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Global mapping of protein–metabolite interactions
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dipeptide regulates phosphoglycerate kinase
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Protein–metabolite interactions are of crucial importance for all cellular processes but remain

understudied. Here, we applied a biochemical approach named PROMIS, to address the

complexity of the protein–small molecule interactome in the model yeast Saccharomyces

cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions

between 74 small molecules and 3982 proteins using a user-friendly interface available at

https://promis.mpimp-golm.mpg.de/yeastpmi/. By interpolating PROMIS with the list of

predicted protein–metabolite interactions, we provided experimental validation for 225

binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were

proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed

numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic

enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic

enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu sup-

plementation leads to the acute metabolic changes and delays timing of a diauxic shift.

Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a

metabolic regulator at the interface of protein degradation and central metabolism.
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Metabolism is a complex system of chemical reactions
that converts external nutrients to cellular building
blocks and energy, as well as signalling molecules,

defence agents and means of communication. In response to
perturbations of nutrient supply or intracellular demands,
metabolite concentrations and their conversion rates can change
by orders of magnitude within seconds1. These timescales are too
fast for transcriptional regulation, and thus cells have evolved
more direct means of regulation: for example, metabolites
themselves can act as regulators. Metabolites can regulate their
pathways, balance competing pathways and coordinate metabo-
lism with the physiology of the cell by interacting with and reg-
ulating proteins2. Examples of protein–metabolite interactions
(PMIs) can be found in virtually all protein functional classes,
ranging from metabolic enzymes to structural proteins to sig-
nalling components, such as transcription factors and kinases3–7.

Regulation by PMI can be especially important for single-cell
organisms that face constant changes in their environment and
nutrient supply2. The yeast S. cerevisiae is a well-established
single-cell model organism, and its metabolism has been exten-
sively studied in the context of biotechnology, biomedicine and
ecology. A recent study suggested that 29 out of 56 reactions in
central yeast metabolism were at least partially regulated by
allosteric interaction8. Identifying allosteric interactions can sig-
nificantly improve the predictive power of metabolic models and
the success of bioengineering approaches9. In addition to reg-
ulating the activity of metabolic enzymes, PMIs can also have
global regulatory functions in coordinating metabolic fluxes with
the physiology of the cell10,11.

Despite their significant role in regulating metabolism and
coordinating physiology, PMIs have remained understudied. For
S. cerevisiae, there are approximately six times fewer reports of
experimentally validated PMIs than protein–protein interactions
(PPIs) in the STITCH database, which is a comprehensive
resource integrating PMI for 430,000 chemicals12,13. Therefore,
we expect to find many more regulatory functions of metabolites
in the yeast cell. However, discovering these functions of meta-
bolites requires suitable methods for globally capturing PMIs.

Powerful approaches that enable PMI studies at the cell-wide
scale have been recently reported14. These technologies include
affinity purification15, thermal proteome profiling16, drug affinity
responsive target stability17, small molecule limited proteolysis18,
tandem affinity purification19,20 and capture compound mass
spectrometry21. These are conceptually very different strategies,
but they all share a common characteristic: namely, they require a
predefined protein or metabolite as a bait. Consequently, they are
ideal for studying interactions of a single metabolite or protein.
However, they cannot capture the global overview of the inter-
actome in an unbiased way.

To address this limitation, we have developed an approach,
termed PROMIS, which enables a cell-wide analysis of the
protein–metabolite and protein–protein interactomes22,23. Simi-
lar to the previously mentioned approaches, PROMIS starts with
a native cellular lysate and thus operates in close to in vivo
conditions. In brief, PROMIS combines size separation of com-
plexes with proteomics and metabolomics analysis of the
obtained fractions and exploits co-elution to define putative
interactors. Thereby, needs neither a specific protein nor a spe-
cific metabolite as a bait. While this approach may not allow
direct identification of binding partners, PROMIS is an ideal
method of testing the complexity of an interactome and obtaining
leads for targeted studies.

In the current study, we use PROMIS for systematic analysis of
protein–small molecule interactions in Saccharomyces cerevisiae.
We assayed interactions between 74 small molecules and 3982
proteins in the native cell lysate and recovered 16% of the

previously reported binding events. We provide a unique data set
of 225 interactions for 22 individual metabolites and explore
specific examples of metabolite regulators. Most excitingly, our
results point to the role of proteogenic dipeptides as metabolic
regulators at the interface of protein degradation and central
metabolism.

Results
PROMIS detects hundreds of candidate protein–metabolite
interactions. The goal of this work was to generate a proteome-
and metabolome-wide map of protein–metabolite complexes of
actively dividing and metabolically active S. cerevisiae. The
diploid, prototrophic YSBN2 strain in the logarithmic phase of
growth was used as starting material. The overall experimental
strategy included: (i) preparation of the native, soluble lysate, (ii)
size fractionation of complexes using a size exclusion chroma-
tography (SEC) and (iii) untargeted analysis of the complex
components using mass spectrometry-based metabolomics and
proteomics22,23 (Fig. 1a). In total, we collected 48 fractions from
three biological replicates. Thirty-eight of the 48 fractions con-
tained proteins and protein complexes spanning from 5.2 MDa to
20 kDa.

Metabolomics analysis identified 1016 small molecules of the
mass between 100 and 1500 Da (Supplementary Data S1) that
separated together with protein complexes and were, therefore,
classified as protein-bound. A protein-free small-molecule extract
was used as a negative control to exclude the unlikely possibility
that free metabolites would elute together with the high-
molecular-weight, protein-containing fractions. Indeed, the
negative control tests confirmed this was not the case. Overall,
74 of the identified small molecules could be annotated to a
specific compound using chemical standards, and included:
purines and pyrimidines, amino acids, dipeptides and cofactors,
as well as signalling molecules (3’, 5’-cAMP), and transporters
(carnitine) (Supplementary Data S2). Fifty of these 74 small
molecules are known or were predicted to be a part of a yeast
protein–metabolite complex (STITCH database), but binding was
previously experimentally confirmed for only 15 of these small
molecules in yeast.

