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Abstract 26 

 27 

Parasitic Aphanomyces species are a global threat to agri- and aquaculture, causing 28 

multimillion USD damage every year. Via the global trade, Aphanomyces has spread across all 29 

continents with exception of South America and Antarctica, and has become a major problem in 30 

pea, sugar beet, fish and crayfish production. The widespread A. euteiches and A. cochlioides 31 

induce root rot diseases in leguminous species and sugar beet respectively. The fish pathogen A. 32 

invadans is the causative agent of Epizootic Ulcerative Syndrome in various fish species whilst 33 

A. astaci infects crayfishes causing crayfish plague. Aphanomyces have developed an efficient 34 

transmission and infection mechanism which allows a rapid colonization and disruption of the 35 

host´s infected tissues. This review presents an overview on the current research on 36 

Aphanomyces genus. We summarise the latest research efforts on four pathogenic Aphanomyces 37 

species, shedding light on the biology of these microorganisms, the pathogenicity factors of these 38 

parasites, the diseases which they cause, their distribution and finally the strategies to control the 39 

diseases.   40 



 

1. Introduction 41 

One of the major threats for both agriculture and aquaculture industries are the 42 

pathogenic oomycetes, a group known to be responsible for many outbreaks of natural host 43 

population (van West, 2006). These oomycetes, which belong to the Stramenopile Kingdom, are 44 

filamentous eukaryotic microorganisms that have spread in both terrestrial and aquatic 45 

ecosystems (Beakes et al., 2012). Morphologically and ecologically similar to fungus, this 46 

phylum was historically considered as a basal fungal lineage (Lévesque, 2011), however genetic 47 

studies revealed that they are phylogenetically related to brown algae (Baldauf et al., 2000; 48 

Gleason et al., 2018). The most studied and notorious species belong to the genus Phytophthora, 49 

such as Phytophthora infestans, responsible for the Irish potato famine (Erwin and Ribeiro, 50 

1996; Haas et al., 2009), Phytophthora palmivora, the causative agent of the cocoa black pod 51 

(Drenth et al., 2013) or Phytophthora sojae which is mainly destructive to soybean (Erwin and 52 

Ribeiro, 1996; Tyler, 2007). Beside this famous oomycete genus, other devastating pathogens 53 

have been identified, such as those belonging to the genus Aphanomyces. Much less studied than 54 

Phytophthora genus (more than 4,900 articles versus less than 350 articles referenced in 55 

Pubmed, consulted in 01-2021), the genus Aphanomyces appears to be an economically major 56 

threat that can affect both plants and aquatic animals (Diéguez-Uribeondo et al., 2009).  57 

Here we reviewed the recent studies about four Aphanomyces species causing devastating 58 

diseases in agri- and aquaculture. We firstly present the biology of these four species and their 59 

distribution in the world, before depicting pathogenicity factors involved in host adaptation. We 60 

then discuss the economic impact of Aphanomyces spp. and recent advances in management of 61 

the diseases. To conclude we propose perspectives for further studies of Aphanomyces spp.  62 

 63 

2. Biology of Aphanomyces genus 64 

 65 

Aphanomyces is a monophyletic genus within Saprolegniales order, it has unique features 66 

in its lifecycle and host range. In this section we review the phylogenetic position of 67 

Aphanomyces genus, describe the different lifestyles and focus on the host range of parasitic 68 

species.  69 



 

2.1 Phylogeny 70 

Phylogenetic studies placed the Aphanomyces genus in the Saprolegnian lineage, an order 71 

that includes also numerous pathogenic species in both plants and aquatic animals (Diéguez-72 

Uribeondo et al., 2009), such as the fish pathogen Saprolegnia, also known as “cotton mould” 73 

(Hulvey et al., 2007). This lineage is in contrast with the Peronosporalean lineage, which mainly 74 

includes plant pathogenic species and diverged from the Saprolegnian lineage in the Early 75 

Mesozoic era (Riethmuller et al., 2002; Beakes et al., 2012; Jiang and Tyler, 2012; Matari and 76 

Blair, 2014). Phylogenetic analysis revealed that the Aphanomyces genus appears to be 77 

monophyletic (Leclerc et al., 2000; Diéguez-Uribeondo et al., 2009) and is clustered in three 78 

major lineages, composed by plant pathogens, aquatic animal pathogens, and saprotrophic or 79 

opportunistic parasites, respectively (Diéguez-Uribeondo et al., 2009) (Figure 1). To date around 80 

40 Aphanomyces species are described occurring in various ecological niches and ranging from 81 

highly specialized parasites to saprotrophic species developing on plant residues or dead animals 82 

(Scott, 1961; Dick, 2001; Johnson et al., 2002). 83 

2.2 Aphanomyces host range 84 

The pathogenic species belonging to the genus Aphanomyces are known to infect a wide 85 

range of different hosts. Depending on the species considered, the host spectrum varies from 86 

plants to vertebrates, and also invertebrates. 87 

On one hand, many plant taxa are susceptible to infection by Aphanomyces species. The 88 

plant pathogen Aphanomyces euteiches, is specialized on perennial or annual plants of the 89 

Fabaceae family, including peas (Pisum sativum L.), alfalfa (Medicago sativa L.), common bean 90 

(Phaseolus vulgaris L.), broad bean (Vicia faba L.), red and white clover (Trifolium pratense L. 91 

and T. repens L., respectively) (Gaulin et al., 2007). Another oomycete plant parasite, 92 

Aphanomyces cochlioides is specialized to parasitize roots of sugar beet (Beta vulgaris L.), 93 

spinach (Spinacia oleracea L.), cockscomb (Celosia argentea L.), and other various species of 94 

Chenopodiaceae and Amaranthaceae (Scott, 1961).  95 

On the other hand, several animal taxa are susceptible to infection by Aphanomyces 96 

species. Firstly Aphanomyces invadans, the causative agent of the Epizootic Ulcerative 97 

Syndrome (EUS), has been reported to interact with more than 160 species of fish (Herbert et al., 98 

2019). It may infect a wide range of estuarine and freshwater fish species (Chinabut, 1998; 99 

Blazer et al., 1999) and is especially virulent to catfish (Roberts et al., 1993) and murrels 100 



 

(Chondar and Rao, 1996). Secondly Aphanomyces astaci the causative agent of the crayfish 101 

plague, is known to associate with crayfish species from Asia, Australia and Europe. A. astaci is 102 

an obligate parasite specialized on freshwater crayfish (Söderhäll and Cerenius, 1999; Diéguez-103 

Uribeondo, 2006). This oomycete is known to have a North American origin, and could 104 

occasionally also be harboured by other decapods such as freshwater crabs or shrimps (Putra et 105 

al., 2016; Svoboda et al., 2017; Martín-Torrijos et al., 2021a). Aphanomyces frigidophilus is 106 

known to infect the eggs of several salmonid species (Ballesteros et al., 2006). The impact of 107 

these pathogens is major since they may cause the devastation of both natural and cultured stocks 108 

of freshwater animals (Söderhäll and Cerenius, 1999; Collas et al., 2016). Lastly, Aphanomyces 109 

sinensis is a pathogen known to infect the Japanese turtle Pelodiscus sinensis, causing small 110 

whitish maculae on the carapace (Takuma et al., 2011). These four Aphanomyces species are the 111 

most notable animal-pathogenic members of the genus. Of these, A. invadans and A. astaci have 112 

by far the greatest economic impact – both of which cause significant losses within the global 113 

aquaculture industry (Iberahim et al, 2018; CABI, 2020a). Hence, the primary focus in terms of 114 

animal-pathogenic Aphanomyces shall be upon these two species. 115 

In several other species belonging to the Aphanomyces genus, some  are predominantly 116 

saprotrophic (i.e., Aphanomyces laevis, Aphanomyces stellatus, Aphanomyces helicoides or 117 

