ Goal: During the execution orchestration pro-
cess, each agent Av ∈ A moves forward into GQ by
choosing a new vertex v′ ∈ N−v ∩ VT to attach to, with
N−v being the set of immediate successors of a vertex v and
T = <VT , ET> ∈ TQ the tree returned by the function
defined in (4). Given a tolerance threshold Λ, it consists of
minimising the response time while not exceeding a price
tolerance range. If this minimisation appears to be impossible,
then agents try to reproduce the quoted ratio between monetary
cost and response time in an attempt to minimise both the
response time and the monetary cost.

BestTree 7→ min
t∈TQ


δt if ∃t :Mt ≤ (1 + Λ)MQ

∧ δt ≤ (1 + Λ)δQ∣∣ δt
Mt
− δQ
MQ

∣∣ otherwise
(4)

2) Environment Updates: Updates within the DAG GQ can
be performed by an agent Av at two occasions. The first one
immediately follows the completion of their sub-queries, by
asking the providers to re-estimate all the sub-queries attached

to the set N−v of all the reachable vertices from v. Those new
estimations are also used to re-compute the monetary cost and
duration associated to the relevant GQ’s edges. Note that in
the early execution of Q, this step may be long because of the
amount of vertices’ sub-query to evaluate.

The second case in which an agent modifies the DAG is just
after the choice of its next vertex to associate to. When such
a decision occurs, it means that a part of the search space was
overlooked. It is therefore superfluous, and should be plainly
deleted from GQ. Considering an agent Av who chooses v′,
the set of vertices to be deleted V (v′)

	 contains all the vertices
outside the set of trees within TQ that do not contain v′.

DAG trimming is how agents communicate their choices:
deadlocks induced by diverging quasi-simultaneous decisions
are prevented, hence removing the need of a direct inter-agent
communication and negotiation protocol. Moreover, it turns
out that these alterations reduce the search space to explore
for each decision, thus limiting the algorithmic complexity of
the agents’ behaviour.

3) Agents’ Algorithm: Agents are formalised in Al-
gorithm 2, assuming a function Subquery : C(v) 7→ SQL
generating a SQL query from a vertex’s v set of clauses C(v).
Their cyclic behaviour starts by commanding the execution of
the sub-query modelled by their vertex. It follows by updating
GQ by triggering re-estimations for subsequent sub-queries.
Then, the agent chooses v′ the next vertex to attach to, which
puts him on the path towards what is perceived as the best
execution plan. An inter-provider transfer is ordered if v’s
provider is different from v′’s. Finally, the synchronisation
barrier of v′ is notified so that the ABM can move forward
with the dynamic optimisation of the multi-cloud query.

Fig. 3 exemplifies how the ABM evolves during the pro-
cessing of a query. Agents A1, A2 and A3 are respectively
affected to sub-queries SQ1, SQ2 and SQ3 : they order
their execution by their host provider (e.g. A1 commands
provider P1 to execute SQ1). In step A, SQ2’s execution had
completed, triggering re-estimations of <Me, δe, Se> for all
e ∈ N−2 . By applying (4), A2 chose SQ21 as a next step and
cleaned GQ from now-unreachable edges. The agent waits for
A1 to complete its tasks. In step B, A1 is done and A2 can
order the execution of SQ21 while A3 still waits for SQ3 to
be completed. In step C, SQ3 has been executed by its host
provider, A3 moved the data to SQ213’s provider and marked
it as ready to be handled by A2. In further steps, A2 will
ultimately order the execution of SQ213.

VI. EXPERIMENTS AND RESULTS

Experiments carried out in order to evaluate both our
quotation procedure and our dynamic execution model led to
the implementation of a prototype for the Nebula system as
well as simulated providers. We used real-world data from
the IMDb dataset and real-world queries from the Join Order
Benchmark (JOB) [21] in order to realistically test Nebula.
Comparisons were made with a complete dataset download
approach, as well as a full replication approach inspired from
the literature (e.g. the SHAMC system [8]).

123 132 213 231 312 321

12 13 21 23 31 32

1 2 3
A1 A2 A3

321 123

1 3

123 132 213 231 312 321

12 13 21 23 31 32

1 2 3
321 123

1 3

A1

A2

A3

213

21

1 2 3

A2

A3

213

21

1 2 3

A2

A B C

Figure 3. Evolution of an ABM during the execution of a query involving three providers. Underlined digits are the code of the sub-query’s host provider.