Proteomic analysis identified 3982 proteins (Supplementary
Data S3), which accounted for almost 90% of all yeast proteins
expressed during the log phase of growth24 and around 60% of
the yeast proteome25. Twenty-seven per cent of the identified
proteins were annotated as subunits of protein complexes (21% of
the proteome), 7.5% were involved in molecular transport (8.3%
of the proteome), 5% were kinases (3.6% of the proteome) and 8%
had putative or unknown functions (17% of the proteome).
Proteins integral to membranes or associated with the plasma
membrane were significantly underrepresented (0.71-fold enrich-
ment), whereas cytoplasmic and nucleolar proteins were over-
represented (1.28 and 1.48-fold enrichment, respectively)
(PANTHER database, Supplementary Data S4).

Given that the majority of the proteins and metabolites had
complex elution patterns characterised by more than one elution
maximum, we split the data profiles into single peaks; this is
referred to as deconvolution26. By doing so, we obtained 1320 and
125 peaks for unknown and annotated metabolites, respectively,
and 5834 protein peaks. These were used for further analysis
(Supplementary Data S5–S7).

We also determined whether the protein–protein complexes
remained intact during the PROMIS separation by examining
5834 protein peaks and calculating the apparent mass of a protein
complex based on its elution maximum. We then calculated the
ratio between the apparent mass and the theoretical monomeric
mass of a protein. This ratio reflects the oligomerisation state of a
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protein (referred to as its oligomeric state ratio). Assuming that
an oligomeric state ratio above 1.5 would indicate an interaction
with another protein, we identified 4981 protein peaks,
corresponding to 3408 proteins, as part of a multimeric complex
(Supplementary Data S8). We further validated the effectiveness
of fractionation by examining the elution profiles of 14 known
protein macro-complexes, such as the proteasome27. As antici-
pated, the respective components of the analysed complexes

shared an elution profile, validating the suitability of PROMIS for
the isolation, fractionation and identification of native protein
complexes (Fig. 1b, Supplementary Data S7).

We estimated co-elution, which we use to define putative
interactors, by calculating the Pearson correlation coefficient
(PCC) between all annotated metabolite and all protein peaks
present in our data set. We then determined the influence of
using the PCC threshold on the number of detected true PMIs,

Fig. 1 PROMIS allows for system-wide detection of protein–small molecule and protein–protein complexes using size exclusion chromatography. a
Dividing yeast cells were harvested in the logarithmic phase of growth and were used as a source of endogenous protein–protein and protein–metabolite
complexes. Complexes were fractionated using size exclusion chromatography, lyophilised and subjected to methyl tert-butyl ether-methanol-water
extraction. Polar metabolites and proteins were analysed by liquid chromatography-mass spectrometry. b Known yeast protein macro-complexes remain
intact. Multiple subunits of known protein macro-complexes co-elute together. The peak elution profiles of the components of 14 known protein macro-
complexes are depicted (Supplementary Data S7 and S8). The intensity was calculated relative to the maximum intensity of a given protein measured
across size exclusion chromatography separation range. Distinct colours are used to mark different protein macro-complexes. c The receiver operating
characteristic curve represents a trade-off between numbers of captured true-positive and false-positive protein–metabolite interactions by varying the
Pearson correlation coefficient (PCC) (Supplementary Data S10). The red dot indicates the chosen threshold (PCC≥ 0.7) used for determining complexes.
d Interaction network of captured known protein–metabolite complexes. Overall, 14 of the 87 known protein–metabolite interactions were re-captured in
the PROMIS experiment (Supplementary Data S9).
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which we retrieved from the STITCH database. For this purpose,
we created the list of reported true interactions comprising 87
PMIs, including only proteins and metabolites identified in our
data. Due to the lack of experimental evidence confirming that
given protein–metabolite pair does not interact, we constructed a
list of false positives by calculating the PCC of 87 randomly
picked protein–metabolite pairs present in our dataset (100
iterations). Next, we compared PCC values obtained for true
interactions retrieved from the STITCH database (Supplementary
Data S9) with randomly picked values (for a more detailed
description see Supplementary Methods). We calculated the
receiver operating characteristic curve, which showed the trade-
off between specificity (a low number of false-positive hits) and
sensitivity (the number of retrieved true–positive interactions)
(Fig. 1c) (Supplementary Data S9 and S10). To assure specificity
but to not reduce sensitivity, we applied a PCC threshold of 0.7 to
determine the PMIs (false discovery rate = 17.6%). We recovered
14 of the 87 true PMIs, which is five times greater than the
number expected by chance and achieving a true-positive rate
comparable to a recent MS-based proteome-wide PMI study in
Escherichia coli, reporting protein binders for 20 different
metabolites (Fig. 1d)18. Moreover, the correlation coefficients
calculated for the true protein–metabolite pairs were higher than
the permuted values (Supplementary Fig. S1).

It is important to note that when interpreting PROMIS results,
PCC shouldn’t be used to rank the interactions. However, we
anticipate that many of the small molecules will have few specific
protein partners, and so a single protein peak is expected to
correspond to a single metabolite peak, equally there will be
metabolites for which a single elution peak will correspond to the
multiple protein partners, obscuring the PCC. In other words and
in the latter case it is the co-elution alone, rather than PCC that is
indicative of the interaction. Equally, because metabolite binding
may vary depending on a protein oligomeric state or presence in a
particular protein complex, multiple correlated protein–metabolite
peaks will not always reflect confidence. Taken together, PROMIS
results should be seen more as qualitative rather than quantitative,
and we recommend that the choice of a PCC threshold should be
governed by the best compromise between specificity and
sensitivity estimated from the receiver operating characteristic
curve (Fig. 1c, Supplementary Data S10).

Finally, we created a user-friendly interface, which can be
mined for elution profiles of all measured metabolites and
proteins, and for the PMIs. The interface is available at https://
promis.mpimp-golm.mpg.de/yeastpmi/.

The PROMIS data set captures 225 of the previously predicted
yeast PMIs. In addition to known PMIs, the STITCH database
can be mined for predicted PMIs, where prediction is made based
on the binding data available for the orthologous proteins, and
assuming evolutionary conservation of the interactions27,28. We
queried lists of predicted PMIs against the yeast PROMIS data set
to provide experimental validation for the previously predicted
complexes.