Aphanomyces repetans), but may turn as opportunistic pathogens with no host specialization 118 

(Royo et al., 2004; Patwardhan et al., 2005). 119 

 120 

2.3 Life cycle 121 

The typical life cycle of Aphanomyces spp. includes both asexual and sexual phases for 122 

the plant pathogens while sexual reproduction in animal pathogens is rare or completely absent 123 

(Diéguez-Uribeondo et al., 2009). 124 

 Sexual reproduction involves specialized reproductive structures, oogonia and 125 

antheridia, in which meiosis occurs and gametes are formed. The oogonium produces one to 126 

several oospheres, cellular structures containing haploid nuclei (Malloch, 2007). Antheridia are 127 

structures in which male nuclei are formed (Dick, 1969; Malloch, 2007). Aphanomyces species 128 

such as A. euteiches and A. cochlioides are homothallic, presenting male and female reproductive 129 

structures on the same thallus. Fertilization begins when antheridia develop a fertilization tube 130 



 

which penetrates the oogonium. Male nuclei pass through this tube and enter the oogonium 131 

where they fuse within the oospheres to produce a diploid (Malloch, 2007). 132 

In phytopathogenic Aphanomyces spp. fertilization of the oogonium results in the 133 

formation of oospores, thick-walled zygotes, 18-25 µm in size, which function as resting spores 134 

to survive unfavourable winter conditions (Heffer, 2002; Wu et al., 2018). They are produced in 135 

plant infected tissue and are released in the soil when the plant degrades (Heffer, 2002). 136 

Oospores can remain dormant in the soil for years in the absence of a host, representing a long-137 

lived source of inoculum (Papavizas and Ayers, 1974; Gaulin et al., 2007). Under warm and 138 

moist soil conditions oospore germination is stimulated by the host exudates (Dyer and Windels, 139 

2003). Oospores form a germ tube which develops vegetative hyphae that can directly infect the 140 

host (Dyer and Windels, 2003). 141 

In the asexual stage of plant pathogenic species, vegetative hyphae differentiate to 142 

sporangia in which motile uninucleate zoospores are produced. Primary zoospores equipped with 143 

an anterior “tinsel” flagellum and a posterior “whiplash” flagellum are released in the soil 144 

(Walker and van West, 2007). After evacuation from the zoosporangium primary zoospores 145 

encyst and give rise to secondary zoospores (Papavizas and Ayers, 1974; Sivachandra Kumar et 146 

al., 2020). Secondary zoospores which also present an anterior and posterior flagellum are motile 147 

for a longer period and are determinant for a successful infection (Walker and van West, 2007). 148 

Zoospores swim in water film around soil particles through the root surface where in a few 149 

minutes they adhere, encyst developing a germ tube, penetrate and colonize the tissue (van West 150 

et al., 2003). The invasion events of A. euteiches in pea roots has been described by Papavizas 151 

and Ayers (1974). The germ tube invades the host tissue in the intercellular spaces within 2 152 

hours. In some cases, it enters the cell wall with the formation of an appressorium-like structure. 153 

Within a few hours A. euteiches penetrates the host cortical cells and develops hyphae that 154 

rapidly spread mainly in the intercellular spaces of the root cortex and eventually colonize the 155 

entire root system (Wu et al., 2018). Antheridia and oogonia are formed in the invaded tissue 156 

within few days, likewise in sugar beet once A. cochlioides zoospores have encysted on the root 157 

surface the resulting germ tubes penetrate the host directly or via appressoria (Islam et al., 2003) 158 

leading to a rapid infection within 30-40 minutes after the zoospores adhesion to the root surface 159 

(Islam, 2010). The presence of A. cochlioides mycelia has been observed in the intercellular 160 

spaces of the cortex (Papavizas and Ayers, 1974).   161 



 

In animal pathogenic species zoospores are produced from clusters of primary cysts at the 162 

hyphal tips. As soon as the primary spores are ejected, they immediately cluster around the 163 

sporangial opening and form an achlyoid cluster or “spore ball” at the apical tip of the sporangia 164 

from where secondary flagellated zoospores are released (Vrålstad et al. 2011a). Secondary 165 

zoospores swim in the water column and adhere on the surface of a suitable host.  Once they 166 

have settled, they discard flagella and encyst. Cysts subsequently germinate and develop a germ 167 

tube which penetrates the host (Vrålstad et al., 2011b). Hyphae invade deeper tissue or organs of 168 

a susceptible host, differentiate to zoosporangia which release zoospores prior to or just after the 169 

host´s death (Vrålstad et al. 2011b).  170 

Encysted zoospores of pathogenic Aphanomyces species have also the ability to release a 171 

new generation of zoospores instead of germinating. This event is known as repeated zoospore 172 

emergence (RZE) (Diéguez-Uribeondo et al. 2009). It has been observed that if encystment 173 

occurs in the absence of a favorable host, the crayfish pathogen A. astaci can produce three 174 

consecutive generations of new zoospores before the spore ceases to live (Cerenius and 175 

Söderhäll, 1984).    176 

 177 

2.4 Distribution and diversity 178 

 Pathogenic Aphanomyces species are widely spread around the hemisphere with 179 

cases also reported in South-East Asia, Australia and South Africa (Figure 2). Plant pathogenic 180 

Aphanomyces spp. are detected in the majority of regions where suitable crops are cultivated. 181 

Occurrence of crayfish pathogen A. astaci is mainly found in North America, Europe and Japan 182 

whereas fish pathogen A. invadans is spread around the world except for Europe and South 183 

America. 184 

 185 

2.4.1 Aphanomyces euteiches 186 

Since its first report in peas in Wisconsin by Drechsler in 1925 (Jones and Drechsler, 187 

1925), A. euteiches has been reported as one of the major yield limiting factors in the US 188 

(Gossen et al., 2016), Canada (Wu et al., 2018) France (Quillévéré-Hamard et al., 2018) and 189 

Sweden (Levenfors et al., 2003). Cases of A. euteiches detection were also reported in Australia 190 

(van Leur et al., 2008), China, India, territory of former USSR, former Czechoslovakia, Poland, 191 



 

Italy, Germany (CABI, 2019) and the Netherlands (Oyarzun and van Loon, 1989) (Figure 2). 192 

Unfortunately, no quantitative data on A. euteiches distribution is known for major producing 193 

countries as India, China and Russia. 194 

A. euteiches has a broad host range within the family Fabaceae such as pea, alfalfa, 195 

trifolium, lentil, etc. (Gaulin et al., 2007; Malvick et al., 2009) and cause the greatest economic 196 

damage to pea and lentil crops (Gaulin et al., 2007; Malvick et al., 2009; Ma et al., 2020). The 197 

ability of different A. euteiches pea strains to infect plants was used to identify two pathotypes (I 198 

and III). While both pathotypes are present in North America, only the pathotype I is reported in 199 

France (Wicker et al., 2001). A recent study also indicates that pathotype I is prevalent in 200 

Canadian prairies (Kumar et al 2021). A. euteiches strains isolated from alfalfa fields are 201 

designated as races: the less aggressive race 1 is able to infect susceptible alfalfa genotype 202 

Saranac, but not the tolerant genotype WAPH-1; the more aggressive race 2 genotype overcomes 203 

resistance of WAPH-1 and is able to infect both genotypes (Malvick et al., 2009, Grau et al 204 

1991; Malvick and Grau, 2001). Studies on A. euteiches isolates from US alfalfa fields 205 

demonstrate the emergence of new races (Seitz and Rouse 2012) and the prevalence of the 206 

aggressive race 2, which represents around 45% of all strains, while race 1 represents 11% 207 