Algorithm 2: Dynamic Execution
Input: GQ =< V,E > the query’s graph, v the node

to which the agent A is attached, and A.P the
provider managed by A

1 while v.P = A.P do
2 Wait for v’s barrier to rise ;
3 <M′v, δ′v>← v.P.execute

(
Subquery(C(v))

)
;

/* Knowledge sharing and re-estimations */

4 Under mutex on GQ do
5 Mv, δv ←M′v, δ′v ;
6 foreach e ∈ E−v do Re-compute Me and δe;
7 foreach w ∈ N−v by ascending order of depth

do
8 Re-estimate Mw, δw and Sw ;
9 foreach e ∈ E−w do Re-compute Me and

δe;

/* Next node choice and GQ trimming */

10 Under mutex on GQ do
11 v′ ← N−v ∩BestTree ;
12 V ← V \ V (v′)

	 ;
13 E ←

{
e | e = <I,O> ∈ E,

14 {I,O} ∩ V (v′)
	 = ∅

}
;

15 if v.P 6= v′.P then
16 v′.P loads intermediate results ;
17 v ← v′ ;
18 Notify v’s barrier ;

A. Experimental Setting

Nebula is implemented as a Python flask API. SQL
queries formulated over the multi-cloud schema are compiled
with the sly library5. All graph-related aspects from Nebula
are handled using networkx [34]. Agents are implemented
using the threads provided by the standard Python library.

1) Simulated Providers: During our experiments, cloud
providers are simulated. Those are also implemented as a
Python flask API6, and use PostgreSQL as a back-end
DBMS. Provider’s fares – listed in Table I – are inspired by
Google’s BigQuery. Their economical model is pay-per-query,
and all the costs, may they be induced by querying, export or
storage, are proportional to the amount of data those operations

5https://sly.readthedocs.io/
6https://flask.palletsprojects.com/en/1.1.x/

handle. Storage costs are usually expressed in monetary units
per gigabyte per month, but we choose for simplicity reasons
to drop the time dimension in this pricing. Thus, storage will
be slightly over-priced as compared with a real setting.

Table I
PROVIDERS’ SPECIFICATIONS. ‘E’ STANDS FOR ‘EXPORT’, ‘Q’ FOR

‘QUERYING’ AND ‘S’ FOR ‘STORAGE’.

Prov. Price (ct/GB) Computer specifications

E Q S

P1 8.50 1.75 0.35 Intel Core i5-7440HQ @ 2.80 GHz
RAM 1× 8 GB DDR4 2400 MHz
SSD NVMe M.2

P2 6.00 1.00 0.20 Intel Core i3-3227U @ 1.90 GHz
RAM 2× 4 GB DDR3 1600 MHz
SSD SATA

P3 2.50 0.25 0.075 Intel Core i5-2520M @ 2.50 GHz
RAM 1× 4 GB DDR3 1333 MHz
HDD SATA

Providers’ tenders are triples <M, δ, S>.M is the product
of the querying cost and the sum of the size of the input
relations S is computed according to the estimated output
cardinality returned by PostgreSQL’s EXPLAIN command.
δ is estimated using a cost-based model adapted from the
literature [32], leveraging a k-neighbours regressor (with k =
5). For a given query, the query’s total cost is extracted
from its execution plan fetched from PostgreSQL’s EXPLAIN
command, and is used to predict a query’s execution time.
This cost is the sum of the cost of all the plan’s operators
executed locally.

2) Benchmark Suite: We used the Join Order Benchmark
(JOB) [21], a set of ad-hoc queries formulated over a data-
base built using data from IMDb7 . Both the database and
the queries aim at reproducing real-world cases of querying
over skewed data, pushing the query optimisers’ selectivity
estimators to their limits. The tables from this database are
distributed thematically over three providers as depicted in
Table II.

3) Comparison Points: Nebula’s quotations and execution
orchestration are compared to three strategies. The first point
of comparison is the static execution approach. For each
quotation computed for a multi-cloud query, its underlying
execution plan is executed in order to evaluate uncorrected

7Data was retrieved using the procedure detailled at https://github.com/
gregrahn/join-order-benchmark/ published alongside the JOB article.

Table II
IMDB DATASET DISPATCHMENT

Provider Theme Nb. of tables Size (MB)

P1 Actors 7 5337
P2 Movies 7 3501
P3 Companies 3 314

Table III
FULL REPLICATION FOLLOWED BY SINGLE-CLOUD EXECUTION TOTAL

MONETARY COST COST AND RESPONSE TIME.