Of the 1122 predicted PMIs, we found experimental evidence
for 225 interactions, engaging 22 unique metabolites (Fig. 2a,
Supplementary Data S11). A majority of these interactions were
between nucleoside monophosphates (NMPs)—such as (deoxy)-
AMP, (deoxy)-GMP and UMP—and DNA-binding and RNA-
binding proteins (Fig. 2b and Supplementary Fig. S2). After the
NMPs, the second largest group was comprised of interactions
between enzymes and cofactors (e.g. FMN, FAD, NAD(H) and
PLP). Most notably, our dataset validated 19 of the predicted PLP
binders, 14 of these were enzymes associated with amino acid
metabolism.

In the next step, we decided to explore the list of 225 validated
PMIs for those of potential regulatory nature. Herein, we will
highlight a representative example, which we followed up and
validated experimentally. Purines and pyrimidines are pivotal for
multiple cellular processes. Perturbation of their homoeostasis
leads to metabolic dysfunctions and has a serious impact on yeast
growth29–32. Considering the importance of purine metabolism,
we were intrigued by the interaction between xanthine and purine
nucleoside phosphorylase (Pnp1), present in the list of 225 PMIs
validated by PROMIS.

Pnp1 catalyses the conversion of guanosine and inosine to
guanine and hypoxanthine, respectively. In the PROMIS data set,
Pnp1 (monomeric mass 33 kDa) separated as two distinct elution
peaks with maximum intensity in fractions corresponding to 138
kDa and 88 kDa. This indicates that, in vivo, Pnp1 exists in two
different oligomeric forms or is part of a protein complex. Pnp1
co-eluted with its known substrate, inosine (Fig. 3a, b). In
addition, Pnp1 co-fractionated with xanthine (PCC > 0.95)
(Fig. 3c). As other enzyme–metabolite pairs identified in this
work, the interaction between Pnp1 and xanthine represents a
potential catalytic interaction. However, similar to human Pnp1,
ScPnp1 is unable to metabolise adenosine and xanthosine. Thus,
Pnp1–xanthine binding is more likely a putative regulatory
interaction33.

To test this hypothesis, we investigated whether xanthine
affects Pnp1 activity. To this end, we purified recombinant Pnp1
from S. cerevisiae and used it in an enzymatic assay that measures
the conversion rate of inosine to hypoxanthine34. The amount of
hypoxanthine produced was measured over time using an LC-
ESI-MS assay in the presence or absence of 100 µM xanthine. The
addition of 100 µM xanthine lowered the total Pnp1 activity by up
to 32% (Fig. 3d). The accumulation of xanthine in yeast may,
therefore, lower Pnp1 activity and slow the conversion of inosine
and guanosine to hypoxanthine and guanine, respectively, which
subsequently would lead to the reduction of hypoxanthine and
guanine level in yeast cells (Fig. 3e).

The dipeptide Ser-Leu interactome comprises numerous pro-
teins involved in protein and amino acid metabolism. Of the 74
annotated metabolites that co-eluted with proteins, 36 were pro-
teogenic dipeptides. In yeast, the sole reported dipeptide–protein
interaction is between dipeptides with the basic N-terminal resi-
due (Arg, Lys or His) and site-1, and between dipeptides with the
bulky hydrophobic N-terminal residue and site-2 (Trp, Phe, Tyr,
Leu or Ile) of the ubiquitin ligase, Ubr135. Importantly, two of the
type 1 dipeptides (Arg-Phe and Lys-Phe) also co-elute with Ubr1
in our data set (Supplementary Fig. S3). Encouraged that we could
recapitulate known binding, we decided to determine the precise
identity of the protein interactors of a single selected and repre-
sentative dipeptide, namely Serinyl-Leucine (Ser-Leu). The Ser-
Leu elution profile spans reproducibly across a PROMIS protein
separation range in all three replicates and is characterised by
three local maxima, indicating the presence of a multitude of
protein partners. The three Ser-Leu peaks co-elute (PCC ≥ 0.7)
with 239, 376 and 182 proteins.

To validate the predicted partners, we performed affinity
purification experiments starting with Ser-Leu as the bait (c.f.
‘Methods’). We used agarose beads coupled to Ser-Leu by the
NH2 group of serine (N-Ser-Leu) or the COOH group of leucine
(Ser-Leu-C). We found 162 proteins that were significantly
enriched in eluates from the N-Ser-Leu and Ser-Leu-C beads,
constituting putative Ser-Leu targets (Supplementary Fig. S4 and
Supplementary Data S12). Proteins involved in protein metabo-
lism (amino acid biosynthesis, protein folding, proteasome,
proteins involved in translation and protein targeting) were
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significantly overrepresented (false discovery rate < 0.05)
(Supplementary Fig. S5).

To complement the affinity purification experiments, we used
an independent biochemical method for the identification of
protein partners of small-molecule ligands, namely thermal
proteome profiling. Thermal proteome profiling monitors
changes in protein thermal stability caused by ligand binding16.
We analysed our obtained data by applying the non-parametric
analysis of response curves method36. The method is independent
of melting temperature estimation and tests the differences in
curves rather than the differences in melting temperature. We
found 94 potential targets that had melting profiles significantly
affected by Ser-Leu treatment (Benjamini-Hochberg P value ≤
0.05) (Supplementary Data S13 and Supplementary Fig. S6).
Again, proteins involved in protein metabolism were significantly
enriched (false discovery rate < 0.05) (Supplementary Fig. S7).

In total, 86 proteins, assigned as Ser-Leu-binding proteins based
on at least two of the three experimental strategies, were queried
against a STRING database (Fig. 4a). Seventy-seven of the 86
proteins were part of the resulting PPI network (Fig. 4b and
Supplementary Fig. S8). Functional and enrichment analyses
showed a significant overrepresentation of proteins involved in

amino acid biosynthesis, translation, protein folding, degradation
and targeting (Supplementary Fig. S9). Five proteins, identified
by all three independent approaches (PROMIS, affinity purification
and thermal proteome profiling), were assigned as high-confidence
Ser-Leu-binding proteins (Fig. 4a). These five proteins were two
subunits of the T-complex (Cct3 and Cct8)37, the regulatory
subunit of acetolactate synthase complex (Ilv6)38, polyamine
acetyltransferase (Paa1)39 and the yeast prion protein (New1)40.