(Samac et al., 2017). 208 

 209 

2.4.2 Aphanomyces cochlioides 210 

It was 1929 when A. cochlioides was first identified as the causal agent of the black rot 211 

disease in sugar beet in Michigan (Dreschler, 1929). Despite the restricted host range, this 212 

pathogen has a worldwide distribution and its presence has been reported especially in major 213 

sugar beet producing areas in North America such as The River Valley of Minnesota, North 214 

Dakota, Nebraska and Wyoming, in Canada, Chile, Europe and Japan (Harveson, 2000; Beale et 215 

al., 2002). Although A. cochlioides represents a major constraint in sugar beet production, little 216 

attention has been given to the genotypic variation among A. cochlioides strains in comparison to 217 

the intensively-studied A. euteiches. 218 

 219 



 

2.4.3 Aphanomyces invadans 220 

A. invadans was first isolated in Japan, 1971, from a freshwater fish farm (Egusa and 221 

Masuda, 1971). Over the past half-century, this fish-pathogenic oomycete has spread globally 222 

and has now been isolated from the continents of Asia, North America, Africa and Australia 223 

(OIE, 2016; Iberahim et al., 2018). Recently, molecular techniques for the identification of A. 224 

invadans have been developed and refined (Vandersea et al., 2006; Kamilya and Kollanoor, 225 

2020). Therefore, the global distribution of A. invadans is closely monitored and currently listed 226 

in 28 countries. 227 

A. invadans is a specialized pathogen of fish exclusively (Diéguez-Uribeondo et al., 228 

2009), with over 125 species of fish currently known to be susceptible to infection (Kamilya and 229 

Baruah, 2014), a further 38 additional susceptible fish genera having been recognized since the 230 

authors’ previous study (Baruah et al., 2012). To date, only one genotype of A. invadans has 231 

been recorded (OIE, 2016), with all isolates tested demonstrating fish pathogenicity – 232 

encompassing those from North America (Sosa et al., 2007), Europe (Oidtmann et al., 2008) and 233 

Asia (Yadav et al., 2014). Several Aphanomyces isolates were obtained from Malaysian fish 234 

farms and found to be non-pathogenic to fish under laboratory conditions, however these were 235 

not identified to species level (Afzali et al., 2013). This species propagates solely via asexual 236 

reproduction (Kiryu et al., 2005; Diéguez-Uribeondo et al., 2009). The lack of a sexual life stage 237 

has given rise to the global spread of A. invadans, as a single highly virulent clone, worldwide 238 

over the past 50 years (Lilley et al., 2003; Iberahim et al., 2020). 239 

 240 

2.4.4 Aphanomyces astaci 241 

A. astaci is originally a specific parasite of crayfish originating from the North American 242 

continent (Martín-Torrijos et al., 2021b). North American crayfish species are known to be 243 

healthy carriers, for example such as Procambarus clarkii (red swamp crayfish), Pacifastacus 244 

leniusculus (signal crayfish) and Faxonius limosus (spiny-cheek crayfish) (Souty-Grosset et al., 245 

2006). For several decades, phylogenetic analyses have been performed to better describe and 246 

understand the relationship between A. astaci and its North American hosts. Thus, the Random 247 

Amplification of Polymorphic DNA–Polymerase Chain Reaction (PCR-RAPD) was the first 248 

molecular technique which enabled the description of the genetic diversity of A. astaci, and 249 



 

enabled the characterization of 5 distinct genetic groups. Group A was isolated from specimens 250 

of the native European crayfish Astacus astacus, and is probably related to the first introduction 251 

of A. astaci in Europe during the 19
th

 century (Huang et al., 1994). Group B was isolated from 252 

signal crayfish P. leniusculus Swedish specimens (originally from Canada) (Huang et al., 1994), 253 

and appears to be responsible for many outbreaks in native European species so far (Cerenius et 254 

al., 2008). Group C was also isolated from P. leniusculus Swedish specimens (Huang et al., 255 

1994); however, it has never been observed again since its detection (Söderhäll and Cerenius, 256 

1999). Group D was isolated from introduced Spanish specimens of red swamp crayfish P. 257 

clarkii (Diéguez-Uribeondo et al., 1995), whereas group E was isolated from the spiny-cheek 258 

crayfish F. limosus introduced in Czech Republic (Kozubíková et al., 2011). Over the last ten 259 

years, the number of genotyping methods to characterize A. astaci has been constantly 260 

increasing, facilitating the identification of genotypes involved in outbreaks. In order to evaluate 261 

the genetic diversity of the pathogen A. astaci, studies have focused on the sequencing of 262 

chitinase genes (Makkonen et al., 2012a), but also Amplified Fragment Length Polymorphism 263 

(AFLP) markers (Rezinciuc et al., 2014), and recently on Single Nucleotide Polymorphisms 264 

(SNP) diversity based on mitochondrial DNA (Minardi et al., 2019). The genetic markers 265 

currently most used to characterize the pathogen strains responsible for outbreaks have focused 266 

on microsatellite sequencing (Grandjean et al., 2014) and mitochondrial haplotyping (Makkonen 267 

et al., 2018) approaches. It was possible to distinguish 4 mitochondrial haplogroups: a 268 

(corresponding to the RAPD-group A and C), b (corresponding to the RAPD-group B), d 269 

(corresponding to the RAPD-group D) and e (corresponding to the RAPD-group E) (Makkonen 270 

et al., 2018). These findings were also congruent with the genetic diversity observed on 271 

microsatellites, since the same genetic groups were found between RAPD initial markers: SSR-272 

A, SSR-B, SSR-C, SSR-D and SSR-E corresponding to RAPD-groups A, B, C, D and E, 273 

respectively (Grandjean et al., 2014). Furthermore, these results underline the mitochondrial 274 

diversity observed within the different A. astaci strains, since 2 different mitochondrial 275 

haplotypes were described within the RAPD-group D (d1 and d2, Makkonen et al., 2018). The 276 

author also differentiated the A. astaci strains in 2 lineages: lineage 1 which includes a, b and e 277 

mitochondrial haplotypes (RAPD-groups A, B and E) and lineage 2 corresponding to the d1 and 278 

d2 mitochondrial haplotypes (RAPD-group D) (Makkonen et al., 2018). Recently, six new 279 

haplotypes have been characterized in North American species belonging to both lineage 1 280 



 

(called usa1 and usa2) and lineage 2 (usa3 to usa6) (Martín-Torrijos et al., 2021b). The 281 

development of these different markers will increase our knowledge of the genetic diversity of A. 282 

astaci strains, which is still relatively unknown. Thus, microsatellite markers have allowed the 283 

characterization of a new genotype, isolated in North America from the rusty crayfish Faxonius 284 

rusticus (Panteleit et al., 2019). The newly described strain presented the same RAPD and 285 

mitochondrial haplogroup profiles as RAPD-group A. Although additional combination of 286 

chitinase-like markers attached this new strain to group C. All these results illustrate the 287 

complementarity of the different markers developed, as well as the need to use a combination of 288 

these approaches in order to better understand the diversity and the evolutionary history of A. 289 

astaci.  290 

3. Pathogenicity determinants of Aphanomyces spp. 291 

Pathogenic Aphanomyces spp. are distributed around the world and are able to infect 292 

various host ranges. In this section we review current knowledge of the factors which make the 293 