Prov. Cost (€) Time (min)

Repl. Queries Total Repl. Queries Total

P1 0.98 3.95 6.85 110.5 6.15 117.1
P2 0.97 2.26 5.16 95.0 8.5 103.5
P3 0.95 0.56 3.46 > 600 465.4 > 600

quotations accuracy as well as dynamic optimisation worth-
whileness.

The second point of comparison mimics the full replication
strategies followed by single-cloud query execution implemen-
ted in the multi-cloud DBMS literature [8]. Because of their
reliance on IaaS, existing systems do not make use of existing
available data hosted by their underlying providers, and are
therefore replicated on all sites including its original host. As a
consequence, the replication cost for a provider P – computed
as in (5) – takes into account this behaviour. This approach is
tested over the three simulated providers.

M(P)
F-rep =

∑
P ′∈P

∑
R∈RP ′

Size(R)× (ε
(Q)
P ′ + ε

(E)
P ′ + ε

(S)
P) (5)

As depicted in Table III, replication is a big part of the total
cost. Moreover, its duration eclipses the response time of the
workload.

The third point of comparison is a full download of the
dataset, matching an approach where the user downloads the
dataset and subsequently analyses it on their infrastructure.
Its total cost, depicted by (6) (with P the set of all involved
providers, RP the set of relations of a provider P , ε(Q)

P and
ε
(E)
P respectively its billing coefficient for querying and export,

both in euros per GB), is MDL-all = 0.95 €. For the sake
of our experiments, and in all fairness to the other points of
comparison, the response time of each query is assumed to
be the same as P1 in Table III (i.e. the most efficient one),
and the underlying costs are assumed to be the same as P3

(i.e. the cheaper one). The total response time of the workload
δDL-all = 212 min is the sum of the export time for all providers
and the fastest response time of a simulated provider.

MDL-all =
∑
P∈P

∑
R∈RP

Size(R)× (ε
(Q)
P + ε

(E)
P) (6)

However, the latter strategy is difficult to model generically.
Indeed, it implies sufficient locally available resources and

0 20 40 60
0

2

4

6

8

‘Raw’ quotation

St
at

ic

δQ comparison (min)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

‘Raw’ quotation

St
at

ic

MQ comparison (€)

Figure 4. Comparison between the not-yet corrected quotations and the
execution values of their underlying execution plan.

0 20 40 60
0

2

4

6

8

10

‘Raw’ quotation
‘C

or
re

ct
ed

’
qu

ot
at

io
n δQ comparison (min)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

‘Raw’ quotation

‘C
or

re
ct

ed
’

qu
ot

at
io

n MQ comparison (€)

Figure 5. Comparison of the quotations before and after their correction.

skills for the users. Their cost, depending on the dataset and
the complexity of the workload, may range from a couple
hundred euros for a laptop to a several millions euros private
cloud. Those are hidden costs that are hard to take into account
in our experiments. The execution time of the benchmark suite
also heavily depends on the infrastructure.

B. Results and Discussion

Experimental results are described and explained hereafter.
We first show the strengths and limits of our quotation com-
putation method as well as the benefits of its post-processing.
Then, we show that dynamic optimisation manages to be
cheaper than a static approach. Last but not least, we show that
Nebula’s approach is faster and less expansive when leveraging
already available data hosted in the cloud compared to the
multi-cloud DBMS literature [8].

Note that the words ‘static’ and ‘dynamic’ in the subsequent
figures are short forms referring to the nature of the op-
timisation technique used. Consistently with previously used
notations, δQ refers to the response time of a query Q and
MQ its monetary cost.

1) Quotation Accuracy: As Fig. 4 shows, the quotation
calculation method poorly estimates the performances of an
execution plan. When comparing the estimations with its
execution values, the response times are overestimated by up
to an order of magnitude. On the other hand, monetary costs
are underestimated.

These results are unsurprising, as δ and M are derivatives
of estimates from the simulated providers’ underlying DBMS.

0 2 4 6 8 10
0

2

4

6

8

10

‘Corrected’ quotation

D
yn

am
ic

δQ comparison (min)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

‘Corrected’ quotation

D
yn

am
ic

MQ comparison (€)

Figure 6. Comparison between the corrected quotations and the execution
values of resulting of dynamic optimisation. The grey area corresponds to the
tolerance interval with Λ = 0.1.