Particularly intriguing was the appearance of Ilv6, which is
involved in the biosynthesis of branched-chain amino acids
(valine, leucine and isoleucine) and feedback inhibited by the
binding of valine38. Prompted by the published data, we
investigated the elution profiles of Ilv6, catalytic subunit of
acetolactate synthase complex (Ilv2) and dipeptides containing
branched-chain amino acids. We found that, in addition to Ser-
Leu, Val-Leu, Leu-Leu, Thr-Leu, Ile-Leu, Asn-Ile and Thr-Val
also co-migrated with the subunits of acetolactate synthase
complex (Fig. 4c).

Ser-Leu is a regulator of the glycolytic enzyme Pgk1. The Ser-
Leu elution profile is characterised by three local maxima,

Fig. 2 PROMIS provides experimental validation for multiple predicted protein–small molecule complexes. a Number of captured protein–small
molecules interaction in relation to previously reported and predicted interactions for each metabolite validated by our data set (Supplementary Data S9
and S11). b The interaction network of 225 STITCH predicted protein–small molecule interactions validated in this study (Supplementary Data S11). Edges
represent protein–small molecule interactions and were imported from STITCH, based on the experimental evidence (score≥ 0.4). Proteins and
metabolites are marked as black and red, respectively. Metabolite abbreviations: AdoHcy adenosyl homocysteine, AMP adenosine monophosphate,
dMTA/MetThioAde methylthioadenosine, HMA hydroxy methylglutaric acid, PLP pyridoxal phosphate, SAH S-adenosyl-homocysteine, TMP thymidine
monophosphate, UMP uridine monophosphate, XMP xanthine monophosphate.
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Fig. 3 Functional validation of the Pnp1–xanthine interaction. a–c Elution profiles of Pnp1, with its known substrate inosine (a,b) and putative ligand
xanthine (c) (Supplementary Data S6 and S7). The intensity was calculated relative to the maximum intensity of the molecule measured across size
exclusion chromatography fractions. The theoretical molecular weight (MW) was calculated using reference proteins. d Xanthine inhibits Pnp1 activity.
Total activity of recombinant Pnp1 in the presence of 100 µM xanthine was measured using an liquid chromatography-mass spectrometry-based assay
(Supplementary Data S18). Inhibition was calculated in relation to Pnp1 activity in the absence of xanthine. Data represent the means ± SD, n= 6
independent samples. Asterisks denote significant difference (non-paired, two-tailed t test P value < 0.05). e Scheme of purine degradation pathway with
predicted regulatory interaction between Pnp1 and xanthine. Molecules discussed in this study are depicted in bold. Enzymes are additionally marked
in blue.
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Fig. 4 Characterisation of Ser-Leu interactome. a Venn diagram showing the number of putative Ser-Leu targets identified using size exclusion
chromatography (SEC), affinity purification (AP) and thermal proteome profiling (TPP) (Supplementary Data S12, S13 and S17). An overlap between at
least two orthogonal approaches (86 proteins) was considered to represent the Ser-Leu interactome and is marked in black. b The Ser-Leu interactome
network. Edges represent protein–protein interactions and were imported from STRING, based on the experimental evidence (score≥ 0.4). Functionally
related proteins are grouped together. Distinct colours are used to mark different protein groups. c Heatmap showing co-elution of catalytic (Ilv2) and
regulatory (Ilv6) subunits of the acetolactate synthase complex with dipeptides containing branched-chain amino acids (Supplementary Data S6 and S7).
The intensity was calculated relative to the maximum intensity measured across the SEC fractions. The theoretical molecular weight was calculated using
reference proteins.
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indicating co-presence of interacting proteins in respective frac-
tions. However, when we checked the PROMIS data set, we found
that all five of the high-confidence protein targets (identified
simultaneously by affinity purification, thermal proteome profil-
ing and PROMIS) corresponded to either the first or second Ser-
Leu peaks, but none co-fractionated with the third peak.
Prompted by our earlier observation that Tyr-Asp binds to plant
glyceraldehyde-3-P dehydrogenase (GAPDH)22, we searched for
glycolytic enzymes among the 182 proteins co-eluting with the
third peak of Ser-Leu and identified phosphoglycerate kinase
(Pgk1) as a putative target of Ser-Leu (Fig. 5a).

We validated the direct interaction between Pgk1 and Ser-Leu
using microscale thermophoresis with a determined Kd of 416 µM
(Fig. 5b)41. In comparison, no interaction could be measured
between Pgk1 and Tyr-Asp, (Supplementary Fig. S10) and
between Pgk1 and serine, which was used as a negative control
(Supplementary Fig. S10). We decided for serine, as analysis of
dipeptide uptake in yeast showed that an amino acid residue at
the N-terminus has a more significant role in dipeptide
recognition than one on the C-terminus42. In line with our
results, recent systematic analysis of PMIs in central metabolism
using nuclear magnetic resonance showed that Pgk in Escherichia
coli does not bind to either serine or leucine43.

We characterised the effect of the interaction between Pgk1 and
Ser-Leu by testing whether Ser-Leu affects the activity of
recombinant Pgk144. We used a stopped enzymatic assay
(Supplementary Fig. S11), which measures the conversion of 3-
phosphoglycerate (3PGA) to bisphosphoglycerate (BPGA) and
subsequently to glyceraldehyde-3-P (GAP), dihydroxyacetone-P
(DAP) and finally glycerol-3-P (G3P)45,46. Micromolar concen-
trations of Ser-Leu significantly increased the activity of Pgk1;
however, the activating effect was observable only at relatively low
concentrations of the ATP used in the assay (below Vmax) (Fig. 5c
and Supplementary Fig. S12). Since high concentrations of ATP
diminished the activating effect of Ser-Leu, we hypothesized that
Ser-Leu may increase the affinity of Pgk1 towards ATP. To test
this assumption, we used microscale thermophoresis to determine
the Kd of the interaction between Pgk1 and ATP in the presence of
a saturating concentration of Ser-Leu (Fig. 5d). We first validated
the interaction between Pgk1 and ATP (Kd of 122 µM). Next, we
demonstrated that Ser-Leu lowered Kd of ATP binding by 40-fold,
effectively increasing the affinity of Pgk1 for ATP (Kd of 3 µM).