Aphanomyces genus the global threat for agriculture and aquaculture. 294 

 295 

3.1 Zoospores as a key pathogenicity factor 296 

Oomycetes zoospores play a key role in the infection process and in the pathogen 297 

transmission from host to host (Walker and van West, 2007). Spore production rate is an 298 

important trait to determine the aggressiveness and the ability of the pathogen to disperse and 299 

successfully infect new hosts (Delmas et al., 2014). In plant pathogenic oomycetes zoospores 300 

motility is influenced by tactic and electrotactic signals generated by root exudates which drive 301 

the zoospores throughout a suitable infection site (Appiah et al., 2005). Attractants of A. raphani 302 

and A. euteiches zoospores such as indole-3-aldehyde and prunetin have been identified in 303 

cabbage seedlings and pea seedlings respectively (Yokosawa et al., 1986), while a potent 304 

attractant substance to A. cochlioides zoospores, cochliophilin A (5-hydroxy-6,7-305 

methylenedioxyflavone, 1) has been isolated from one of its host roots Spinacia oleracea (Horio 306 

et al., 1992) and it is known to be present also in sugar beet roots. This flavonoid is considered a 307 

species-specific attractant compound since it has the capacity to attract A. cochlioides zoospores 308 

but it has no effect on zoospores motility of other Aphanomyces species (Islam and Tahara, 309 

2001). When attracted by cochliophilin A, Aphanomyces zoospores encyst in few minutes and 310 

germinate within 30-60 minutes (Sakihama et al., 2004). Another important step towards a 311 



 

successful infection is the differentiation of zoospores from a motile form into cyst, the immobile 312 

form capable of infecting the host. Several studies have provided evidence that changes in 313 

cations concentration such as calcium (Byrt et al., 1982a, 1982b; Morris et al., 1995) and 314 

potassium (Appiah et al., 2005) play an important role in zoospores taxis and encystment of plant 315 

pathogenic oomycetes. Chemotaxis has been reported also on the animal pathogenic A. astaci 316 

where chemotactic responses were observed within few minutes mainly towards parts of the 317 

crayfish where the cuticle is soft such as the tip and the junction of the legs (Cerenius and 318 

Söderhäll, 1984). However, no recent studies have confirmed the role of chemotaxis in A. astaci 319 

zoospores attraction and information about zoospores motility in A. invadans and other animal 320 

pathogenic Aphanomyces species remains still unknown. 321 

3.2 Genetic determinants of pathogenicity 322 

When Aphanomyces starts colonization of the host, it has to cope with host immunity and 323 

defence reactions. Oomycetes widely exploit the repertoire of secreted proteins called effectors 324 

to modulate host physiology and immune reactions (Bozkurt et al., 2012). Based on subcellular 325 

localization within the host, effectors are reported as extracellular when they act within the 326 

apoplast while intracellular effectors are able to reach the intracellular space of the host cells 327 

(Gaulin et al., 2008; Schornack et al., 2010). These proteins are generally induced during 328 

infection and generally harbour a signal peptide to be secreted by the pathogen (Bozkurt et al., 329 

2012). Availability of the whole genome sequence of four Aphanomyces strains allowed in silico 330 

prediction of putative secreted proteins in A. astaci and A. invadans (strain NJM9701) - animal 331 

pathogens; A. euteiches (strain ATCC201684) plant pathogen and A. stellatus (strain CBS 332 

578.67) saprophyte (Gaulin et al., 2018; Iberahim et al., 2018). The genome size of 333 

Aphanomyces spp. are estimated at 50-70 Mb, having 16,000-25,000 predicted genes. Secreted 334 

proteins correspond respectively to 10% and 6% of the total proteome of plant and animal 335 

pathogens (Gaulin et al. 2018).  336 

 337 

3.2.1 Extracellular effectors 338 

A large majority of extracellular effectors concern cell wall degrading enzymes for plant 339 

pathogens such as A. euteiches. Indeed, to get through plant cell wall plant-associated pathogens 340 

release a set of cell-wall degrading enzymes (CWDE), which mostly consist of glycosyl 341 



 

hydrolases families (GH), GlycosylTransferases (GT), PolysaccharideLyases (PL) and 342 

Carbohydrate-Esterase (CE) also regrouped as CAZymes (Lombard et al. 2014). A. euteiches has 343 

over 300 secreted carbohydrate-active enzymes (CAZy) and carbohydrate-binding modules 344 

(Gaulin et al., 2018). They include protein families targeting plant-specific polysaccharides (e.g., 345 

hemicellulases: GH 10, 11, CE4 families and pectinases: GH 28, PL1, 3, 4 families), which 346 

might be involved in penetration of plant cell wall (Lanver et al. 2014). Interestingly, animal 347 

pathogen A. astaci lacks those plant-specific families in its secretome but harbours enzymes able 348 

to interact with chitinous exoskeleton of the crayfish (Gaulin et al. 2018). Indeed, during 349 

infection, chitinase may play a major role in the penetration of the hyphae through the chitinous 350 

wall following spore germination (Söderhäll et al., 1978). While several species of Aphanomyces 351 

show chitinase activity in the presence of chitin, A. astaci has been shown to be capable of 352 

producing chitinases even in the absence of substrate (Andersson and Cerenius, 2002). However, 353 

to date, no strain-specific or genotype-specific expression has been found in the chitinase 354 

activities of A. astaci (Andersson and Cerenius, 2002). Moreover, it has been suggested that this 355 

expression pattern may be the result of an adaptation of the pathogen to a purely parasitic 356 

lifestyle (Unestam, 1966; Andersson and Cerenius, 2002). Genomic work has identified three 357 

major chitinase groups (CHI1, CHI2 and CHI3) existing in the different strains of A. astaci. 358 

Depending on the strain considered, these genes showed structural differences in their coding 359 

region, thus highlighting the variations in the epidemiological properties of the different 360 

genotypes studied (Makkonen et al., 2012a). 361 

Whole genome sequencing of A. invadans (strain NJM9701) in 2014 has enabled initial 362 

exploration of the effector repertoire for this species (Makkonen et al., 2016). Recent analysis of 363 

effectors encoded within the genome indicate that A. invadans encodes a sizeable number of 364 

effector proteins, bearing more similarity to animal-pathogenic as opposed to plant-pathogenic 365 

saprolegniales (Iberahim et al., 2018). Firstly, CAZymes are thought to play an important part in 366 

A. invadans infection – although potentially not having such a pivotal role as during plant-367 

pathogenic Aphanomyces infections. Specifically, key CAZyme gene families, encoding CE1- 368 

and CE10, are induced primarily in plant-pathogenic oomycetes (de Vries and de Vries, 2020). 369 

Also of considerable interest are those effector classes typically associated with pathogenic 370 

Aphanomyces species but lacking in A. invadans. Specifically, the A. invadans genome was 371 

found to lack two major extracellular effectors: disintegrins and haemolysin-E (Iberahim et al., 372 



 

2018). These peptides are key protease effectors often secreted by animal-pathogenic oomycetes, 373 

such as Saprolegnia parasitica (Banfield and Kamoun, 2013; Rzeszutek, 2019), both known to 374 

play a significant role in oomycete virulence via mediation of host-cell binding (Banfield and 375 

Kamoun, 2013). Proteases overall have long been recognized as key effectors of pathogenic 376 

oomycetes (Schornack et al., 2009). Recent analysis of extracellular protease products from A. 377 

invadans has found that, of these, serine proteases constitute the vast majority hence likely are of 378 

central importance to virulence (Majeed et al., 2017).  379 

 380 

3.2.2 Intracellular effectors 381 

Intracellular oomycete effectors, meaning molecules that are addressed within the 382 

cytoplasm of the host cell, were predicted years ago based on comparative genomics of known 383 

virulence genes of oomycetes genomes (Tyler 2002). Two main protein families have been 384 

predicted based on the presence of RxLR or LxLFLAK amino acid motif after the predicted 385 

signal peptide in the plant pathogen Phytophthora sp. (Birch et al., 2008; Schornack et al., 2010). 386 

Hundreds of genes encoding RxLR and CRN effectors are predicted and characterized in 387 