0 0.5 1 1.5 2 2.5

Response time

Monetary cost
max ≈ 66 →
max ≈ 3.8 →

Dynamic divided by quote ratio

Figure 7. Ratio of the dynamic execution values to their quotation. The grey
area corresponds to the tolerance interval with Λ = 0.1.

Such systems’ optimiser are known to be error prone [21],
occasionally making serious estimation errors, snowballing
into the execution plans and leading to poor cost estimations.
Ultimately, those errors come from selectivity estimation mis-
calculations – a known and well documented problem that
is yet to be solved. Post-processing those estimates using
online learning methods, as depicted in Fig. 5, manages to
lower the response time estimates to more realistic values,
and marginally changes the monetary cost.

As illustrated in Figures 6 and 7, Nebula manages to
produce execution plans that respect the tolerance interval –
with Λ = 0.1 – for 65 % of the benchmark’s queries when it
comes to response time, and for 78 % in terms of monetary
cost. Notwithstanding possible different optimisation choices
because of (4), raising Λ to 0.25 could lead to respective rates
of 69 % and 93 %. These high rates are a positive confidence
booster in our system, as it is quite unlikely that a user will
pay more than the quotation’s price.

0 2 4 6 8
0

2

4

6

8

Static

D
yn

am
ic

δQ comparison (min)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

Static

D
yn

am
ic

MQ comparison (€)

Figure 8. Queries response time δQ and monetary cost MQ comparison
between their static and dynamic execution.

−2 −1.5 −1 −0.5 0 0.5 1

Eδ(Dynamic, Static)

EM(Dynamic, Static)

← min ≈ −17

Relative difference

Figure 9. Relative difference E(x, y) = x−y
x

of response time δ and
monetary cost M between queries’ dynamic and static execution plan.

0 0.2 0.4 0.6 0.8 1

Static

Dynamic

Fraction of the total cost

Storage
Querying
Export

Figure 10. Distribution of the cost breakdown between export, querying and
storage, presented as a ratio of the total cost of the queries.

2) Re-optimisation impact: As shown in Fig. 8, for equi-
valent performance, dynamic optimisation systematically pro-
duces execution plans that are cheaper to execute than static-
ally optimised queries. When looking at the relative difference
in execution time and monetary cost between these two
methods (Fig. 9), it can be seen that in fact half of the queries
actually perform better when re-optimised. However, those
are often comparatively quick to execute: positive relative
difference are typical of several minutes long queries. The
extra monetary cost of static execution is on average the double
of the dynamic execution’s, can be as high as 170 %, and is
rarely significantly less expansive.

Examining the nature of the monetary costs during execu-
tion, Fig. 10 reveals that the proportion of querying costs is
slightly lower in re-optimised execution plans than in static
ones. The opposite trend can be seen for storage costs. It is
explained by the lower amount of data transferred by the re-
optimised plans, as shown in Fig. 11. Indeed, the ratio of data
moved by the static method to the dynamic method is, for
three quarters of the queries, higher than 2.

In a multi-cloud environment with DBaaS providers, the

0 200 400 600
0

200

400

600

Static

D
yn

am
ic

Exported data (MB)
Statistics S

(E)
S /S

(E)
D

Average 2.73
Min 0.01
Q1 0.23
Median 0.55
Q3 1.37
Max 66.42

Figure 11. Comparison between the exported amount of data between the
static (S(E)

S) and the dynamic (S(E)
D) strategy for each query. The table

displays some statistics about the ratio S(E)
S /S

(E)
D .

1.5 2 2.5 3
0

2

4

6

8

10

x
≤

1
.9
4

Full replication

D
yn

am
ic

δQ comparison (min)

0 0.05 0.1 0.15
0

0.1

0.2

x
≤

0.
05

9

Full replication

D
yn

am
ic

MQ comparison (€)

Figure 12. Comparison between the dynamically re-optimised execution
values and their counterparts with a single-cloud execution approach on P2.
The grey areas are offset added because of the full replication costs.

monetary cost of queries is proportional to the total amount
of data they handle and transfers of data are billed twice (at
export and storage). Hence, such results come as no surprise,
since agent-based dynamic optimisation methods are known
for their ability to reduce data transfers over the network.