Dipeptide accumulation is associated with glucose depletion.
To learn more about the biological context of Ser-Leu action, we
decided to investigate dipeptide and amino acid accumulation

Fig. 5 Characterisation of the Pgk1–Ser-Leu interaction. a The elution profile of Pgk1 and its putative ligand Ser-Leu (Supplementary Data S6 and S7). The
intensity was calculated relative to the maximum intensity of the molecule measured across size exclusion chromatography fractions. The theoretical
molecular weight (MW) was estimated using reference proteins. The Pearson correlation coefficient (PCC) indicates a correlation coefficient calculated
between depicted elution profiles. b Microscale thermophoresis analysis of Pgk1 and Ser-Leu binding (Supplementary Data S26). Kd indicates dissociation
constant. Data represent the means ± SD, n= 3 independent samples. c Functional validation of the interaction between Ser-Leu and Pgk1 (Supplementary
Data S28). Ser-Leu significantly increases Pgk1 activity. Data represent the means ± SD, n= 3 independent samples. Asterisks denote significant difference
(non-paired, two-tailed t test P value < 0.05). d Microscale thermophoresis analysis of Pgk1 and ATP binding in the presence of saturating concentrations
(4mM) of Ser-Leu (Supplementary Data S27). Kd indicates dissociation constant. Data represent the means ± SD, n= 3 independent samples.
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during growth on glucose at optimal conditions (30 °C). For this
purpose, yeast culture was grown to the stationary phase, fol-
lowed by transfer to a fresh pre-treated medium (see ‘Methods’
section). Samples were harvested immediately after transfer to
fresh medium and at multiple time points ranging from 15 to
1440 min, quenched in methanol and analysed by liquid
chromatography-mass spectrometry. With few exceptions, all of
the measured dipeptides accumulated after 180 min of growth
(Fig. 6a), which corresponds to glucose depletion (Supplementary
Fig. S13a). When compared with dipeptides, amino acids
displayed a different accumulation pattern, characterised by an
increase after 360 and 1440 min of growth (Fig. 6b).

More specifically, level of Ser-Leu and leucine decreased after 30
min of growth and started to accumulate after 180 and 1440 min
of cultivation, respectively (Fig. 6c). In contrast, level of serine
undergoes fewer fluctuations. Similarly to leucine, it accumulates
after 1440 min of growth.

Ser-Leu feeding affects both central metabolism and yeast
growth. In addition to Pgk1, Ser-Leu protein interactome com-
prised numerous other enzymes, from amino acids biosynthesis
(Prs5, Ser33, Shm2, Ilv6, Glt1, Pro1, Pro3), the TCA cycle (Kgd1),
purine (Amd1) and NAD metabolism (Bna6). To examine whe-
ther Ser-Leu binding translates into a metabolic effect we

Fig. 6 Analysis of dipeptide and amino acids fluctuations in yeast under control growth conditions (30 °C). a Heatmap showing fluctuation of dipeptides
level in yeast (Supplementary Data S30). b Heatmap showing fluctuation of amino acids level in yeast (Supplementary Data S30). c Plot showing
fluctuation of Ser-Leu, serine and leucine level in yeast. Shown are relative changes to time point 0. Data represent the means n= 3 independent samples.
Ratios were log transformed (log base 2).
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followed changes in relative metabolite levels (here described as
total intensity) and redistribution of carbon isotope (enrichment
level [%] multiplied by relative metabolite level, here described as
13 C fraction intensity) in yeast cells upon Ser-Leu supple-
mentation. Specifically, yeast cells at stationary phase were fed
with 13C glucose together with either mock, 100 µM Ser-Leu or a
mix of 100 µM serine and 100 µM leucine. Samples were har-
vested at multiple time-points ranging from 5 to 240 min fol-
lowing treatment, quenched in methanol and analysed by gas
chromatography- and liquid chromatography-mass spectrometry
(Supplementary Figs. S13–S21). Over time, the 13C glucose is
taken up and metabolized by the cell and metabolites become
enriched for 13C until the steady-state enrichment is reached.
While changes in metabolites levels are valuable information to
describe the metabolic state of an organism, they are limited in
providing information regarding the flow of mass through the
system. 13C enrichment provides further information to access
the conversion rates of labelled substrates through metabolism,
which can be used to estimate the production rate of a given
metabolite47.

The choice of Ser-Leu concentration was guided by the
absolute cellular levels of Ser-Leu, which we estimated to
approximate 6 µM by spiking different amounts of Ser-Leu (from
100 nM to 100 µM) into metabolic extract prepared from 13C
labelled S288c yeast culture corresponding to the stationary phase
of growth.

GC- and LC-MS analysis of the Ser-Leu, serine and leucine
concentrations in the Ser-Leu supplemented cells revealed rapid
Ser-Leu accumulation, which remained constant over time
(Supplementary Fig. S13b). Neither serine nor leucine accumu-
lated, at least during the duration of the Ser-Leu treatment,
arguing that Ser-Leu was not degraded to its constituent amino
acids (Supplementary Fig. S13cd).

Most conspicuously, Ser-Leu treatment led to a stark increase
in the de novo production rate of the 3PGA (3-fold change),
directly downstream of the Pgk1 activity, followed by an increase
in pyruvic acid production (Fig. 7 and Supplementary Fig. S14).
Interestingly, the excess of glycolytic 3PGA and pyruvate was
directed away from the tricarboxylic acid cycle, as de novo
production rates of all of the measured tricarboxylic acid cycle
intermediates, citric acid, succinic acid, fumaric acid and malic
acid were decreased (Supplementary Fig. S15). Similarly, and
possibly as a consequence, also de novo synthesis of tricarboxylic
acid cycle-derived amino acids: methionine, saccharopine (inter-
mediate in the metabolism of lysine), proline, arginine and
aspartate were downregulated (Supplementary Figs. S16–S18).
Moreover, Ser-Leu treatment (i) led to upregulation of de novo
synthesis of 5’-GMP, and accumulation of 3’-AMP, and adenine
all being intermediates of purine metabolism (Supplementary
Fig. S19), (ii) increased levels of two intermediates of sphingolipid
metabolism, sphingosine and hydroxypalmitic acid (Supplemen-
tary Fig. S20) and (iii) elevated de novo synthesis of cofactors
NADP+ and FAD+ (Supplementary Fig. S21). Similarly, to Ser-
Leu, also amino acid feeding resulted in a number of metabolic
changes. However, the observed effects were different; for
instance, in contrast to the Ser-Leu, the amino-acid treatment
did not affect de novo synthesis of the tricarboxylic acid cycle
intermediates succinic acid, fumaric acid and malic acid.