Peronosporales oomycetes especially in Phytophthora genus (Rehmany et al., 2005; Schornack 388 

et al., 2010). 389 

In plant pathogenic Aphanomyces no RxLRs were found during the genome analysis, but 390 

numerous CRNs were identified (Gaulin et al. 2018). In contrast the A. invadans genome was 391 

found to lack those two major classes of effectors (Iberahim et al., 2018), while around 31 CRN-392 

like genes were identified in A. astaci (Gaulin et al., 2018). The first reported putative 393 

intracellular effector from A. euteiches AeCRN5 was described in 2010 (Schornack et al., 2010) 394 

although its function within the cell is still unknown. Another member of CRNs effectors in A. 395 

euteiches, AeCRN13, was found to target host nuclei and possesses DNA damage activity 396 

(Ramirez-Garcés et al., 2016). The triggered DNA damage response induces severe plant 397 

necrosis. Interestingly, the homolog of AeCRN13 from the batracian pathogen Batrachochytrium 398 

dendrobatidis also targets host nuclei and induces DNA-damage responses (DDR). It seems that 399 

nuclear targeting and DNA damage is an important strategy of pathogenesis for Aphanomyces 400 

spp. (Camborde et al., 2019). A third class of oomycete effectors was recently reported in the 401 

genus Aphanomyces (Gaulin et al. 2018). Aphanomyces SSPs for Small Secreted Proteins were 402 

named in analogy with fungal SSPs (Rep, 2005) and characterized as proteins with a signal 403 



 

peptide, <300 amino acids in size and without any functional domain predicted. In A. euteiches 404 

296 SSPs are predicted, and numerous are organized in cluster (Gaulin et al. 2018). SSPs have 405 

also been detected in A. astaci. Functional studies have shown that SSPs from A. euteiches can 406 

target plant nuclei and modify activity of plant DEAD-box RNA helicase to enhance A. euteiches 407 

infection (Camborde et al., 2020). These effectors appear to be a promising area of research to 408 

improve our understanding of the molecular factors involved in the virulence of A. euteiches.  409 

Recently, the intracellular chaperone Lhs1 has also been identified as an important 410 

modulator of virulence in A. invadans (Iberahim et al., 2020). This study of RNAi-based Lhs1 411 

silencing demonstrated significantly reduced virulence in a Galleria melonella infection model, 412 

likely due to the role of Lhs1 as an important regulator in oomycete and fungal zoospore 413 

production (Chen et al., 2019; Iberahim et al., 2020). Due to limited knowledge of both 414 

extracellular and intracellular A. invadans effectors, further research in this field is warranted. 415 

Specific to A. invadans, a contemporary study successfully targeted the serine protease gene of 416 

this species using single-guide RNAs via the Crispr/Cas9 editing system (Majeed et al., 2018). 417 

Zoospores genetically edited in this manner did not produce clinical signs of EUS during in-vivo 418 

infection trials of the ornamental fish Trichogaster lalius (Majeed et al., 2018), suggesting the 419 

viability of genome editing as a potential technique for combatting epizootic ulcerative syndrome 420 

specifically. 421 

 422 

4. Economic impact of Aphanomyces spp. 423 

Aphanomyces spp. cause a dramatic economic impact on various sectors of agri- and 424 

aquaculture businesses. In general, it is very difficult to precisely calculate the impact caused by 425 

Aphanomyces spp. as it includes direct yield loss, implementation of protective measures such as 426 

crop rotation in the fields and conservation strategies in aquatic environments. 427 

 428 

4.1 Damage to agriculture 429 

Among the most relevant Aphanomyces species in agriculture special attention must be 430 

given to A. euteiches and A. cochlioides being responsible for the root rot disease in two of the 431 

most economically important crops such as pea and sugar beet, respectively. Pea is the second 432 

most important food legume crop in the world (Ali et al., 1994) and is cultivated primarily in 433 



 

Canada, Russia, the United States, France, and Australia (Tulbek et al., 2016). Sugar beet is a 434 

major crop in temperate regions providing about 20% of sugar worldwide and it dominates the 435 

market in the European Union and the United States (Finkenstadt, 2014). Although crop losses 436 

caused by these two species can be difficult to estimate, the majority of yield loss in pea and 437 

sugar beet can be attributed to root rot rather than other diseases (Papavizas and Ayers, 1974). 438 

Very raw estimation of pea yield loss due to root rot complex is around 10% (Allmaras et al., 439 

1998), which in the current market could cost up to 600 million US dollars (transparency market 440 

research). The root rot disease complex of legumes is usually an association of A. euteiches with 441 

Fusarium spp., Pythium spp. and Rhizoctonia solani. This complex triggers damping-off, root rot 442 

and reduces root development and nitrogen fixation (Gossen et al., 2016). A. euteiches is present 443 

in over 90% of fields diagnosed with root rot in Canada (Wu et al., 2018). The yield loss caused 444 

by A. euteiches could be as high as 70-80% in heavily infested fields (Pfender and Hagedorn, 445 

1982; Bogdan, 2019). A. cochlioides has a great impact on sugar beet production and has a 446 

world-wide distribution representing a big threat in many areas of the United States, Europe and 447 

Asia (CABI, 2020b). About 51% of 293.000 ha of sugar beet field was estimated to be infested 448 

with A. cochlioides in Minnesota and North Dakota in 1999 (Beale et al., 2002). In USA 42.8 449 

million dollars per year is lost to A. cochlioides with current management practices such as 450 

application of the fungicide Tachigaren on seeds, whereas 243.5 million dollar is lost when no 451 

treatment or agronomic practices are used (information given by the Beet Sugar Development 452 

Foundation, BSDF, 2020). A. cochlioides is also often part of a root rot complex in association 453 

with Fusarium spp and Rhizoctonia solani (Harveson and Rush, 2002). 454 

 455 

4.2 Damage to aquaculture 456 

A. invadans is the causative agent of Epizootic Ulcerative Syndrome (EUS) 457 

(Huchzermeyer and Van der Waal, 2012), a seasonal oomycete disease affecting both wild and 458 

farmed fish within fresh and brackish water (OIE, 2016). EUS due to A. invadans is 459 

economically devastating to aquaculture at a global level, with losses from this disease at 460 

infected farms frequently reaching one hundred percent (Iberahim et al., 2018). While no 461 

worldwide data exists from the past three decades, within the Asia-Pacific region alone the most 462 

recent estimates indicate that EUS caused a loss of circa USD 110 million between the late 1980s 463 

and early 1990s.  (Lilley et al., 1998; Majeed et al., 2017).  464 



 

Since 1990, the global aquaculture industry has expanded enormously (FAO, 2020). In 465 

1990, the global output of the aquaculture sector was circa 14 million tons (FAO, 1991) and has 466 

since increased fivefold to 81.8 million tons in 2018 (FAO, 2020). Furthermore, the region with 467 

greatest recent growth in aquaculture, warmwater Asia, is also the region that is most susceptible 468 

to A. invadans (FAO, 2020). Due to both above factors, alongside minimal effective treatment 469 

options, contemporary global aquaculture losses to EUS are likely huge. Nationally, culturing of 470 

major carps in India (Pradhan et al., 2008; Kamilya and Kollanoor, 2020) and various 471 

snakeheads (Channa sp.) in Thailand (Lilley et al., 2003; Arshad and Arockiarai, 2020) are most 472 

adversely impacted by EUS. Non-Asian countries tend to provide a less suitable climate and 473 

temperature for A. invadans, hence outbreaks in aquaculture non-Asian countries are often less 474 

costly (Kamilya and Kollanoor, 2020). Within North America, A. invadans is often present in 475 

freshwater bodies (Saylor et al., 2010). However, EUS outbreaks seldom occur and a 2010 mass 476 

mortality in Florida of 300 captive snakehead fish (Channa marulius) was highly unusual 477 

(Saylor et al., 2010).   478 

The source of introduction of the crayfish plague pathogen A. astaci in Europe during the 479 

19th
 
century was never established. This pathogen has caused devastating damage to native 480 