Response time of queries, however, is not derivable solely
from the quantity of data queried but rather from the combin-
ation of the selectivity factor of each of their operators. As
the latter cannot be estimated in a robust way, orchestration
agents may indeed take bad decisions with respect to their
response time minimisation target, especially when a provider
is significantly cheaper and slower than the others.

3) Comparison with a full replication followed by a single-
cloud execution: The total cost of the benchmark execution
by Nebula is, depending on the target quotation chosen when
several are generated for a query, between 3.94 € and 3.95 €.
The total duration is between 66.4 min and 66.6 min. Compar-
ing these figures with the single-cloud execution results for the
provider P2 previously presented in Table III, it can be seen
that using Nebula allows for up to 58 % better performance
for a lower or equivalent price.

Fig. 12 shows that the main reason why a single-cloud
execution approach is outperformed by Nebula is the data
replication process. However, its amortisation is workload-
dependant, which can erode the advantages of a multi-cloud
approach. On the other hand, the more data to replicate,
the more competitive Nebula is. It is also worth noticing
that a multi-cloud querying approach may, when data origin
and intermediate queries’ selectivity factor are favourable, be
cheaper than a single-cloud execution approach. These res-
ults echo the comparison between centralised and distributed
DBMS: data distribution enables parallelism, which may leads
to better performance.

Last but not least, data replication raises the issue of up-
dating the replicates. Fig. 13 depicts the evolution of the total
price of the workload as it goes assuming two extreme cases:
when the data is up-to-date during the whole process and when
the data changes between each query (therefore requiring a
new replication). When assuming infrequent updates, results
suggest that Nebula may become more expansive at some
point. However, if there are changes in the data sources, then

0 15 30 45
0
1
2
3
4
5
6

Queries

C
um

su
m

(€
)

Single full replication

P2

Nebula

0 15 30 45

100

101

102

Queries

C
um

su
m

(€
)

Full replication for
each query

Figure 13. Cumulative sum of Nebula’s monetary cost MQ for a query Q
and their counterpart on P2, by ascending order of MQ.

either the full replication must be performed again, or update
mechanism must be engineered. The latter implies further
design work on the multi-cloud schema’s metadata. The total
cost for the considered workload could be as high as two
orders of magnitude higher than Nebula’s, notwithstanding
performances degradation. In any case, a multi-cloud querying
approach eliminates this needs and constantly offers access to
the freshest readily available data at all times. This observation
is reminiscent of the comparison between virtual data integ-
ration systems and data warehouses, the latter needing to find
an equilibrium between data freshness and update costs.

VII. CONCLUSION

In this article, we introduced Nebula, a prototype offering
querying capabilities over several relational databases readily
available on various DBaaS infrastructure. Their pay-per-query
model influenced the design of our system, leading to the
development of a quotation computation method as well as
a multi-cloud query optimiser. The former implements an
exhaustive search strategy and relies on providers-generated
tenders in order to estimate the intermediate queries’ monetary
cost and execution time; the latter implements an agent-based
dynamic optimisation strategy. We showed that Nebula does
manage to assess the monetary cost of the multi-cloud queries
it orchestrates, hence enabling trustworthiness of its users vis-
à-vis the quotations. The dynamic optimisation strategy offers
better performances for a better price than the replication
and execution model from the multi-cloud DBMSs literature,
especially when the database is frequently updated.

These encouraging results open up new research possibilit-
ies regarding query optimisation in a multi-cloud environment.
From a technical point of view, in order to overcome the
inherent limits of the exhaustive search, recent moves towards
integration of reinforcement learning techniques to solve the
Join Order Problem [35] could be an inspiration. Mechanisms
to leverage opportunities stemming from the market or to
protect the users from malicious providers should also be
designed. Finally, transcending the relational model to offer
support for heterogeneous data sources, in order to push the
polystore systems in a multi-cloud environment, is an exciting
perspective at a time when diversity is the rule for public data.

ACKNOWLEDGEMENTS

This work has been funded by (i) the LabEx CIMI through
the MCD project and (ii) the French Ministries of Europe
and Foreign Affairs and of Higher Education, Research and
Inovation through the EFES project (Grant number 44086TD),
Amadeus program 2020 (French-Austrian Hubert Curien Part-
nership – PHC). We also thank the International Cooperation
& Mobility (ICM) of the Austrian Agency for International
Cooperation in Education and Research (OeAD-GmbH).