Finally, and to complement our metabolic analysis we tested
whether Ser-Leu supplementation affects yeast growth. For this
purpose, starved yeast culture in stationary phase was supple-
mented with glucose together with either mock, 1 mM Ser-Leu or
mixture of 1 mM serine and 1 mM leucine (Fig. 8a). Yeast growth
was monitored by measuring OD600nm using an automatically
recording incubator. Ser-Leu treatment affected yeast growth
during early exponential phase and supplemented culture reached

higher OD600nm than mock. Ser-Leu treatment delayed diauxic
shift for 30 min, therefore prolonged fermentation, and shortened
respiration phase (Fig. 8b). In comparison to treatment with
dipeptide, supplementation with a mixture of serine and leucine
affected yeast growth much later (4 and 6 h upon treatment with
dipeptide and amino acids, respectively) and did not delay the
diauxic shift (Fig. 8c).

Discussion
Herein, we used PROMIS to chart a map of protein–small
molecule interactions (PMIs) in the model yeast Saccharomyces
cerevisiae.

As a result, we report a unique data set resulting from an
analysis of endogenous protein–metabolite and protein–protein
complexes. Our most remarkable observation relates to the wealth
of small molecules present in the protein complexes; this attests to
the complexity of the protein–small molecule interactome and
highlights an important but severely understudied role of small
molecules as protein regulators. We report 225 previously pre-
dicted PMIs that could be validated using PROMIS. Considering
that the STITCH database contains 87 true interactions for the
same subset of metabolites and proteins, then a single PROMIS
experiment was sufficient to nearly quadruple the number (from
87 to 312). We successfully queried the list of 225 validated
interactions for binding events with a putative regulatory role,
such as between Pnp1 and xanthine. However, in vivo sig-
nificance of the xanthine inhibition of Pnp1 activity remains to be
tested, xanthine binding to Pnp1 is an excellent example where
querying a single PROMIS dataset is sufficient to retrieve reg-
ulatory interactions.

In addition to the previously predicted PMIs, the presented
PROMIS data set can be mined for new binding events, assisting
the discovery and functional characterisation of small-molecule
regulators. In line with an analogous PROMIS study in Arabi-
dopsis proteogenic dipeptides stood out as a major group of
protein-bound small molecules22. A role of dipeptides in the
regulation of central metabolism has been discussed before.
Increase of proteogenic dipeptides in tumour-associated cells
correlated with the glycolytic capacity of the tumour48. In com-
parison, treatment with the non-proteogenic dipeptide carnosine
(β-alanyl-L-histidine) reduced the proliferative capacity of human
gastric cancer cells by inhibiting glycolysis, mitochondrial oxi-
dative phosphorylation and respiration49. Finally, the acidic
dipeptide Tyr-Asp was found among small-molecule ligands of a
glycolytic enzyme, GAPDH22. Here, we could demonstrate that
Ser-Leu affects glycolysis via direct binding and activation of
Pgk1. Consistent with the in vitro results, Ser-Leu feeding led to a
rapid accumulation of an important glycolytic intermediate
3PGA. 3PGA is eventually converted into pyruvate but can also
be re-directed into serine biosynthesis. While serine is an entry
point into one-carbon metabolism, pyruvate is utilized to produce
energy via either the tricarboxylic acid cycle (respiration) or the
ethanol production (fermentation). Reduced levels of the tri-
carboxylic acid cycle intermediates, and tricarboxylic acid cycle-
derived amino-acids, measured in response to the Ser-Leu sup-
plementation point to pyruvate being directed away from the
respiration, most likely into fermentation. These data are in line
with the measured growth effects. Ser-Leu treatment delayed the
diauxic shift, which is indicative of Ser-Leu supporting fermen-
tation over respiration. Moreover, and since Ser-Leu accumula-
tion accompanies glucose depletion characteristic for the late
logarithmic phase of growth, we propose that Ser-Leu, and pos-
sibly also other proteogenic dipeptides, reinforce sugar repression
of the tricarboxylic acid cycle in yeast cells when the glucose levels
fall low.
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The role of Pgk1 in the coordination of glycolysis and tri-
carboxylic acid cycle by increasing lactate production and sup-
pressing mitochondrial pyruvate utilisation is well established in
cancer cells50–52. Herein, and based on the similarities of yeast
and cancer metabolism, we speculate that in addition to the
posttranslational modifications of the mammalian Pgk1, such as
phosphorylation and O-GlcNAcylation, that promote the switch
from the tricarboxylic acid cycle, into lactate production, dipep-
tide binding may constitute an additional regulatory mechanism
to promote the glycolytic capacity of cancer cells48,53. Notably,
and in addition to being an enzyme, Pgk1 is also a protein kinase;
known phosphorylation targets include pyruvate dehydrogenase

kinase 1 (Pdhk1) and autophagy regulator Beclin152,54. Con-
sidering that Ser-Leu increases the Pgk1 affinity towards ATP, it
will be interesting to test whether Ser-Leu binding, in addition to
enzymatic, affects Pgk1 kinase activity.