European crayfish populations, mainly concerning the species Austropotamobius pallipes (white-481 

clawed crayfish), Austropotamobius torrentium (stone crayfish), A. astacus (noble crayfish) and 482 

Pontastacus leptodactylus (narrow-clawed crayfish) (Holdich et al., 1995; Westman, 1995; 483 

Alderman, 1996; Machino and Diéguez-Uribeondo, 1998). Nevertheless, data on the real 484 

economic impact of this disease are rather unknown. Historically, native European crayfish have 485 

been widely used as a food source (especially in poor areas, since the catch was not regulated), 486 

mainly through the cropping of the native species A. astacus and P. leptodactylus (CABI, 487 

2020a). However, the crayfish plague has drastically reduced the production of native species, 488 

reducing stocks by up to 90% in some countries, mainly in Scandinavia, Germany, Spain and 489 

Turkey (Lodge et al., 2000). For instance, data from the beginning of the 20th century report that 490 

noble crayfish A. astacus exports from Sweden dropped from 90 tons in 1908 to only 30 tons in 491 

1910 (Brinck, 1975). Similarly, in Finland, exports fell from 16 million A. astacus individuals in 492 

1880 to less than 2 million in 1910 (Westman, 1991). The economic impact of the crayfish 493 

plague is best described since its introduction in Turkey in the 1980s, where fished crayfish 494 

stocks declined from 8,000 tons in 1984 to less than 500 tons between 1990 and 1994 as a result 495 



 

of the disease (Ackefors, 2000). Thus, even though no native European species has been 496 

extinguished by the disease, the range and local abundance of populations has drastically 497 

decreased due to A. astaci (CABI, 2020a). A. astaci is moreover considered as one of the “100 of 498 

the World’s Worst Invasive Alien Species”, according to the Global Invasive Species Database 499 

(Lowe et al., 2000). 500 

Another direct economic impact of A. astaci to consider is the cost of native crayfish 501 

conservation strategies, which are directly impacted by the spread of crayfish plague through the 502 

European continent. Currently, crayfish plague has been detected and potentially implicated in 503 

outbreaks in at least 20 countries, spreading over 3,500 km from North (Finland) to South 504 

(Spain) and over 3,000 km from East (Turkey) to West (Spain) (Ungureanu et al., 2020), 505 

highlighting its presence and impact throughout entire Europe. Furthermore, over the past 20 506 

years, the cost of conservation programs has reached several million US dollars to the economies 507 

of most European countries (CABI, 2020a). However, the budget allocated to the conservation of 508 

native European crayfish has never been recorded to our knowledge. 509 

 510 

5. Diseases caused by Aphanomyces spp. and management strategies 511 

The next section reported on the diseases due to Aphanomyces spp. and strategies to limit 512 

the impact of the microorganism on agri and aquaculture. 513 

5.1 Aphanomyces root rot in peas, alfalfas and lentils 514 

A. euteiches induces root rot of the host plant and dramatically decreases the yield or 515 

even induces death of plants in the fields. Legumes are susceptible to A. euteiches throughout 516 

their life cycle and the first symptoms can be seen 3-4 days after infection (Papavizas and Ayers, 517 

1974). The primary inoculum of A. euteiches in the field are oospores, which keep germination 518 

ability for ten years (Schren, 1960). The most favourable conditions for A. euteiches pea 519 

infection appears in wet periods, when moisture in soil induces massive production of swimming 520 

zoospores and their spread within the field (Hoch and Mitchell 1973; Gaulin et al., 2007; Wu et 521 

al., 2018). At early-stages of infection A. euteiches induces softened and water-soaked zones on 522 

roots (Hughes and Grau 2007). At the later stages of infection, roots impair in function and in 523 

nodulation therefore secondary symptoms appear such as chlorosis, necrosis and wilting of the 524 

foliage (Papavizas and Ayers, 1974, Hughes and Grau 2007) (Figure 3A). 525 



 

No efficient chemical protection against A. euteiches is known, in addition it seems that effective 526 

fungicides against individual soilborne pathogens as Aphanomyces spp. are less efficient against 527 

soilborne pathogens complexes (You et al., 2020). Without chemical control available, several 528 

microorganisms have been tested for biological control of A. euteiches. Promising effects have 529 

been observed in vitro, but slight effects on root rot emergence are generally observed in field 530 

conditions (Wakelin et al., 2012 ; King and Parke 2013). Thereby crop management remains the 531 

most effective tool to limit legumes root rot. One recommendation to improve management of A. 532 

euteiches root rot in legumes field is crop rotation with different periods to diminish the 533 

pathogen level in soils overtime. Nevertheless the diversity of alternative hosts in combination 534 

with the extraordinary longevity of A. euteiches oospores in soil, reduces the efficiency of this 535 

method (Schren, 1960, Moussart et al., 2009). Another recommendation is to seed plants into soil 536 

rich in phosphorus, as it delays disease development (Bødker et al., 1998). Finally there are DNA 537 

tests to check the presence of A. euteiches in suspect soils, root tissues or seeds (Gangneux et al., 538 

2014; Barker 2018). While improved procedures and reproducibility of DNA testing are needed, 539 

these tools are useful for implementing disease management practices when the pathogen is 540 

present. 541 

For the past two decades, the obtention of resistant pea cultivars has been considered as a major 542 

objective in France to secure the yields (Quillévéré-Hamard et al, 2021). The strategy of the pea 543 

breeding program launched in 1995 relies on pyramidizing of different genetic loci from partially 544 

resistant pea lines (Gritton, 1990; Kraft, 1992; Pilet-Nayel et al., 2017). The first Quantitative 545 

Trait Loci (QTL) of resistance were described in some pea accessions by Pilet-Nayel et al. in 546 

2002 and 2005, and the first varieties with partial A. euteiches resistance were registered in 2012 547 

(McGee et al., 2012). Genome-wide association mapping using 175 lines of pea validated 52 548 

QTL of small size-intervals associated with resistance to A. euteiches  (Desgroux et al., 2016). 549 

Among them six major QTL were verified. These studies along with the availability of GenoPea 550 

SNP Array (Tayeh et al., 2015) will facilitate the development of resistant cultivars. One of the 551 

major QTLs in pea is Ae-Ps7.6 which explains over 50% of phenotypic variations using a 552 

collection of reference A. euteiches strains (Hamon et al., 2011, 2013). Combination of Ae-Ps7.6 553 

with other QTLs delays symptom onset and slows down root colonization (Lavaud et al., 2016). 554 

The effect and stability of the QTL were validated using the large collection of A. euteiches 555 

strains from different regions of France (Quillévéré-Hamard et al., 2021), therefore the 556 



 

AeD990SW45-8-7 line, which harbours the combination of 4 major QTL Ae-Ps1.2, Ae-Ps2.2, 557 

Ae-Ps3.1 and Ae-Ps7.6 might be used as a source of resistance in further pea breeding programs  558 

(Desgroux et al. 2016). In alfalfa, there are at least two significant races (i.e, race1 and race2) 559 

that are detrimental to the crop. Alfalfa resistant cultivars to race 1 were released in the 1990’s 560 

(Grau, 1992), but the resistance was rapidly overcome by the pathogen leading to the discovery 561 

of the race 2 and the development of race2-resistant alfalfa cultivars. By now A. euteiches 562 

isolates able to knock out race1 and race2-resistance have been identified in the US (Samac et 563 

al., 2012; Seitz and Rouse 2012). The emergence of a putative new race of the pathogen reveals 564 

the difficulties to obtain alfalfa cultivars displaying a durable resistance to Aphanomyces root rot. 565 

In lentil, the first QTL mapping and genome-wide association studies identify seven QTL 566 

clusters and 15 putative genes within the cluster associated with Aphanomyces resistance (Ma et 567 

al., 2020). This finding, in association with image-based phenotyping approaches on roots 568 