REFERENCES

[1] F. Vuolo, M. Żółtak, C. Pipitone, L. Zappa, H. Wenng, M. Immitzer,
M. Weiss, F. Baret, and C. Atzberger, “Data Service Platform for
Sentinel-2 Surface Reflectance and Value-Added Products: System Use
and Examples,” Remote Sensing, vol. 8, no. 11, p. 938, Nov. 2016.

[2] J. D. L. Beaujardière, “NOAA Environmental Data Management,”
Journal of Map & Geography Libraries, vol. 12, no. 1, pp. 5–27, Jan.
2016.

[3] M. Vukolić, “The Byzantine Empire in the Intercloud,” SIGACT News,
vol. 41, no. 3, p. 105–111, Sep. 2010.

[4] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. Bern-
stein, P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, L. Dong, M. J.
Franklin, J. Freire, A. Halevy, J. M. Hellerstein, S. Idreos, D. Kossmann,
T. Kraska, S. Krishnamurthy, V. Markl, S. Melnik, T. Milo, C. Mohan,
T. Neumann, B. Chin Ooi, F. Ozcan, J. Patel, A. Pavlo, R. Popa,
R. Ramakrishnan, C. Ré, M. Stonebraker, and D. Suciu, “The Seattle
Report on Database Research,” ACM SIGMOD Record, vol. 48, no. 4,
pp. 44–53, Feb. 2020.

[5] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “SPANStore: Cost-Effective Geo-Replicated Storage Spanning
Multiple Cloud Services,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP ’13. Farminton,
USA: ACM, Nov. 2013, pp. 292–308.

[6] D. Bermbach, M. Klems, S. Tai, and M. Menzel, “MetaStorage: A Feder-
ated Cloud Storage System to Manage Consistency-Latency Tradeoffs,”
in 2011 IEEE 4th International Conference on Cloud Computing.
Melbourne, Australia: IEEE Computer Society, Jul. 2011, pp. 452–459.

[7] D. Dobre, P. Viotti, and M. Vukolić, “Hybris: Robust Hybrid Cloud
Storage,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SOCC ’14. New York, USA: ACM, Nov. 2014, pp. 1–14.

[8] L. Wang, Z. Yang, and X. Song, “SHAMC: A Secure and Highly Avail-
able Database System in Multi-Cloud Environment,” Future Generation
Computer Systems, vol. 105, pp. 873–883, Apr. 2020.

[9] M. A. Alzain, B. Soh, and E. Pardede, “MCDB: Using Multi-clouds to
Ensure Security in Cloud Computing,” in 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing. Sydney,
Australia: IEEE Computer Society, Dec. 2011, pp. 784–791.

[10] A. Rafique, D. Van Landuyt, E. Truyen, V. Reniers, and W. Joosen,
“SCOPE: self-adaptive and policy-based data management middleware
for federated clouds,” Journal of Internet Services and Applications,
vol. 10, no. 1, p. 2, Jan. 2019.

[11] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An adaptive
scheme for efficient multi-cloud storage,” in SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, USA, Nov. 2012, pp. 1–10.

[12] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds,” ACM Transac-
tions on Storage, vol. 9, no. 4, pp. 12:1–12:33, Nov. 2013.

[13] M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward Reliable, Secure,
and Cost-Efficient Cloud Storage via Convergent Dispersal,” in USENIX
ATC 15, Santa Clara, USA, 2015, pp. 111–124.

[14] P. P. Jayaraman, C. Perera, D. Georgakopoulos, S. Dustdar, D. Thakker,
and R. Ranjan, “Analytics-as-a-service in a multi-cloud environment
through semantically-enabled hierarchical data processing,” Software:
Practice and Experience, vol. 47, no. 8, pp. 1139–1156, 2017.

[15] G. Wiederhold, “Mediators in the architecture of future information
systems,” Computer, vol. 25, no. 3, pp. 38–49, Mar. 1992.

[16] J. Duggan, J. Kepner, A. J. Elmore, and S. Madden, “The BigDAWG
Polystore System,” SIGMOD Record, vol. 44, no. 2, p. 6, 2015.

[17] S. Yin, A. Hameurlain, and F. Morvan, “SLA Definition for Multi-Tenant
DBMS and its Impact on Query Optimization,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 11, pp. 2213–2226, Nov.
2018.