Although, in the present study, we focused on the Ser-Leu
regulation of Pgk1; it has to be noted that Ser-Leu protein
interactome comprises numerous other enzymes involved in
amino acid, purine and NAD metabolism. Therefore, it is highly
plausible that metabolic changes associated with Ser-Leu sup-
plementation go beyond Pgk1 activation. For instance, Ser-Leu
feeding inhibited valine production, despite the increased avail-
ability of pyruvate, which serves as a direct substrate for the

Fig. 7 YSBN2 response to Ser-Leu supplementation. Liquid chromatography- and gas chromatography-mass spectrometry analysis of metabolomic
changes caused upon supplementation with 100 µM Ser-Leu or mixture of 100 µM serine and 100 µM leucine (Supplementary Data S32 and S33).
Presented are changes in metabolite levels (here described as total intensity) and redistribution of carbon isotope (enrichment level [%] multiplied by
metabolite level, here described as 13 C fraction intensity) in yeast cells. 13C enrichment in combination with metabolite levels provides information
regarding the conversion rate of labelled substrate to the metabolite. X-axis represents time [min] upon treatment. Data represent the means ± SD, n= 3
independent samples. Asterisks denote significant difference (Tukey’s test, *P value < 0.05, **P value < 0.01). Ser-Leu-binding proteins are marked orange.
Level of metabolites marked red was significantly increased at least in one time-point comparing to other treatment. Level of metabolites marked blue was
significantly decreased at least in one time point comparing to other treatment. Presented are cropped images (see Supplementary Figs. S14–S21).
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synthesis of branched-chain amino acids. Obtained results indi-
cate the presence of a regulatory interaction stopping excess of
pyruvate from being directed towards the synthesis of valine. We
hypothesize that such regulation may be achieved by Ser-Leu
inhibition of the regulatory subunit of the acetolactate synthase
complex, Ilv6, which is among five high-confidence Ser-Leu
protein targets. Based on the Ser-Leu co-elution with other
branched-chain amino acid containing dipeptides, we also spec-
ulate that the function of Ser-Leu will be redundant with che-
mically similar dipeptides, and possibly even tripeptides, but as
shown before for other dipeptides55,56, different from the con-
stituent amino acids, serine and leucine.

Finally, the regulatory role of dipeptides would become parti-
cularly important in conditions that promote protein degradation.
We have recently shown that in response to abiotic stress, such as
heat and dark, plants accumulate dipeptides in the autophagy-
dependent manner57. Autophagy was also shown to account for the
increase in dipeptides reported in the mammalian pro-tumorigenic
cell lines48. Here, we could demonstrate that yeast accumulates
dipeptides in response to glucose deprivation. However, it requires
to be experimentally tested whether observed accumulation is
autophagy dependent, glucose depletion was shown to trigger
autophagy58,59 and metabolic phenotype associated with Ser-Leu
feeding such as accumulation of RNA degradation products,
changes in lipid metabolism and cofactor production is reminiscent
with the metabolic alterations downstream of autophagy58,60–63.

In summary, the proteome and metabolome-wide map of the
protein–protein and protein–metabolite complexes that we pre-
sent here can be mined for regulatory small molecules, such as the
here characterized proteogenic dipeptide Ser-Leu. Yeast growth
strictly depends on the carbon availability; glucose being the
primary carbon source64. The transition between growth on
glucose to growth on ethanol is accompanied by acute metabolic
rearrangement65. However, intensively studied, the underlying
regulatory mechanisms are not entirely understood. Our work
points to the involvement of proteogenic dipeptides in the control
of yeast metabolism and diauxic shift, by direct regulation of
enzyme activities and carbon flux. In a broader sense, presented
data support proteogenic dipeptides’ regulatory role at the nexus
of protein degradation and central metabolism.

Methods
Yeast growth conditions, cell lysis and extraction of native complexes for
PROMIS. The YSBN2 strain of S. cerevisiae was cultivated at 28 °C with moderate
shaking until it reached the logarithmic phase (OD600= 0.3–0.5) and used for the
preparation of soluble fraction containing endogenous complexes (Supplementary
Methods).

Size exclusion chromatography. 2 mL of concentrated soluble fraction, corre-
sponding to 40 mg of protein, was separated using a Sepax SRT SEC-300 21.2 ×
300 mm column (Sepax Technologies, Inc., Delaware Technology Park, separation
range 1.2 mDa to 10 kDa) connected to an AKTA explorer 10 (GE Healthcare Life
Science, Little Chalfont, UK) using a 7 mL/min flow rate, 4 °C. Equilibration of the
column and separation were performed using 50 mM AmBIC pH 7.5, 150 mM
NaCl, 1.5 mM MgCl2 and 48 1-mL fractions were collected from the 39 to 86 mL
elution volume. When compared with previous studies, the separation time
decreased to less than 20 min66. The fractions were frozen by snap freezing in
liquid nitrogen and subsequently lyophilised and stored at –80 °C for metabolite
and protein extractions.

The chromatogram of the absorption at 280 nm indicates reproducible
fractionation (Ravg= 0.98) of the native complexes present in the input samples
(Supplementary Fig. S22). To correct for unspecific metabolite binding to the
column matrix, a control experiment with a protein-free sample was performed.
For this purpose, proteins were precipitated from the extract of native complexes
using 80% acetone. An extract of total small molecules (bound and unbound) was
then solubilised in a lysis buffer before fractionation on the SEC column. The mass
features present in the SEC mobile phase (blank sample) were also quantified and
filtered out as potential contaminants coming from chemicals.