(Marzougui et al., 2019), will enhance the development of lentil cultivars with partial resistance 569 

to A. euteiches.  570 

The complete genome sequence of reference pea ‘Cameor’ line became available in 2019 571 

(Kreplak et al., 2019) and chromosome-level genome of alfalfa in 2020 (Chen et al., 2020). 572 

There are no doubts that these resources will facilitate research in resistance mechanisms of these 573 

crops and transfer of knowledge previously obtained using closely related model legume 574 

Medicago truncatula. As a legume model M. truncatula offers various techniques for molecular 575 

studies such as high-quality genome, transient and stable transformation, and fast generation 576 

cycle (Bruijn, 2020). An in vitro system which allows to test susceptibility of 157 M. truncatula 577 

lines against A. euteiches and demonstrates natural variation of susceptibility was reported 578 

(Djébali et al., 2009; Bonhomme et al., 2014). From the study one susceptible (F83005.5) and 579 

two tolerant lines (Jemalong A17 and DZA45.15) were selected for molecular studies (Badis et 580 

al., 2015;  for review see Jacquet and Bonhomme, 2019) to decipher tolerant mechanisms. One 581 

of the major features of tolerant Jemalong A17 line is the development of ‘ring of lignin’ which 582 

protects central cylinder from invasion of A. euteiches into vascular tissue and therefore ensures 583 

the maintenance of nutrient and water supply in the plant (Djébali et al., 2009). Pathogen attack 584 

induces complex remodelling of the host metabolism such as phenolic compounds. One of the 585 

most induced genes of the tolerant A17 M. truncatula line under A. euteiches infection is 586 

isoliquiritigenin 2'-O-methyltransferase transforming isoliquirtigenin to 2’-O-587 



 

methylisoliquirtigenin. The latter was shown to inhibit A. euteiches zoospores germination by 588 

72-86% (Badis et al., 2015). Genome-wide association studies of quantitative resistance to A. 589 

euteiches identified two major loci on the chromosome 3 of M. truncatula (Djébali et al., 2009). 590 

A candidate gene encoding an F-box protein was characterized as a negative regulator of 591 

resistance to A. euteiches (Bonhomme et al., 2014). In addition significant SNPs were identified 592 

within an adenylate isopentenyltransferase (IPT) involved in cytokinin biosynthesis, and/or a 593 

MYB transcription factor regulated by gibberellin and abscisic acid (GAMYB) (Bonhomme et 594 

al., 2014; Jacquet and Bonhomme, 2019). Thus the integration of genomic and genetic 595 

technologies with adapted breeding designs will accelerate legume improvement needed to 596 

counter Aphanomyces root rot.  597 

 598 

5.2 Aphanomyces root rot in sugar beet 599 

 A. cochlioides is the causal agent of the black root rot in sugar beet. The disease can lead 600 

to the loss of entire sugar beet fields and to a drastic reduction of sugar yield (Papavizas and 601 

Ayers, 1974; Taguchi et al., 2010). The infection can occur in two separate phases during the 602 

sugar beet life cycle: an early, acute phase, known as damping-off, on 2- to 5-week-old seedlings 603 

and a chronic phase, later in the season on mature roots (Papavizas and Ayers, 1974). The acute 604 

phase generally occurs in post-emergence and it is favoured by warm soil temperature (20-30°C) 605 

and moist conditions (Panella and Lewellen, 2005). Infected hypocotyls turn into a dark, thin 606 

thread (Harveson, 2006) and seedlings may fall over and die (Taguchi et al., 2009). If warm and 607 

wet conditions persist in the soil, the damage can lead to total crop failure (Luterbacher et al., 608 

2005) but if the soil dries and temperature decreases, young roots may recover by developing 609 

later roots and survive (Papavizas and Ayers, 1974). The chronic phase occurs on older plants in 610 

late June to August (Buchholtz, 1944). Infected roots appear soft and water-soaked and are 611 

characterized by a dark brown discoloration on the affected area (Papavizas and Ayers, 1974) 612 

(Figure 3B, C). Roots can be severely stunted and often show rotted, tasselled root tip (Windels, 613 

2000). The infection, when severe, results in the death of the plants, however older roots that 614 

recover from damping-off infection or that are infected in a later stage can survive but are 615 

characterized by reduced yield and low sugar content (Windels, 2000). While the effects of 616 

Aphanomyces damping-off can be overcome by the application of fungicides such as hymexazol, 617 

no effective strategies have been developed for the control of the chronic phase of the black rot 618 



 

disease (Taguchi et al., 2010). Cultivation practices such as early planting, enhanced drainage or 619 

application of “spent lime” (calcium carbonate) in sugar beet field as pH adjustment in the soil 620 

can help to reduce the effect of Aphanomyces on sugar beet yield (Bresnahan et al., 2001; 621 

Brantner and Chanda, 2016). However, in highly infested soils these practices are inadequate for 622 

economic yields. Crop rotation is also not efficient because of the persistence of the pathogen in 623 

the soil (Takenaka and Ishikawa, 2013). The development of resistant varieties remains the only 624 

valuable solution to control the disease but the genetic basis of resistance to A. cochlioides is still 625 

unclear. Bockstahler et al. (1950) indicated that the resistance to Aphanomyces is heritable and 626 

dominant, but important details such as number, map position and products of resistance genes 627 

remain unknown (Taguchi et al., 2009).  Taguchi et al. (2010) have identified a single dominant 628 

gene, Acr1 (A. cochlioides resistance 1) that confers resistance to Aphanomyces root rot in both 629 

greenhouse conditions and in Aphanomyces-infested field and such gene has been located on 630 

chromosome III in sugar beet genome. Several genes and major QTLs associated with the 631 

resistance to important sugar beet diseases such as Rhizomania and Cercospora leaf spot have 632 

been mapped on the same chromosome (Barzen et al., 1997; Schäfer-Pregl et al., 1999; Scholten 633 

et al., 1999; Setiawan et al., 2000; Gidner et al., 2005; Grimmer et al., 2007) highlighting the 634 

importance of Acr1 in sugar beet breeding to Aphanomyces-caused disease. 635 

 636 

5.3 Epizootic ulcerative syndrome (EUS) caused by A. invadans 637 

A. invadans typically infects the juvenile and young adult stages of fishes, with no 638 

documented pathogenicity towards larvae and fry (OIE, 2016). The severity of EUS infection 639 

varies considerably depending on culture conditions of affected fish. Mortality and morbidity 640 

within a typical aquaculture scenario, snakehead species (Channa sp.), are both highest 641 

(exceeding 50%) when water temperatures remain between 18-22°C for an extended time (OIE, 642 

2016). Therefore, protracted periods of low (sub-22°C) temperature throughout summer 643 

alongside heavy rainfall appear to be the major environmental factors which increase severity of 644 

EUS outbreaks. 645 

Characteristic external clinical signs of EUS are uniform across the majority of affected species 646 

and in order of diagnostic significance include: dermal ulceration, erratic swimming and 647 

inappetence, with increasing symptoms as the disease progresses (Blazer et al., 2002; Saylor et 648 



 

al., 2010). Due to the non-specific external clinical signs, a molecular approach to diagnosis 649 

involving PCR-based internal transcribed spacer sequencing (Vandersea et al., 2006; Kamilya 650 

and Kollanoor, 2020) is used to positively identify A. invadans at fish farm outbreaks. 651 

Nonetheless, the characteristic dermal ulceration caused by A. invadans has been deemed an 652 

appropriate presumptive diagnosis for EUS (Bondad-Reantaso, 1992). Death, generally caused 653 

by internal mycosis or loss of osmotic balance, typically occurs within 1-4 days post-infection 654 