[18] F. Morvan, M. Hussein, and A. Hameurlain, “Mobile agent cooperation
methods for large scale distributed dynamic query optimization,” in 14th
International Workshop on Database and Expert Systems Applications,
2003. Proceedings., Sep. 2003, pp. 542–547.

[19] A. Rafique, D. Van Landuyt, V. Reniers, and W. Joosen, “Towards
an Adaptive Middleware for Efficient Multi-Cloud Data Storage,” in
Proceedings of the 4th Workshop on CrossCloud Infrastructures &
Platforms, ser. Crosscloud’17. Belgrade, Serbia: ACM, Apr. 2017,
pp. 1–6.

[20] J. Ortiz, V. T. de Almeida, and M. Balazinska, “Changing the Face of
Database Cloud Services with Personalized Service Level Agreements,”
in CIDR. Acilomar, USA: CIDR, 2015, p. 13.

[21] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann, “How good are query optimizers, really?” Proceedings of the
VLDB Endowment, vol. 9, no. 3, pp. 204–215, Nov. 2015.

[22] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M. A. Shah, “Adaptive Query
Processing: Technology in Evolution,” IEEE Bulletin of the Technical
Committee on Data Engineering, vol. 23, no. 2, pp. 7–18, Jun. 2000.

[23] L. Amsaleg, A. Tomasic, M. Franklin, and T. Urhan, “Scrambling
query plans to cope with unexpected delays,” in Fourth International
Conference on Parallel and Distributed Information Systems. Miami
Beach, USA: IEEE Computer Society, Dec. 1996, pp. 208–219.

[24] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M.
Hellerstein, D. Patterson, and K. Yelick, “Cluster I/O with River: making
the fast case common,” in Proceedings of the sixth workshop on I/O in
parallel and distributed systems, ser. IOPADS ’99. New York, USA:
ACM, May 1999, pp. 10–22.

[25] R. Avnur and J. M. Hellerstein, “Eddies: continuously adaptive query
processing,” in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’00. Dallas, USA:
ACM, May 2000, pp. 261–272.

[26] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonaka-
kis, “SkinnerDB: Regret-Bounded Query Evaluation via Reinforcement
Learning,” in Proceedings of the 2019 International Conference on
Management of Data, ser. SIGMOD ’19. New York, USA: ACM,
Jun. 2019, pp. 1153–1170.

[27] E. Wong and K. Youssefi, “Decomposition — a Strategy for Query
Processing,” ACM Transactions on Database Systems (TODS), vol. 1,
no. 3, pp. 223–241, Sep. 1976.

[28] J.-P. Arcangeli, F. Morvan, A. Hameurlain, and F. Migeon, “Mobile
Agents Based Self-Adaptive Join for Wide-Area Distributed Query
Processing,” Journal of Database Management, vol. 15, no. 4, pp. 25–
44, 2004.

[29] D. Agrawal, S. Chawla, B. Contreras-Rojas, A. Elmagarmid, Y. Idris,
Z. Kaoudi, S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, and P. Papotti,
“RHEEM: Enabling Cross-Platform Data Processing,” in Proceedings
of the VLDB Endowment, vol. 11. Rio de Janeiro, Brazil: VLDB
Endowment, Aug. 2018, p. 14.

[30] D. T. Wojtowicz, S. Yin, and F. Morvan, “SLA definition for multi-cloud
queries,” in Actes de la conférence BDA 2020, Paris (online), France,
Oct. 2020, p. 80.

[31] E. Tsamoura, A. Gounaris, and K. Tsichlas, “Multi-objective optimiz-
ation of data flows in a multi-cloud environment,” in Proceedings of
the Second Workshop on Data Analytics in the Cloud, ser. DanaC ’13.
New York, USA: ACM, Jun. 2013, pp. 6–10.

[32] A. Kleerekoper, J. Navaridas, and M. Lujan, “Can the Optimizer Cost
be Used to Predict Query Execution Times?” arXiv:1905.00774 [cs],
May 2019.

[33] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and
A. Bifet, “River: machine learning for streaming data in Python,”
arXiv:2012.04740 [cs], Dec. 2020.

[34] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-
namics, and function using networkx,” Los Alamos National Laboratory,
Los Alamos, USA, Tech. Rep. LA-UR-08-05495; LA-UR-08-5495, Jan.
2008.

[35] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica, “Learn-
ing to Optimize Join Queries With Deep Reinforcement Learning,”
arXiv:1808.03196 [cs], Jan. 2019.