Fig. 8 Analysis of YSBN2 growth response to Ser-Leu supplementation. a
YSBN2 strain was supplemented with 1 mM Ser-Leu or mixture of 1 mM
serine and 1 mM leucine (Supplementary Data S31). Growth was monitored
by measuring the optical density at 600 nm wavelength for 75 h using an
automatically recording incubator. Data represent the means n= 3. Black
dot represents end of respiration phase. b Cropped growth curve of
YSBN2 supplemented with Ser-Leu (0–12 h). Blue dot represents diauxic
shift. Red, straight line indicates beginning of Ser-Leu treatment effect on
yeast growth. c Cropped growth curve of YSBN2 supplemented with Ser
and Leu (0–12 h). Red dot represents diauxic shift. Blue, straight line
indicates beginning of Ser and Leu treatment effect on yeast growth.
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Extraction of proteins and polar metabolites. Proteins and metabolites from the
lyophilised fractions were extracted using a methyl tert-butyl ether (MTBE)/
methanol/water solvent system, which separates molecules into pellets (proteins),
organics (lipids) and an aqueous phase (primary and secondary metabolites)67.
Molecules were extracted from each fraction by adding 1 mL of a homogenous
mixture of −20 °C methanol:MTBE:water (1:3:1), shaking for 10 min at 4 °C,
incubating 10 min in an ice cooled ultrasonication bath and shaking again for 10
min at 4 °C. Next, 500 µL of UPLC grade methanol:water (1:3) was added to each
fraction. The homogenates were vortexed and centrifuged for 5 min at 20,800 g,
RT. Equal volumes of the polar fraction and protein pellet were dried in a cen-
trifugal evaporator and stored at –80 °C until they were processed further. Quali-
tative and quantitative analysis of the fractionated proteins using the Bradford
assay68 and SDS-PAGE, respectively, showed that the majority of the proteins
eluted in fractions corresponding to MW above 20 kDa (A6–C13, referred to as
protein-containing fractions). Fractions C14–C15 contained low protein amounts
with MWs below 20 kDa. Therefore, fractions C14 to D9 were considered to
contain mostly protein fragments and metabolites that were not bound to proteins.

LC-MS metabolomics. After extraction, the dried aqueous phase was suspended in
100 µL of water and sonicated for 5 min using ultrasonication bath. Samples were
centrifuged 10 min at 20,800 g, RT. Supernatant was transferred to UPLC glass vial.
Polar metabolite extract was separated using a UPLC equipped with an HSS T3
C18 reversed-phase column and mass spectra were acquired using an Exactive
mass spectrometer in positive and negative ionisation modes67. 3 µl of the sample
was loaded onto the column for each ionisation mode. To create the required
gradient for metabolite measurement, mobile phase solutions were prepared as
follows: buffer A (0.1% formic acid in H2O) and buffer B (0.1% formic acid in
ACN). Metabolites were separated at 400 µl/min using the following gradient: 1
min 1% LC‐MS mobile phase buffer B, 11 min linear gradient from 1% to 40%
buffer B, 13 min linear gradient from 40% to 70% buffer B, then 15 min linear
gradient from 70% to 99% buffer B, and hold a 99% buffer B concentration until 16
min. Starting from 17min, use a linear gradient from 99% to 1% buffer B. Re‐
equilibrate the column for 3 min with 1% buffer B before measuring the next
sample. Mass spectra were acquired using following settings: mass range from 100
to 1500m/z, resolution set to 25,000, loading time restricted to 100 ms, AGC target
set to 1e6, capillary voltage to 3 kV with a sheath gas flow and auxiliary gas value of
60 and 20, respectively. The capillary temperature was set to 250 °C and skimmer
voltage to 25 V.

LC-MS/MS of proteins. Proteins from each fraction were digested using LysC/
Trypsin Mix (Promega Corp., Fitchburg, WI) according to the manufacturer’s
instructions. Digested proteins were desalted on self-made C18 Empore® extraction
discs (3 M, Maplewood, MN) STAGE tips69. Dried peptides were separated using
C18 reversed-phase column connected to an ACQUITY UPLC M-Class system in a
120 min gradient (Supplementary Methods).

Data processing of LC-MS metabolite and protein data. Data were processed
using Expressionist Refiner MS 11.0 (Genedata AG, Basel, Switzerland) using
settings described previously66, with minor changes, and MaxQuant version
1.6.0.1670 and its built-in search engine, Andromeda71. Detailed settings and fur-
ther data processing leading to the determination of molecular complexes were
described in Supplementary Methods. Additional information is also given in
Supplementary Figs. S23 and S24.

Overexpression and purification of Pnp1 and Pgk1. Pnp1 and Pgk1 over-
expressing yeast strains were purchased from Dharmacon and are part of the yeast
ORF collection44. Yeast cultivation and procedure of protein purification were
described in Supplementary Methods. Additional information is also given in
Supplementary Figs. S25 and S26.

Pnp1 enzymatic assay. The method for Pnp1 enzymatic activity measurement was
adapted from previous studies34 (Supplementary Methods).

Affinity purification using Ser-Leu agarose beads. Yeast cultivation and pro-
cedure of affinity purification were described in Supplementary Methods.

Thermal proteome profiling of the Ser-Leu-treated cell extracts. Thermal
proteome profiling of Ser-Leu-treated cell extracts was performed as described
earlier16 and analysed using a TPP package available on Bioconductor and
NPARC36 (Supplementary Methods).

Microscale thermophoresis. Microscale thermophoresis measurements were
performed using a Monolith NT.115 instrument (Nanotemper) (Supplementary
Methods).

Pgk1 enzymatic assay. Pgk1 activity was assayed using an optimised stopped
assay, and the product was determined by an enzyme-cycling system, as described
earlier, with minor modifications45,46 (Supplementary Methods).

Dipeptide and amino acid accumulation during growth. Yeast was cultivated at
control conditions as described earlier72 (Supplementary Methods).

Changes in growth and metabolism upon Ser-Leu supplementation (13C-
isotope-labelling experiment). Chemical treatment was applied by supplement-
ing yeast culture with either mock, 100 µM Ser-Leu or a mixture of 100 µM serine
and 100 µM leucine (Supplementary Methods).

Statistics and reproducibility. Statistical analysis was performed using R73. One-
way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test
or unpaired, two-tailed Student’s t test, was performed. The P values < 0.05 were
considered significant and are represented as *P < 0.05, **P < 0.01. For all statis-
tical analysis data from at least three independent measurements was used. The
exact number of replicates and detailed description of statistics performed are
indicated in individual figure captions and methods.

Data availability
The mass spectrometry proteomics data that support the findings of this study have been
deposited in the ProteomeXchange Consortium via the PRIDE74 partner repository with
the dataset identifier PXD021530. Source data underlying figures are available in
Supplementary Data S1–S33. All other data are available from the corresponding author
on reasonable request.

Code availability
R code used for data processing and analysis was submitted to GitHub repository and
deposited to Zenodo75. Code can be accessed at https://github.com/Marcin-Luzarowski/
PROMIS.git or https://doi.org/10.5281/zenodo.4146637.
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