(Saylor et al., 2010). Internal clinical signs of EUS are similarly uniform across infected fish 655 

species: mycotic granulomas form as A. invadans hyphae penetrate through dermal tissue and 656 

into the target organ of the host – skeletal muscle (OIE, 2016). Mycotic granulomas, the typical 657 

internal pathology associated with EUS, may also be present throughout other internal organs.   658 

 EUS is a highly difficult disease to treat within commercial aquaculture, therefore the 659 

most common approach currently undertaken by farmers is immediate destruction of infected 660 

stock (Herbert et al., 2019).  No antibiotic treatments are commercially available for A. invadans 661 

(Iberahim et al., 2018). Furthermore, the two chemotherapeutics with demonstrated efficacy 662 

against A. invadans, malachite green and formalin, are tightly regulated globally and hazardous 663 

to human health and the environment (Srivastava et al., 2004; Iberahim et al., 2018). Use of 664 

malachite green in aquaculture is currently prohibited worldwide (Zhou et al., 2019).  665 

However, recent in-vitro testing of antifungals against A. invadans has yielded encouraging 666 

results. Formalin, KMn04 and Fluconazole show considerable inhibitory action against zoospore 667 

germination and hyphal growth of A. invadans at 10ppm, 100ppm and 1ppm respectively (Paria 668 

et al., 2020). The activity of KMn04 and Fluconazole against A. invadans had been little-studied, 669 

with these candidates currently showing the greatest promise in the search for chemical EUS 670 

treatments. 671 

  Regarding immunostimulants, use of pro- and prebiotics for disease management in 672 

aquaculture is an emerging field (Verschuere et al., 2000), with strong potential in the shrimp 673 

sector and industry-wide (Lara-Flores, 2011; Kumar et al., 2016). Regarding A. invadans, two 674 

recent immunostimulant trials have demonstrated efficacy as in-feed treatments for EUS (Devi et 675 

al., 2019a, 2019b).  676 

 677 



 

5.4 Crayfish plague caused by A. astaci 678 

When a native European crayfish population is affected by A. astaci, one of the first 679 

observable symptoms is often the presence of numerous crayfish visible in broad daylight 680 

(whereas crayfish are most often active at night). Indeed, clinical symptoms at the individual 681 

level are manifested by behavioural changes (such as changes in feeding behaviour, in swimming 682 

movement, lethargy), as well as the appearance of visible lesions (Figure 3E) on the cuticle 683 

(CABI, 2020a). However, these lesions are not specific to aphanomycosis and may be caused by 684 

mechanical injury or infection with other fungal or bacterial pathogens (Persson and Söderhäll, 685 

1983). However, unless aquatic environments are particularly monitored, the first sign of 686 

infection at the population level is the presence of many dead crayfish observed (Figure 3D), 687 

with no mortality in other aquatic animal species (which could be possibly due to pollution effect 688 

or to a less specific pathogen) (Alderman et al., 1987). Currently, the most reliable and 689 

commonly used diagnostic techniques are based on PCR tests, either followed by a sequencing 690 

step (Oidtmann et al., 2006) or directly by real time PCR approaches from the cuticle of dead 691 

individuals found in the wild (Vrålstad et al., 2009). In recent years, the development of 692 

techniques based on environmental DNA (eDNA) has been a promising tool for the detection of 693 

plague directly in water samples, allowing an early management of this pathogen potentially 694 

present in aquatic systems, as well as a better understanding of the spread of this disease in the 695 

natural environment (Strand et al., 2014; Wittwer et al., 2018, 2019).  696 

These recent detection techniques have made it possible to identify several populations of 697 

native European crayfish (A. astacus, P. leptodactylus and A. torrentium) that are chronically 698 

infected by the crayfish plague, notably in Finland, Turkey, Slovenia or Spain (Jussila et al., 699 

2011; Kokko et al., 2012; Kušar et al., 2013; Maguire et al., 2016). When it was verified, it turns 700 

out that haplogroups A and B were involved in these chronical infections (Maguire et al., 2016). 701 

These observations raised the question of the potential virulence of the different strains of A. 702 

astaci, but also the question of the potential immunological resistance developed by natural 703 

populations of European crayfish. Thus, following infections carried out in a controlled 704 

environment using A. astacus crayfish to estimate mortality rates, it was also shown that RAPD-705 

groups B and E were more virulent than the RAPD-group A. A recent study revealed resistance 706 

and susceptibility of European crayfish to A. astaci could depend on the population origin 707 



 

(Jussila et al., 2020). In the case of resistant North American crayfish, they have developed 708 

immune defences that prevent a fatal A. astaci infection.  709 

 710 

6. Conclusion and perspectives 711 

Aphanomyces genus comprises a vast number of species including both plant and animal 712 

pathogenic species and saprophytic species (Diéguez-Uribeondo et al., 2009). Due to their 713 

remarkable economic impact on agriculture and aquaculture systems, their worldwide 714 

distribution, species belonging to this genus have been receiving growing attention from the 715 

oomycete research community with a major focus on pathogenicity and host resistance 716 

mechanisms.  717 

To secure the production of economically important Aphanomyces spp. hosts we suggest several 718 

directions for further studies: 719 

● Enhance our understanding of Aphanomyces spp. pathogenesis on molecular level and 720 

elucidate the role of effectors and their interaction with the host during infection; 721 

● Exploit the natural variation of resistance against Aphanomyces spp. in commercial 722 

breeding; 723 

● For plant pathogenic species, begin studying the role of soil microbiome in stimulation or 724 

protection against Aphanomyces-induced diseases. 725 

● For animal pathogenic species, combine the analysis of Aphanomyces spp. effectors with 726 

the immunological response of the host to better understand and control the spread of 727 

those pathogens in natural environments.   728 
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Figure 1: Cladogramm of Aphanomyces species showing the three major lineages based on the host
category. The phylogeny is based on 5.8S ribosomal RNA gene with a 691 nucleotides alignment
length. Phylogenetic reconstruction was performed with PhyML 3.0 (Guindon et al., 2010), under the
GTR + G substitution model (assessed with jModelTest 2.1.7, (Darriba et al., 2012)) and was tested with
the Bootstrap method (1,000 replicates). The identifier written between brackets correspond to the NCBI
accession number of the used sequences.
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Figure 2: Occurrence of A. astaci, A. invadans A. euteiches and A. cochlioides worldwide. Countries are labelled
in colours according to Aphanomyces species presence. A. astaci is actually founded in 24 countries (North America
and Europe), and 28 countries have experienced an outbreak caused by A. invadans (North America, South Africa,
South East of Asia and Oceania), 21 countries have experienced an outbreak caused by A.euteiches (North America,
South America, Europe, Asia and Oceania) and 11 countries have experienced an outbreak caused by A.
cochlioides (North America, Europe and Asia). To summarize, a total of 56 countries are known to have experienced
an outbreak caused by one of the four Aphanomyces species studied in this review. All these countries are listed in
the supplementary table 1.
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Figure 3: Symptoms of diseases induced by Aphanomyces genus. (A) A. euteiches root rot symptoms on
dry pea (Pisum sativum) cv. Cameor. At 34 days after inoculation with zoospore suspension at root level, A.
euteiches induces browning of roots; impaired root growth and induces yellowing of leaves Left : infected.
Right: control, non-infected (pictures, A. Kiselev, LRSV, France). (B,C) A. cochlioides root rot on sugar
beet: dark-brown and scabby lesions on sugar beet roots infected in field and longitudinal section of a sugar
beet root with water-soaked lesions (pictures provided by Maribo Hilleshög Research AB, Sweden). (D, E)
White-clawed crayfish mass mortality in Lucelle brook (France) (Collas et al., 2016) and A. astaci hypha (in
white) in naive infected crayfish (pictures from scanning electron microscope provided by UMR CNRS
7267, France).
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